:' frontiers ‘ Frontiers in Molecular Biosciences

ORIGINAL RESEARCH
published: 29 June 2022
doi: 10.3389/fmolb.2022.900005

OPEN ACCESS

Edited by:

Venkata Yellapantula,

Memorial Sloan Kettering Cancer
Center, United States

Reviewed by:

Haoxuan Jin,

YuceBio Technology Co., Ltd., China
Muzamil Yaqub Want,

Roswell Park Comprehensive Cancer
Center, United States

*Correspondence:

Xi Wang
wangxi@sysucc.org.cn
Feihai Ling
maillfh@21cn.com

These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Nanobiotechnology,

a section of the journal

Frontiers in Molecular Biosciences

Received: 19 March 2022
Accepted: 19 May 2022
Published: 29 June 2022

Citation:

Xiong Z, Huang W, Zhong W, Fu J,
Feng J, Wang X and Ling F (2022)

Breast Cancer Subtypes Based on

Hypoxia-Related Gene Sets Identify
Potential Therapeutic Agents.

Front. Mol. Biosci. 9:900005.

doi: 10.3389/fmolb.2022.900005

Check for
updates

Breast Cancer Subtypes Based on
Hypoxia-Related Gene Sets Identify
Potential Therapeutic Agents

Zhenchong Xiong'?, Weiling Huang'*, Wenjing Zhong'?, Jianchang Fu?, Jikun Feng’,
Xi Wang'* and Feihai Ling®*

"State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Breast
Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China, “State Key Laboratory of Oncology in South China,
Collaborative Innovation Center of Cancer Medicine, Department of Pathology, Sun Yat-sen University Cancer Center,
Guangzhou, China, ®Department of Breast Surgery, Zhongshan City People’s Hospital, ZhongShan, China

Purpose: The hypoxic tumor microenvironment was reported to be involved in different
tumorigenesis mechanisms of breast cancer (BC). We aimed to establish a hypoxia-related
gene signature to identify a new BC subtype through the clustering analysis and explore
potential compounds targeting the BC subtypes.

Methods: Gene expression data and clinical features of BC and adjacent non-tumor
tissues were downloaded from the Cancer Genome Atlas-Breast cancer (TCGA-BRCA)
database. We comprehensively revealed the activity changes of Gene Ontology (GO)
biological processes (BP) gene sets in BC by gene set variation analysis (GSVA) and
identified three hypoxia-related BC subtypes. We then matched the differentially
expressed gene profile of each subtype with the gene profile in CMap database to
identify the potential agents targeting the BC subtypes.

Results: 562 of Gene Ontology biological processes gene sets significantly correlated with
hypoxia score in breast cancer. 969 BC patients were clustered into three subtypes based
on the enrichment score of hypoxia-associated gene sets. Subtype 1 patients displayed
better survival than subtype 2 and 3. KEGG pathway enrichment analysis of each subtype
was performed based on the unique differential expression genes profile. In subtype 1, the
upregulated genes were associated with lipid and amino acid metabolism regulation; in
subtype 2, the upregulated genes were associated with metabolic energy regulation, while
in subtype 3, the upregulated genes were associated with apoptosis and protein process.
Using the CMap database, 55, 111 and 63 compounds were identified, targeting subtype
1, 2, and 3, respectively.

Conclusion: In this study, novel hypoxia-related subtypes were developed for patients
with BC. In addition, biological processes associated with differential expression genes
profile and potential therapeutic target compounds were identified in each subtype. The
new classification might provide a better understanding of the role of hypoxia in breast
cancer and more individualized treatment for patients.
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INTRODUCTION

More than 2,200,000 women were diagnosed with breast cancer
(BC) in 2021, making BC the most commonly diagnosed cancer
among women and the leading cause of cancer death for women
worldwide (Sung et al,, 2021). BC is a heterogeneous disease with
respect to molecular alterations, cellular composition, and clinical
outcome. Based on the intrinsic molecular subtypes, defined by
mRNA expression of 50 genes (PAMS50), breast cancer is divided
into luminal A, luminal B, HER2 (human epidermal growth factor
receptor 2)-enriched, basal-like, and normal-like (Parker et al., 2009).
Additionally, gene expression profiling by microarray such as 21-
gene recurrence score assay (Oncotype DX) (Sparano et al.,, 2018)
and the 70-gene MammaPrint (Cardoso et al., 2016) microarray can
be used to provide prognostic and predictive information beyond
standard clinical assessment. However, some patients still have
tumor progression due to the lack of suitable therapeutic agents
or treatment resistance.

Hypoxia is one of the hallmarks of cancer (Gilkes et al.,, 2014; de
Heer et al,, 2020). Low intratumoral O2 levels (hypoxia) are associated
with angiogenesis, metabolic reprogramming, extracellular matrix
remodeling, epithelial-mesenchymal transition, motility, invasion,
metastasis, cancer stem cell maintenance, immune evasion, and
chemo-resistance and radiation therapy (Schito and Semenza,
2016). Hypoxia leads to increased activity of hypoxia-inducible

Novel Breast Cancer Subtype

factors (HIFs). HIF-1 promotes the expression of hundreds of
genes involved in cell autonomous and non-autonomous
adaptations to hypoxia. On the one hand, HIF-a can be
upregulated at the protein level via mTOR or the mRNA level via
STAT3 and NF-kB signaling (Karar and Maity, 2011). Also, HIF-1
promotes lymphatic metastasis of breast cancer by direct
transactivation of the gene encoding platelet-derived growth factor
B (PDGEF-B), which has proliferative and chemotactic effects on
lymphatic endothelial cells (Schito et al., 2012). The newly formed
vasculature is disorganized and leaky, which facilitates tumor cell
invasion and metastasis, impairs drug delivery, and further aggravates
hypoxia in the tumor and the microenvironment (Martin et al., 2019).
On the other hand, in cancer-associated fibroblasts (CAFs), HIF-a
mediates extracellular matrix (ECM) remodeling, in which metabolic
reprogramming supporting cell survival (Gilkes et al, 2014). In
addition, HIF-a promotes the expression of cytokines that suppress
the adaptive immune system by stimulating the recruitment and
activation of myeloid-derived suppressor cells (MDSCs), regulatory
T cells (Treg) and tumor associated macrophages (TAMs) leading to
an immunosuppressive environment (Palazon et al., 2012). The study
of tumor genetic changes in the hypoxia environment might provide
hints for cancer treatment (Cosse and Michiels, 2008).

Therefore, it is necessary to deepen the understanding of the
heterogeneity of breast cancer and explore hypoxia-related subtypes
and therapeutic agents to provide individualized treatment for
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FIGURE 1 | Flow chart of study design. We identified 562 GO BP gene sets which were commonly correlated with hypoxia score (Buffa, Ragnum, and Winter) in BC
tissues. Using Cox regression model and Consensus clustering method, three subtypes were identified. Survival analysis and correlation analysis between subtypes and
clinical features were performed. Through analysis of differential gene expression, genes uniquely up/down-regulated in each subtypes were identified and KEGG

was performed using the unique gene profile.
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cancer subtypes: the value of silhouette width being close to 1 means that a sample is well matched to its identified subtype compared to other subtypes, and vice versa.
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patients. In the present study, by performing a comprehensive bio-
informatics analysis based on the Cancer Genome Atlas-Breast cancer
(TCGA-BRCA) datasets, we aimed to establish a hypoxia-related gene
signature to identify a new BC subtype through the clustering analysis
and explore potential compounds targeting the BC subtypes.

MATERIALS AND METHODS

Data Collection and Processing

First, gene expression data and clinical features of BC and adjacent
non-tumor tissues were downloaded from the Cancer Genome
Atlas-Breast cancer (TCGA-BRCA) database (https://portal.gdc.

cancer.gov/). Second, gene expression data and clinical features of
BC tissues were downloaded from the METABRIC database (https://
www.nature.com/articles/nature10983). Third, the hypoxia score
(Buffa, Ragnum, and Winter) of breast cancer tissues were
obtained from cbioportal (http://www.cbioportal.org/). Finally, the
Gene Ontology (GO) biological processes (BP) gene sets were
downloaded from Gene Set Enrichment Analysis (GSEA) (http://
www.gsea-msigdb.org/gsea/index.jsp).

Gene Set Variation Analysis
GSVA was performed to quantify the relative enrichment of gene
sets in BC and adjacent non-tumor tissues, which are able to
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TABLE 1 | The correlation between clinical characteristics and subtypes.

Subtype 1 (n = 542)

T stage (%)
T 171 (31.5%)
T2 279 (51.5%)
T3 73 (13.5%)
T4 18 (3.3%)
X 1(0.2%)
N stage (%)
NO 256 (47.2%)
N1 185 (34.1%)
N2 48 (8.9%)
N3 44 (8.1%)
NX 9 (1.7%)
M stage (%)
MO 440 (81.2%)
M1 7 (1.3%)
MX 95 (17.5%)
Molecular subtype (%)
Luminal A/B 473 (87.3%)
Her-2 9 (1.7%)
TNBC 36 (6.6%)
Unknown 24 (4.4%)
Vital status (%)
Alive 479 (88.4%)
Death 63 (11.6%)

Median survival time (Months, 95%Cl) 219.8 (90.1-349.5)

Novel Breast Cancer Subtype

Subtype 2 (n = 400) Subtype 3 (n = 27) p value
0.01
82 (20.5%) 8 (29.6%)
254 (63.5%) 15 (65.6%)
48 (12%) 3 (11.1%)
14 (8.5%) 1 (3.7%)
2 (0.5%) 0 (0%)
0.444
191 (47.7%) 11 (40.7%)
131 (32.8%) 11 (40.7%)
50 (12.5%) 3 (11.2%)
20 (5%) 2 (7.4%)
8 (2%) 0
0.064
342 (85.4%) 22 (81.5%)
11 (2.8%) 0 (0%)
47 (11.8%) 5 (18.5%)
<0.001
239 (59.8%) 20 (74.1%)
24 (6%) 4 (14.8%)
105 (26.2%) 2 (7.4%)
32 (8%) 1 (3.7%)
0.007
327 (81.7%) 21 (77.8%)
73 (18.3%) 6 (22.2%)

115.7 (97.3-134.1) 75.8 (51.6-100)

p value were calculated by Fisher’ exact test. TNBC, triple negative breast cancer; Cl, confidence interval.

reveal the activity variation of a set of genes involved in the
particular biological processes (Hénzelmann et al., 2013). GSVA
was performed by R package ‘GSVA’ (Hanzelmann et al., 2013).

Hypoxia scores were calculated for all TCGA-BRCA tumors with
mRNA expression data using mRNA-expression-based signatures of
tumor-hypoxia developed by Winter et al. (2007), Buffa et al. (2010),
and Ragnum et al. (2015). The hypoxia score (Buffa, Ragnum, and
Winter) was public data provided in cBioPortal (http://www.
cbioportal.org/study/summary?id=brca_tcga). The enrichment
score of gene sets and the hypoxia score (Buffa, Ragnum, and
Winter) were used to identify the hypoxia-associated BP gene sets.
The correlation between the enrichment score of BP gene sets and
hypoxia score was analyzed through the spearman correlation
analysis. Gene sets with the Spearman coefficient >0.3 or < —0.3
(p < 0.05) were defined as the hypoxia-associated BP gene sets.

Identification of Hypoxia-Related Breast
Cancer Subtype Through the Clustering
Analysis

Enrichment score of hypoxia-related BP gene sets in breast cancer
tissues were calculated with GSVA. Cox regression model was used
to evaluate the survival correlation of enrichment score of hypoxia-
related BP gene sets. Gene sets with enrichment score significantly
correlated with patients’ survival were further included in the cluster
analysis. The optimal number of clusters (K) was generated by R
package ‘factoextra’ (Garcia-Rudolph et al, 2020). Consensus
Clustering analysis was performed to distinguish the molecular
subtype of BC based on the Gene sets enrichment score by R
package “CancerSubtypes” (Xu et al, 2017). Silhouette width

ranging from —1 to 1 was used to measure the accordance of the
subtype clustering (the value of silhouette width being close to 1
means that a sample is well matched to its identified subtype
compared to other subtypes, and vice versa).

Identification of Potential Compounds

Targeting the Breast Cancer Subtypes

The recently updated Connectivity Map (CMap) database is a
platform for discovering connections between gene profile, drugs
sensitivity, and diseases states (Subramanian et al., 2017). The
CMap data and tools are available on https://clue.io. The
differential expression genes (DEGs) between each subtype of
BC tissues and adjacent non-tumor tissues was identified using R
package “limma” (Ritchie et al., 2015). After the exclusion the
repeating DEGs, the unique up/down-regulated gene profile was
obtained, and the top 300 genes (150 upregulated and 150
downregulated) were inputted to the CMap database.
Compounds with an enrichment score < —90 in BC cell lines
were selected as potential therapeutic methods for each subtype
of BC.

Statistical Analysis

The statistical analyses in this study were performed with R
software. A p-value of <0.05 was considered statistically
significant. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis was performed by R
package “clusterProfiler” (Yu et al., 2012). The Kaplan-Meier
survival curve and log-rank test were used to analyze overall
survival (OS) between different groups of BC patients.
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FIGURE 3| Survival analysis of hypoxia-related BC subtypes. (A) Survival analysis of hypoxia-related BC subtypes in BC patients (1 = 969). (B) Survival analysis of
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RESULTS

Identification of Hypoxia-Associated
Biological Processes Gene Sets and

Hypoxia-Related Breast Cancer Subtypes.
A total of 7481 GO BP gene sets (c5.go.bp.v7.4.symbols) were
obtained from GSEA, and 2474 gene sets were excluded due to the
missing expression of gene in BC tissues (Figure 1). Therefore,
5007 GO BP gene sets were included to identify hypoxia-associated
BP gene sets, and 562/5007 gene sets were commonly correlated
with hypoxia score (Supplementary Table S1).

Based on the enrichment score of 562 hypoxia-associated gene
sets, we purposed to divide BC patients into different subtypes.
The factoextra package was used to calculated the optimal
number of clusters (K = 3) to optimize the cluster analysis
(Figure 2A). Then, Cox regression model was used for the
feature selection, and 31 gene sets were eventually determined
for the cluster analysis (Figure 2B). By Consensus Clustering
method, 969 BC patients were clustered into three subtypes
(subtype 1: n = 542; subtype 2: n = 400; subtype 3: n = 27)
(Figures 2C,D). The silhouette width plots showed that the
average silhouette width was 0.44, indicating that the samples
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are well matched to their identified subtype compared to other
subtypes (Figure 2D).

The Correlation Between Hypoxia-Related
Breast Cancer Subtypes and Clinical

Features.

Among three subtypes, subtype 1 BC tissues exhibited
significantly lower hypoxia scores than subtypes 2 and 3
(Supplementary Figure S1A). In addition, a significantly
higher proportion of patients in subtype 1 were diagnosed
with hormone receptor positive (HR +) BC, while patients in
subtype 2 and subtype 3 were more likely to be TNBC and Her-2
+, respectively (Table 1). The correlation between clinical
characteristics and subtypes is presented in Table 1.

The Kaplan-Meier survival was used to evaluate the
association between OS and hypoxia-associated subtypes.
In BC, patients in subtype 1 exhibiting a lower hypoxia
score displayed a better survival than subtype 2 and 3
(Figure 3A). OS of patients in subtype 1 was better than
OS of subtype 2 in HR + BC (luminal A/B) and OS
of subtype 3 in Her-2 BC (Figures 3B,C). In TNBC, no
OS difference was observed among three subtypes
(Figure 3D). Moreover, subtype 1 BC patients displayed
better OS than subtype 2 BC patients in patients with
either endocrine therapy or chemotherapy (Figures 3E,F).
Overall, subtype 1 BC patients displayed a better
outcome than the other two subtypes. Moreover, we
inrolled data of BC tissues from the METABRIC
database. A total of 1897 BC patients in METABRIC

Frontiers in Molecular Biosciences | www.frontiersin.org

June 2022 | Volume 9 | Article 900005


https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Xiong et al.

Novel Breast Cancer Subtype

Lysosome

ECM-receptor i

Protein digestion and

p value
.

oL 0.01
Circadian rhythm ol 0.02
Small cell lung cancer Ol 0.03
ingolipi i ® 0.04
Focal adhesion T~
Th17 cell di
5* Hedgehog signaling pathway r'Y
< Human infection Count
© o Py
o Notch signaling pathway - 2
cancer T, 4
Glycosphingolipid biosynthesis-
YOO Iobe and 1s0g10bo Series @ 6
Alanine, aspartate and
e 8P metabolism | '?0
TGF-beta signaling pathway T— —
Choline metabolism in cancer 4—1— 12
Oocyte meiosis +—
Tight junction
Pancreatic secretion ._|_
2 3 4 5 6 7
Fold Enrichment
B :
p value

ic transport

Non-alcoholic fatty liver disease

Cell cycle
RNA i
Amyotrophic lateral sclerosis
Oxidative 4L
> Parkinson disease f—
g Carbon ] _|_
Chemical carcinogenesis - reactive || Count
E oxygen species. |
© DNA i o
o Diabetic | - 5
Lysosome :' 10
] 15
[ and other terp q
biosynthesis @
P53 signaling pathway
Alzheimer disease
Citrate cycle (TCA cycle) |
Pentose pathway 1
t
1.2 3 4 5 6 7
Fold Enrichment
c IL-17 signaling pathway
p value
Protein processing in endoplasmic
reticulum @
-animal of 0.01
Colorectdl cancer ®L 0.02
®! 0.03
o: HH
0.04
Fc gamma R-mediated 4 |
+ . - =
kerafan sulfate »
> _ ! [
© - animal
2 ABC i}
::.. Count
© Platelet activation 4——
o 2
N-Glycan bi I®
Terpenoid backbone bi {r .
pop + 6
Coronavirus disease - COVID-19 4~ 8
Staphylococcus aureus infection ——
heparan sulfaté / heparin ?
!
2 4 6 8 10

Fold Enrichment

[ irus di -COVID-19
p value
TNF signaling pathway °
Prostate cancer ok 0.01
Biosynthesis of amino acids :
Parathyroid hormone synthesis, O 0.02
secretion and action .
Insulin resi 0.03
infection ——- 0.04
ErbB signaling pathway
Growth hormone synthesis, secretion | |
and action |
Cellular T
GnRH signaling pathway
Relaxin signaling pathway -——
Long-term ati -
Fc epsilon Rl signaling pathwa Count
PSRl i e
activation T, 2
Estrogen signaling pathway +—— 3
T cell receptor signaling pathway ——
53 signaling pathway P 6
Fat digestion and i 1 8
Glucagon signaling pathway 4—— 10
2.0 ic acid i ] {0 12
Pancreatic cancer -——‘
ic signaling in J
Cholinergic synapse -
2 3 4 5 6
Fold Enrichment
MAPK signaling pathway
p value
Glioma e
ic cancer o} 0.01
Chronic myeloid leukemia : 0.02
0.03
FoxO signaling pathway 0.04
TGF-beta signaling pathway
P53 signaling pathway P
Sphingolipid signaling pathway -
Count
Cell cycle P
Colorectal cancer Py 4
6
o— 8
Small cell lung cancer <& 1
NF-kappa B signaling pathway +— 12
Toll-like receptor signaling pathway -+—
Lysine e
Cellular 4
+
25 3 35 4 45 5 55
Fold Enrichment
Fc epsilon Rl signaling pathway p value
0.01
Central carbon in cancer ° 0.02
of 0.03
- animal 0.04
Phospholipase D signaling pathway
ul
Count
2
Longevity pathway 25
3
Aldosterone-regulated sodium 3.5
reabsorption 2
4.5
5
Insulin signaling pathway ——
Calcium signaling pathway o~
4 6 8 10
Fold Enrichment

FIGURE 5 | KEGG analysis of unique DEG profile in hypoxia-related BC subtypes. (A) KEGG analysis of uniquely up-regulated (left panel)/down-regulated (right
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cohort were similarly classified into three subtypes using
the clustering analysis based on the enrichment score
of hypoxia-associated gene sets. Next, we evaluated
the association between the hypoxia subtypes and patients
OS. Consistent with our previous findings, subtypes 1

patients exhibited better survival than patients with
subtype 2 or 3 (Supplementary Figure S3). In patients
with endocrine therapy or chemotherapy, subtype 1
patients had longer OS than those of subtype 2
(Supplementary Figures S3E,F).
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Identification of Unique Differential
Expression Gene Profile in Hypoxia-Related

Breast Cancer Subtypes

To further study the characteristics of each subtype, DEG profile
of each subtype was identified (Figure 4A). In subtype 1 BC, 421
and 273 gens were uniquely up/down regulated, respectively
(Figure 4B). In subtype 2 BC, 485 were uniquely up regulated,
and 246 gens were down regulated (Figure 4B). In subtype 3 BC,
242 gens were uniquely up regulated, and 145 were down
regulated (Figure 4B).

KEGG pathway enrichment analysis of each subtype was
performed based on the unique DEG profile. In subtype 1, the
upregulated genes were associated with lipid and amino acid
metabolism regulation (sphingolipid, glycosphingolipid, choline,
alanine, aspartate and glutamate), Notch pathway, and TGF-beta
pathway; the down-regulated genes were associated with growth
hormone signaling (Erbb pathway, growth hormone synthesis),
estrogen pathway, and glycol metabolism (insulin resistance,
glucagon signaling) (Figure 5A). In subtype 2, the up-
regulated genes associated with metabolic energy regulation
(carbon metabolism, reactive oxygen species (ROS) and citrate

cycle), while the down-regulated genes associated with FoxO
pathway, MAPK pathway, and sphingolipid pathway
(sphingolipid signaling and sphingolipid metabolism) and so
on (Figure 5B). In subtype 3, the up-regulated genes
associated with apoptosis and protein process (protein
processing in endoplasmic reticulum, N-Glycan biosynthesis)
(Figure 5C).

Identification of Potential Compounds

Targeting the Breast Cancer Subtype

To identify the potential agents targeting the BC subtypes, we
matched the DEG profile of each subtype with the gene profile in
CMap database. Compounds with enrichment score < —90 were
negatively correlated with the input gene profiles, indicating the
therapeutic potential. 55, 111, and 63 compounds were identified
targeting subtypes 1, 2 and 3, respectively (Figures 6-8). 55
compounds referring 47 mechanisms of action (MoA) were
identified targeting subtype 1 (Figure 6). 111 compounds
referring 72 mechanisms of action (MoA) were identified
targeting subtype 2 (Figure 7). 63 compounds referring 57
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mechanisms of action (MoA) were identified targeting subtype 3
(Figure 7).

DISCUSSION

Hypoxia, a hallmark of tumor, was caused by rapid
proliferation of tumor cells and the intercapillary distance
longer than that of oxygen diffusion (Gilkes et al., 2014).
Hypoxia-associated genes (such as HIFs, ARD1A, FIH) and
their target gene products are known to be hyperactivated in
tumor, which involved in different tumoral mechanisms of
cancer. Previous studies have addressed the vital roles hypoxia
status plays in the failure of conventional cancer therapies and
poor prognosis of multiple cancer such as liver cancer (Bao and
Wong, 2021), bladder cancer (Zhang et al., 2021), glioblastoma
(Wang et al., 2020) and breast cancer (McAleese et al., 2021).
Therefore, Hypoxia-associated genes can be widely used as
promising prognostic predictors and therapeutic targets for
breast cancer. In the present study, we identified hypoxia-
associated BP gene sets and hypoxia-related BC subtypes and

explored potential compounds targeting the BC subtype,
which might be helpful to increase our knowledge on
hypoxia-related phenotypes and associated potential
therapeutic targets in breast cancer.

It has been reported that metabolism reprogramming is
indispensable for the adaptation of the hypoxia environment
in breast cancer (Tang et al., 2021). Moreover, heterogeneity
was observed in breast cancer patients regarding metabolic
changes (Gong et al., 2021). Each subtype has a distinct
proliferation rate, metastatic capacity, and metabolic
phenotype and genotype. For instance, previous study
showed that various phospholipidsand sphingolipids are
upregulated in ER-subtypes relative to ER+ (He et al,
2015). A main regulator of glutamine-related metabolic
rewiring, MYC, facilitates excess glutamine uptake by
inducing the expression of glutamine transporters and
glutaminemetabolizing enzymes in breast cancers (Yue
et al, 2017). This molecular mechanism is upregulated in
the luminal B, TNBC, and HER2+ subtypes rather than
luminal A subtypes (Craze et al., 2018). In our study,
although a significantly higher proportion of patients in
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subtype 1 were diagnosed with hormone receptor positive (HR
+) BC, the up-regulated genes associated with lipid and amino
acid metabolism regulation (sphingolipid, glycosphingolipid,
choline, alanine, aspartate and glutamate) in this subtype. In
hypoxia environment, glutamine metabolism plays an
important role in cancer progression. Morotti et al. show
that hypoxia induces SNAT2, an glutamine transporter,
which causes resistance to antihormone therapy. Hypoxia-
inducible factor 1a compensates for the loss of expression of
estrogen receptor-a (ERa) for maintaining SNAT2 expression
under hypoxia or endocrine therapies. SNAT2 overexpression
produces complete resistance to antiestrogen therapy in vivo
and is induced in tamoxifen resistance, and its expression is
associated with poor survival in breast cancer and resistance to
endocrine therapy in ERa+ luminal B patients (Morotti et al.,
2019). The metabolic relationship between the existing
molecular subtypes and our proposed hypoxia-related BC

subtypes is expected to provide a new idea for the
individual therapy of breast cancer.

In addition, patients in subtype 2 and 3 were more likely to be
TNBC and Her-2+ and had worse outcome than patients in
subtypel. In subtype 2, the upregulated genes were associated
with metabolic energy regulation [carbon metabolism, reactive
oxygen species (ROS), and tricarboxylic acid cycle (TRCs)]. In
subtype 3, the upregulated genes were associated with apoptosis,
and protein process (protein processing in endoplasmic
reticulum, N-Glycan biosynthesis). Similar to the present
study, preclinical studies suggest that TNBC relies more on
the glucose metabolism. Transporters involved in
macronutrient uptake and metabolic enzymes, such as GLUTI,
SLC1AS5, SLC7A5, GLS1, and PGDH, are upregulated in TNBC
(Budczies et al., 2013; Kulkoyluoglu-Cotul et al., 2019). MYC
mentioned above also upregulates serine, glycine, and tryptophan
uptake and the synthesis of one-carbon units, resulting in a more
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active TCA cycle in HER2+ and TNBC breast cancer subtypes
(Kim et al., 2013). Showed that HIFla promotes tumor growth
and metastasis by promoting anaerobic glycolysis and lactic acid
production in a hypoxic environment Semenza (2013). Pyruvate
dehydrogenase kinase (PDK) is a HIF-induced key regulator of
lactate production via inhibition of pyruvate dehydrogenase
(PDH), which rapidly inhibits the first step of the Krebs cycle
during hypoxia (Kim et al, 2006). HIFla induces glucose
transporter (GLUT) expression for uptake of extracellular
glucose and increases glycogen synthesis and breakdown as an
additional glucose source to sustain glycolytic and pentose
phosphate flux. Besides, glycogen metabolism has been
implicated in improved ROS scavenging, survival after
reoxygenation, cell migration, and radioresistance in BC
(Altemus et al, 2019). ROS, produced due to dysfunction of
the mitochondrial electron transport chain under hypoxic or
hyperoxic conditions, was the prime cause of tumor cell death
(Xiang and Semenza, 2019). Show that hypoxia promotes the
growth of BCs through the actication of the GSH-ROS pathway
Tang et al. (2019). In conclusion, our study showed that different
hypoxia-related BC subtypes adapted to hypoxia through
different metabolic pathways.

To identify the potential agents targeting the BC subtypes, we
matched the DEG profile of each subtype with the gene profile in
CMap database. As a result, 55 compounds referring to 47
mechanisms of action (MoA) were identified targeting subtype
1. These compounds include VEGFR inhibitor motesanib
sorafenib, BCR-ABL kinase inhibitor/ABL inhibitor nilotinib
and the glutamate receptor antagonist L-701252. Previous
research indicated that sorafenib and nilotinib in combination
with tamoxifen inhibited growth of tamoxifen-resistant breast
cancer cells. The mechanisms of action are complex and both
reduced total ER, phosphorylated ER, reduced ligand-
independent ER activation due to lowered FOXA1 level, and a
switch in the effect of tamoxifen from agonistic to antagonistic via
reduced AIBI appears to contribute to growth inhibition
(Pedersen et al., 2014). Consistnet with our finding that energy
metabolic-related gens were upregulated in subtype 2 breast
cancer, compounds involving energy metabolism (such as
PI3K  inhibitor, mTOR inhibitor, NADH-ubiquinone
oxidoreductase inhibitor, and ATP synthase inhibitor) were
identified as potential therapeutic agents for subtype 2. In
subtype 3, compounds involving regulation of cell cycle and
cell apoptosis (including Aurora kinase inhibitor danusertib,
CDK inhibitor and caspase inhibitor) were identified as
potential therapeutic agents.

However, several limitations in this study should be noted.
First, this is a retrospective study, which means that further
verification in prospective trials is warranted. Second, the
hypoxia-related BC subtypes identified should be
validated externally using different datasets. Finally, the
mechanisms underlying our findings have not been clearly
elucidated. In other words, experimental studies should be
carried out to facilitate our understanding of hypoxia-related
gene sets’ functional roles in breast cancer and their clinical
application.

we

Novel Breast Cancer Subtype

CONCLUSION

In summary, we identified hypoxia-related BC subtypes based on
the enrichment score of 562 hypoxia-associated gene sets. Genes
differentially expressed in these BC subtypes correlated with a
series of metabolic processes affected by hypoxia. Furthermore,
we identified the potential agents targeting the BC subtypes by
matching the DEG profile of each subtype with the CMap
database. Overall, our study provided a novel classification of
BC and identified potential therapeutic agents for each hypoxia-
related subtype.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

FL and XW designed the overall project; ZX and WZ wrote the
manuscript; ZX and WH revised and polished the manuscript.
ZX, WH, JCF, and JKF performed the statistical analysis of the
data; All the authors have read and approved the final
manuscript.

FUNDING

This study was supported by the Guangdong Basic and Applied
Basic Research Foundation (2021A1515111191 to ZX).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.900005/
full#supplementary-material

Supplementary Figure S1 | Hypoxia score of each subtype. (A) Subtype 1
displayed a significantly lower Winter score than that of subtype 2 and 3. (B)
Subtype 1 displayed a significantly lower Ragnum score than that of subtype 2 and
3. (C) Subtype 1 displayed a significantly lower Buffa score than that of subtype 2
and 3. For (A-C), ** p < 0.001.

Supplementary Figure S2 | Composition of clinical and pathological features in
each subtypes. (A) Composition of Tumor (T) stage in each subtypes. (B)
Composition of lymph node (N) stage in each subtypes. (C) Composition of
cancer metastasis (M) stage in each subtypes. (D) Composition of molecular
subtypes in each subtypes.

Supplementary Figure S3 | Survival analysis of hypoxia-related BC subtypes
based on METABRICA database. (A) Survival analysis of hypoxia-related BC
subtypes in BC patients (n = 1897). (B) Survival analysis of hypoxia-related BC
subtypes in luminal A/B BC patients (0 = 1140). (C) Survival analysis of hypoxia-
related BC subtypes in Her-2 BC patients (n = 219). (D) Survival analysis of hypoxia-
related BC subtypes in Basal-like patients (n = 397). (E) Survival analysis of hypoxia-
related BC subtypes in BC patients with endocrine therapy (n = 1170). (F) Survival
analysis of hypoxia-related BC subtypes in BC patients with chemotherapy (n =
396). For (A-F), p-values were determined by log-rank test.
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