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Intrinsically disordered proteins (IDPs) have recently become systems of great interest due
to their involvement in modulating many biological processes and their aggregation being
implicated in many diseases. Since IDPs do not have a stable, folded structure, however,
they cannot be easily studied with experimental techniques. Hence, conducting a
computational study of these systems can be helpful and be complementary with
experimental work to elucidate their mechanisms. Thus, we have implemented the
coarse-grained force field for proteins (COFFDROP) in Browndye 2.0 to study IDPs
using Brownian dynamics (BD) simulations, which are often used to study large-scale
motions with longer time scales and diffusion-limited molecular associations. Specifically,
we have checked our COFFDROP implementation with eight naturally occurring IDPs and
have investigated five (Glu-Lys)25 IDP sequence variants. From measuring the
hydrodynamic radii of eight naturally occurring IDPs, we found the ideal scaling factor
of 0.786 for non-bonded interactions. We have also measured the entanglement indices
(average Cα distances to the other chain) between two (Glu-Lys)25 IDP sequence variants,
a property related to molecular association. We found that entanglement indices decrease
for all possible pairs at excess salt concentration, which is consistent with long-range
interactions of these IDP sequence variants getting weaker at increasing salt
concentration.
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1 INTRODUCTION

One of the main determinants of biological structure and function is the interaction of two or more
molecules, especially protein molecules. Understanding the dynamics of these bimolecular
interactions is important for the understanding of such cellular structures as the cytoskeleton
(actin and tubulin, for example), ribosomes, chromosomes, and polymerases, as well as processes
such as cell signaling and cell motility (Alberts et al., 2002; Pollard and Earnshaw, 2007).
Furthermore, the encounter stages of such reactions, which are often the rate-limiting steps, are
diffusion-limited (Elcock, 2004). Therefore, the use of Brownian dynamics (BD) is appropriate for
such systems [see Huber and McCammon (2019) for a review]. For several decades, BD has found
use in polymer and peptide simulations, simulations of enzyme-substrate reactions, and
protein–protein association reactions. More recently BD has found use in studies of large-scale
cytoplasm simulations, microtubule dynamics, assembly of protein complexes, retroviral infectivity,
molecular motors, chromosome organization, the nuclear pore complex, synapses, and endocytosis.
The previous version of the Browndye software package (Browndye 1.0), which was limited to two
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rigid bodies, has been used in enzyme kinetics and channeling
(Huang et al., 2018), as well as protein-protein interactions
(Grant et al., 2011).

The Browndye 2.0 software package, successor to the previous
simulation package, consists of two simulation programs and
about 38 auxiliary programs for processing data. Like the
previous version, Browndye 2.0 can compute the second-order
rate constants of the encounter of two bodies moving according
to BD, compute the probabilities of the two bodies moving from
one binding mode to another, and output the molecules’
trajectories. The main addition is the ability to model each
molecule as a collection of large rigid cores with flexible
connectors and loops. In its original two-rigid-body model,
Browndye has functionality very similar to the packages SDA
(Martinez et al., 2015), MacroDox (Northrup et al., 1993), and
GeomBD (Roberts and Chang, 2016), and is intended primarily
for simulations of large biological molecules like those three other
packages. Its current limitations arise mainly from the structural
rigidity approximations and the nature of the force computations
between the molecules.

Using Browndye 2.0, we have investigated intrinsically
disordered proteins (IDPs), which are proteins that do not
have a stable, folded structure and instead take on various
structures depending on their current tasks in modulating
biological processes. Conducting a computational study of
these systems will be critical to elucidate their mechanisms.
Specifically, we have implemented the coarse-grained force
field for proteins (COFFDROP) (Andrews and Elcock, 2014;
Frembgen-Kesner et al., 2015) in Browndye 2.0 to study eight
naturally occurring IDPs and five (Glu-Lys)25 IDP sequence
variants. We have measured their structural properties,
including radius of gyration (Rg), interresidue distances (Rij),
and hydrodynamic radius (Rh), and a property related to
molecular association, namely the entanglement index (average
Cα distance to the other chain).

2 MATERIALS AND METHODS

2.1 Structure Preparation
The Alphafold Colab (Jumper et al., 2021) was used to prepare the
starting structures for the five (Glu-Lys)25 IDP sequence variants
and eight naturally occurring IDPs that were used in Frembgen-
Kesner et al. (2015), which are Alzheimer amyloid β(1–40)
(Aβ(1–40)) (Danielsson et al., 2002), suppressor of Mec1
lethality (Sml1) (Danielsson et al., 2008), Lotus japonicas
intrinsically disordered protein 1 (LjIDP1) (Haaning et al.,
2008), prothymosin α (ProTα) (Yi et al., 2007), abscisic acid
stress ripening 1 (ASR1) (Goldgur et al., 2007), yeast nucleoporin
116 (Nup116) (Krishnan et al., 2008), α-synuclein (Uversky et al.,
2001), and cystic fibrosis transmembrane conductance regulator
regulatory region (CFTR R) (Baker, 2009). We have used
Alphafold to prepare the starting structures for the naturally
occurring IDPs since they have conditionally folded regions that
have confident per-residue confidence scores (pLDDT) (above 70
in a range from 0 to 100), which are expected to be accurately
predicted by Alphafold (Alderson et al., 2022). We have also used

Alphafold for the five (Glu-Lys)25 IDP sequence variants since
peptides composed of many Glu and Lys residues favor forming
α-helical structures (Marqusee and Baldwin, 1987; Iqbalsyah and
Doig, 2005; Meuzelaar et al., 2016; Wolny et al., 2017), and
Alphafold had yielded α-helical structures for all five IDP
sequence variants.

Figures 1, 2 show the amino acid sequences of these systems,
respectively, and Table 1 summarizes the various characteristics
of the systems obtained from the classification of intrinsically
disordered ensemble regions (CIDER) program (Holehouse et al.,
2015).

The protonation states were assigned using PROPKA 3
(Olsson et al., 2011; Søndergaard et al., 2011) at pH 7.0 for
the five (Glu-Lys)25 IDP sequence variants and at appropriate
pH’s for the eight IDPs as done in Frembgen-Kesner et al. (2015),
which are listed in the Supplementary Material. PDB2PQR 3.4
(Jurrus et al., 2018; Unni et al., 2011; Dolinsky et al., 2007, 2004)
was used to convert the PDB files to PQR format for the BD
simulations. The temperature T was set to 298 K, and the
dielectric constant was set to 78.4 for all systems. For the five
(Glu-Lys)25 IDP sequence variants, the ionic concentration was
set to NaCl 15 mM (reference concentration) or NaCl 125 mM
(excess salt concentration) as done in Das and Pappu (2013) by
setting the appropriate Debye length λD using Equation 1

λD � ϵ0ϵτkBT
2e2NAC

( )
1/2

, (1)

where ϵ0 is the permittivity of the free space, ϵτ is the dielectric
constant (of water in this case), kB is the Boltzmann constant, T is
the temperature (298 K in this case), e is the elementary charge,
NA is Avogadro’s constant, and C is the ionic strength in mol/m3

units. The Debye length λD was set to be 7.85 �A for NaCl 15 mM
(reference concentration) and 2.72 �A for NaCl 125 mM (excess
salt concentration).

2.2 Brownian Dynamics Simulations
The BD simulations were run using Browndye 2.0 (Huber and
McCammon, 2010) with the spline-based potential coarse-
grained force field for proteins (COFFDROP) (Andrews and

FIGURE 1 | The five (Glu-Lys)25 IDP sequence variants used in the study.
Glutamic acid (E) is colored in red for negative charge, and lysine (K) is colored
in blue for positive charge. The labels for the sequence variants (sv) are from
Das and Pappu (2013). The five sequence variants are the same ones
tested in McCarty et al. (2019).
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Elcock, 2014; Frembgen-Kesner et al., 2015), which was newly
implemented for Browndye 2.0. In COFFDROP, each amino
acid is represented as a “bead” so that a protein sequence can
be represented as a flexible “chain” composed of beads. In
addition, since the scaling of non-bonded interactions
improved COFFDROP’s ability to reproduce experimental
results (Frembgen-Kesner et al., 2015), this feature was also
implemented for Browndye 2.0. Moreover in Browndye 2.0,
interactions can be computed less frequently, which is useful
since computing these interactions take up most of the
simulation time for longer chains. Finally in Browndye 2.0,
a constant time step size can be set, and the recommended
value is 0.05 ps for COFFDROP chains, unless bond
constraints are used in which case a larger constant time

step size is allowed, which can make the simulations run
faster.

For the eight naturally occurring IDPs, the maximum
number of BD simulation steps was set to 80,000,000, and a
constant time step size of 0.05 ps was used (no bond constraints
used). To calculate the hydrodynamic radius (Rh) for each
COFFDROP potential with a scaling factor (0.5–1.0 in
intervals of 0.1) for non-bonded interactions, ten trajectories
were run for each system and potential, and simulation
snapshots were recorded every 200,000 steps. Hydrodynamic
interactions were updated every 400 steps. The specific
parameter values follow the parameter values from
Frembgen-Kesner et al. (2015) since these IDPs were used to
check the COFFDROP implementation for Browndye 2.0.

FIGURE 2 | The eight naturally occurring IDPs used in the study. Glutamic acid (E) and aspartic acid (D) are colored in red for negative charge, and lysine (K) and
arginine (R) are colored in blue for positive charge. The eight IDPs are from Frembgen-Kesner et al. (2015).

TABLE 1 | Summary of classification of intrinsically disordered ensemble regions (CIDER) (Holehouse et al., 2015) results for the IDPs used in the study. NCPR denotes the
net charge per residue, FCR denotes the fraction of charged residues, and κ denotes the measure of charge segregation from Das and Pappu (2013). Hydrophathy
measures how hydrophobic the sequence is (0–9 with 0 being least hydrophobic and nine being most hydrophobic) (Kyte and Doolittle, 1982) and disorder measures the
fraction of disorder promoting residues (Uversky, 2002). The categorization of each IDP is determined from the Das-Pappu phase diagram (Das and Pappu, 2013;
Holehouse et al., 2015).

IDP Length NCPR FCR κ Hydropathy Disorder Category

sv10 50 0.000 1.000 0.083 0.800 1.000 Strong polyampholytes
sv15 50 0.000 1.000 0.135 0.800 1.000 Strong polyampholytes
sv20 50 0.000 1.000 0.272 0.800 1.000 Strong polyampholytes
sv25 50 0.000 1.000 0.528 0.800 1.000 Strong polyampholytes
sv30 50 0.000 1.000 1.000 0.800 1.000 Strong polyampholytes
Aβ(1−40) 40 -0.075 0.225 0.211 4.558 0.600 Weak polyampholytes
Sml1 104 -0.048 0.221 0.143 3.712 0.635 Weak polyampholytes
LjIDP1 107 0.009 0.271 0.174 3.890 0.729 Janus sequences
ProTα 109 -0.394 0.578 0.424 2.507 0.881 Strong polyelectrolytes
ASR1 115 -0.017 0.383 0.100 3.326 0.809 Strong polyampholytes
Nup116 126 0.040 0.040 0.278 3.709 0.762 Weak polyampholytes
α-Synuclein 140 -0.064 0.279 0.172 4.097 0.729 Janus sequences
CFTR R 190 -0.026 0.289 0.285 3.743 0.679 Janus sequences
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For the five (Glu-Lys)25 IDP sequence variants, the maximum
number of BD simulation steps was set to 125,000,000, and by
using bond constraints, a constant time step size of 0.2 ps was
used (25 μs total). The autocorrelation functions of N-terminus
Cα to C-terminus Cα distance, N-terminus Cα to middle Cα

distance, and middle Cα to C-terminus Cα distance were
measured and plotted with new Browndye 2.0 functions
chain_atom_distances and autocor to check whether the
simulation time was sufficiently long enough to obtain
converged properties. As seen in Figure 3, the three
autocorrelation functions converge, and the simulation time
was regarded to be sufficiently long enough. The rest of the
autocorrelation functions are included in the Supplementary
Material. As seen from the Supplementary Material, the shortest
simulation was 12 ns, whereas the longest simulation was 25 µs.
To calculate structural properties such as radius of gyration (Rg),
ten trajectories were run for each system, and simulation
snapshots were recorded every 100,000 steps. Hydrodynamic
interactions were updated every 400 steps.

3 RESULTS

3.1 Eight Naturally Occurring IDPs
We first investigated the eight naturally occurring IDPs to see if
Browndye 2.0 can reproduce the COFFDROP results in
Frembgen-Kesner et al. (2015). In particular, we measured the
hydrodynamic radius (Rh) for each system and COFFDROP
potential with a scaling factor (0.5–1.0 in intervals of 0.1) for
non-bonded interactions. Rh is the radius of a hard-sphere that

diffuses at the same rate as solute and is dependent on the size and
hydration of protein. The Kirkwood definition (Kirkwood, 1996)
was used to calculate Rh as stated in Equation 2

1
Rh

� 〈 1
rij
〉i≠j, (2)

where rij denotes pairwise distances between Cα of amino acids i
and j, as done in Nygaard et al. (2017). Rh was calculated for each
simulation snapshot (every 200,000 steps), and the final Rh value
for each simulation was obtained by averaging the Rh values from
the simulation. The average Rh values, along with standard error
bars (95% confidence interval), from ten independent
simulations, are plotted in Figure 4. To match up with the
COFFDROP results that used the HYDROPRO program
(Ortega et al., 2011), the average Rh values and standard error
bars were multiplied by 1.186 and added by 1.03 as done in
Nygaard et al. (2017). The Rh values are in good agreement with
those in Frembgen-Kesner et al. (2015), which are marked as
dashed lines with square markers in Figure 4, indicating that the
COFFDROP implementation in Browndye 2.0 is reliable. The
small discrepancies between the two results could be from the
long-range electrostatic interactions being computed differently,
i.e., Frembgen-Kesner et al. (2015) used a treecode algorithm (Li
et al., 2009) that involves Taylor expansion to compute particle-
cluster interactions, whereas this study used pairwise summations
of potentials evaluated by a cubic spline using tabulated
COFFDROP potential data. Except for ProTα, the ideal scaling
factor for the naturally occurring IDPs is between 0.7 and 0.8,
which allows the BD simulation results to match up with

FIGURE 3 | Autocorrelation functions of N-terminus Cα to C-terminus Cα distance, N-terminus Cα to middle Cα distance, and middle Cα to C-terminus Cα distance
for (Glu-Lys)25 sv = 10 at NaCl 15 mM (reference concentration) with scaling factor 0.786. The autocorrelation functions from one of the ten trajectories are shown for
clarity and the rest are included in the Supplementary Material.
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experimental values. We can consider ProTα to be an outlier
among the eight naturally occurring IDPs since it substantially
has more like-charged residues (i.e., positively charged residues
aspartic acid (D) and glutamic acid (E)) as seen in Figure 2 and as
noted in Frembgen-Kesner et al. (2015). The averaged ideal
scaling factor, after leaving ProTα out as an outlier, is 0.786,
which is slightly different from the scaling factor in Frembgen-
Kesner et al. (2015) (0.825). This scaling factor was used for
subsequent COFFDROP BD simulations of the five (Glu-Lys)25
IDP sequence variants. Finally, Figure 4 shows that Rh generally
increases with sequence length, except for ProTα that is shorter
than ASR1, Nup116, α-synuclein, and CFTR R.

3.2 Five (Glu-Lys)25 IDP Sequence Variants
We then investigated five (Glu-Lys)25 IDP sequence variants for
rates of association, which were model IDP systems in Das and
Pappu (2013), Sawle and Ghosh (2015), and McCarty et al.
(2019). These block polymers of glutamate and lysine residues
with different patterns serve as model IDPs since IDPs mostly
consist of oppositely charged residues (i.e., they are
polyampholytes) and do not have significant secondary
structures.

We first measured the radius of gyration (Rg), which serves as
an indicator of protein structure compactness, i.e., the smaller the
Rg, the tighter the packing of the protein is. Rg was calculated for
each simulation snapshot (every 100,000 steps), and the final Rg
value for each simulation was obtained by averaging the Rg values
from the simulation. The average Rg values, along with standard
error bars (95% confidence interval), from ten independent
simulations, are plotted in Figure 5. As observed in Das and
Pappu (2013), Rg generally decreases as κ, which represents the
measure of charge segregation (Das and Pappu, 2013), increases.
The Rg values are smaller than those from Das and Pappu (2013),
all within the value for classical Flory random coils (~18 �A) and
compact globules (~11 �A). The Rg values never reach near the
value for self-avoiding random walks (~28 �A), which is expected
for well-mixed sequence variants or those with low κ values. This
is most likely attributed from using different force fields and
potentially shows the limitation for the COFFDROP potential in
modeling highly charged systems. However, when using the
averaged ideal scaling factor for IDPs (0.786), the Rg values
increase, show closer to expected Rg values, and its minimum
Rg range match with that in Das and Pappu (2013). As κ→ 1, the
Rg values get closer to the value for compact globules (~11 �A)
(Dima and Thirumalai, 2004). Finally, the Rg values increase as
the salt concentration increases due to long-range interactions
getting weaker, which is consistent with the results from Das and
Pappu (2013). Overall, we were able to observe correct trends for

FIGURE 4 | Hydrodynamic radius (Rh) values for each of the eight naturally occurring IDPs with different scaling factors for non-bonded interactions. The
experimental Rh values are marked as dashed straight lines and correspond to the IDP with the same color in each graph. The approximate Rh values from Frembgen-
Kesner et al. (2015) aremarked as dashed lines with squaremarkers and correspond to the IDPwith the same color in each graph. The ideal scaling factor value would be
where Rh matches with the experimental value.

FIGURE 5 | Radius of gyration (Rg) values for each of the five (Glu-Lys)25
IDP sequence variants. Since each (Glu-Lys)25 IDP sequence variant has a
different κ value, which represents the measure of charge segregation (Das
and Pappu, 2013), κ was used as one of the axes of the graph.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 8988385

Ahn et al. Investigating IDPs with Brownian Dynamics

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Rg for the five (Glu-Lys)25 IDP sequence variants using the
COFFDROP potential.

We thenmeasured the interresidue distances between residue i
and residue j (Rij) against residue separations |j − i|, which can
characterize local concentrations of chain segments within the
IDP (Das and Pappu, 2013). Specifically, the distance between
residue i’s Cα and residue j’s Cα was measured. The scaling factor
was set to the averaged ideal scaling factor of 0.786. Rij was
calculated for each simulation snapshot (every 100,000 steps),
and the final Rij value for each simulation was obtained by
averaging the Rij values from the simulation. The average Rij

values from ten independent simulations are plotted in Figure 6.
The Rij values follow similar trends as observed in Das and Pappu
(2013), and the concave upward parts show indications of long-
range interactions between oppositely charged blocks. As
observed for the Rg values, the Rij values were also smaller
than those from Das and Pappu (2013), which could be
attributed from using different force fields. Finally, the Rij

values also increase as the salt concentration increases due to
long-range interactions getting weaker, which is consistent with
the results from Das and Pappu (2013). The effects of the salt
concentration are the smallest for sv10, which has the most well-
mixed sequence in comparison with the rest and can
counterbalance electrostatic repulsions and attractions (Das
and Pappu, 2013). Overall, we were also able to observe
correct trends with Rij for the five (Glu-Lys)25 IDP sequence
variants using the COFFDROP potential.

Finally, we measured a property related to molecular
association, namely the entanglement indices, or the average
Cα distances to the other chain, between the five (Glu-Lys)25
IDP sequence variants. Since all possible pair combinations were
tested, 15 simulations were run for each salt concentration (15
and 125 mM, respectively). The scaling factor was set to the
averaged ideal scaling factor of 0.786. The pairwise simulations
start with two IDP sequence variants oriented crosswise and
translated 15 �A apart. All five IDP sequence variants have their

FIGURE 6 | Interresidue distances between residue i and residue j (Rij) against residue separations |j − i| for each of the five (Glu-Lys)25 IDP sequence variants.

TABLE 2 | Summary of entanglement index values of all possible pair combinations between the five (Glu-Lys)25 IDP sequence variants.

IDP #1 IDP #2 Entanglement index (�A) at 15 mM Entanglement index (�A) at 125 mM

sv10 sv10 26.72 ± 0.98 26.38 ± 0.58
sv10 sv15 25.93 ± 0.63 27.12 ± 0.39
sv10 sv20 26.54 ± 0.98 26.70 ± 0.49
sv10 sv25 26.72 ± 0.71 26.92 ± 0.50
sv10 sv30 25.43 ± 1.61 26.70 ± 1.21
sv15 sv15 26.72 ± 0.53 27.68 ± 0.44
sv15 sv20 25.72 ± 0.69 27.29 ± 0.18
sv15 sv25 26.58 ± 0.75 26.87 ± 1.10
sv15 sv30 26.17 ± 0.28 27.98 ± 0.81
sv20 sv20 25.48 ± 0.31 25.78 ± 0.56
sv20 sv25 26.89 ± 0.83 25.85 ± 0.57
sv20 sv30 26.07 ± 0.31 26.38 ± 0.70
sv25 sv25 27.00 ± 0.25 27.44 ± 0.58
sv25 sv30 25.07 ± 3.05 27.15 ± 0.40
sv30 sv30 24.17 ± 2.38 26.59 ± 0.81
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middle Cα centered at (0.0, 0.0, 0.0). The middle Cα’s of the two
IDP sequence variants in the pairwise simulation were restrained
to be less than 20 �A apart. The entanglement indices were
measured using the entanglement_index, which is a new
implementation in Browndye 2.0. The entanglement index was
calculated for each simulation snapshot (every 100,000 steps),
and the final entanglement index for each simulation was
obtained by averaging the entanglement indices from the
simulation. The average entanglement indices, along with
standard error bars (95% confidence interval), from ten
independent simulations are listed in Table 2. The
entanglement indices were similar across all possible IDP
sequence variant pairs, indicating that there is no direct
relation between entanglement indices and charge segregation
κ. This may be from all sequence variants having relatively similar
Rg values or degrees of compactness, however, which could be
from using the COFFDROP potential. All entanglement indices,
with the exception for two pairs, increased, however, at excess salt
concentration. This is consistent with long-range interactions
getting weaker at increasing salt concentration, and published
work demonstrating that long-range interactions accelerate
protein-protein encounter for IDPs (Chu et al., 2012; Ganguly
et al., 2013; Pang and Zhou, 2016; Tsai et al., 2016; Chu et al.,
2017; Yang et al., 2019).

4 DISCUSSION AND CONCLUSION

We have presented our new COFFDROP force field
implementation on Browndye 2.0 that enabled us to study IDPs
computationally. BD simulations are ideal to study large-scale
motions with longer time scales and diffusion-limited molecular
associations, including the aggregation of IDPs.We have presented
results that show that our COFFDROP implementation is reliable
to study naturally occurring IDPs. We have also studied model
(Glu-Lys)25 IDPs using our COFFDROP implementation and
found that there is no relation between entanglement indices
and how well the charges are mixed and segregated within the
IDPs. However, thismay be from the limitation of the COFFDROP
potential in studying highly charged systems, which was also noted
in Frembgen-Kesner et al. (2015). The COFFDROP potential was
derived from MD simulations of all possible amino acid pairs
(Andrews and Elcock, 2014; Frembgen-Kesner et al., 2015), but the
simulations did not include salt so the COFFDROP potential may
be limiting in modeling systems with strong charge-charge
interactions.

For future work, we plan to implement a program to measure
the rates of association with an appropriate reaction criterion as
done in Ganguly et al. (2013), Liu et al. (2019). Then we plan to
measure the rates of association of a highly positive IDP binding

to a highly negative IDP (i.e., oppositely charged IDPs), an
interaction that may be abundant in eukaryotes for regulation
(e.g., cellular localization) (Borgia et al., 2018). We also plan to
look at the rates of association between IDPs and folded proteins
with secondary structures (Ruff et al., 2019). However, since
COFFDROP is meant to model IDPs or systems without
significant secondary or tertiary structures, the secondary
structural elements would need to have constraints to have
them fixed throughout the simulation, and the folded protein
would be treated as a rigid body. The IDP would still be modeled
as a flexible chain, and the scaling factor of 0.786 would be used
for the simulation.
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