& frontiers | Frontiers in

ORIGINAL RESEARCH
published: 22 June 2022
doi: 10.3389/fmolb.2022.901829

OPEN ACCESS

Edited by:
Umberto Malapelle,
University of Naples Federico I, ltaly

Reviewed by:

Valerio Gristina,

University of Palermo, ltaly

Ramya Sivakumar,

University of Washington,

United States

Xiawei Cheng,

East China University of Science and
Technology, China

*Correspondence:
Liming Cao
clming@csu.edu.cn
Jianchun Duan
duanjianchun79@163.com

TThese authors have contributed
equally to this work and share first
authorship

Specialty section:

This article was submitted to
Molecular Diagnostics and
Therapeutics,

a section of the journal

Frontiers in Molecular Biosciences

Received: 22 March 2022
Accepted: 11 May 2022
Published: 22 June 2022

Citation:

Zhao Y, Qing B, Xu C, Zhao J, Liao Y,
Cui P, Wang G, Cai S, Song Y, Cao L
and Duan J (2022) DNA Damage
Response Gene-Based Subtypes
Associated With Clinical Outcomes in
Early-Stage Lung Adenocarcinoma.
Front. Mol. Biosci. 9:901829.

doi: 10.3389/fmolb.2022.901829

®

Check for
updates

DNA Damage Response Gene-Based
Subtypes Associated With Clinical
Outcomes in Early-Stage Lung
Adenocarcinoma

Yang Zhao'", Bei Qing?’, Chunwei Xu®?, Jing Zhao*, Yuchen Liao* Peng Cui*,
Guogiang Wang?, Shangli Cai*, Yong Song?®, Liming Cao®* and Jianchun Duan®*

"Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China, 2Department of
Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China, *Department of Respiratory
Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China, “Burning Rock Biotech, Guangzhou, China,
®Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China, SCAMS Key Laboratory of
Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National
Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking
Union Medical College, Beijing, China

DNA damage response (DDR) pathways play a crucial role in lung cancer. In this
retrospective analysis, we amed to develop a prognostic model and molecular
subtype based on the expression profies of DDR-related genes in early-stage lung
adenocarcinoma (LUAD). A total of 1,785 lung adenocarcinoma samples from one
RNA-seq dataset of The Cancer Genome Atlas (TCGA) and six microarray datasets of
Gene Expression Omnibus (GEO) were included in the analysis. In the TCGA dataset, a
DNA damage response gene (DRG)-based signature consisting of 16 genes was
constructed to predict the clinical outcomes of LUAD patients. Patients in the low-
DRG score group had better outcomes and lower genomic instability. Then, the same
16 genes were used to develop DRG-based molecular subtypes in the TCGA dataset to
stratify early-stage LUAD into two subtypes (DRG1 and DRG2) which had significant
differences in clinical outcomes. The Kappa test showed good consistency between
molecular subtype and DRG (K = 0.61, p < 0.001). The DRG subtypes were significantly
associated with prognosis in the six GEO datasets (pooled estimates of hazard ratio, OS:
0.48 (0.41-0.57), p < 0.01; DFS: 0.50 (0.41-0.62), p < 0.01). Furthermore, patients in the
DRG2 group benefited more from adjuvant therapy than standard-of-care, which was not
observed in the DRG1 group. In summary, we constructed a DRG-based molecular
subtype that had the potential to predict the prognosis of early-stage LUAD and guide the
selection of adjuvant therapy for early-stage LUAD patients.

Keywords: DNA damage response, signature, prognostic, molecular subtype, early-stage, lung adenocarcinoma

INTRODUCTION

Lung cancer is the major cause of global cancer mortality in 2020, with an estimated 1.8 million
deaths worldwide (Sung et al., 2021). Non-small cell lung cancer (NSCLC) represents 85% of all lung
cancers. Based on histology, NSCLC can be further divided into lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LSCC), large-cell carcinoma, etc. (Bender, 2014). The survival of patients
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with NSCLC is largely determined by the tumor stage at
diagnosis. Only 15% of patients with late-stage disease (stages
III-1V) are alive after 5 years, which makes NSCLC one of the
cancers with the worst prognosis (Necchi et al., 2017). Although
the 5-year survival rate increases to approximately 60% and 40%
for stage I and stage II patients, respectively, around 30-55% of
them experienced disease recurrence within 5 years after surgery
(Howington et al., 2013; Wang et al., 2017). In recent years, the
immuno-oncology (IO)-based strategies, such as immune
checkpoint inhibitors (ICIs), the combination of different IClIs,
or chemotherapies, have achieved evolutionized improvements in
the treatment for a subset of patients with lung cancer (Listi et al.,
2019; Passiglia et al., 2021). Besides the breakthrough in cancer
therapy, it is also important to improve recurrence prediction and
clinical management with the increase of early-stage tumors due
to the progress of lung cancer screening.

The rapid development of high-throughput technologies,
especially DNA microarrays and RNA-sequencing, has
facilitated the exploration of several expression-based gene
signatures for risk stratification in NSCLC patients. Beer et al.
proposed a 50-gene signature to identify low- and high-risk stage
I lung adenocarcinomas using microarray analysis (Beer et al,
2002). The Director’s Challenge Consortium validated the
performance of several such prognostic models in a large
multi-site cohort with 442 lung adenocarcinomas (Chen et al,
2007; Shedden et al., 2008; Sun et al., 2008). In addition, a 14-gene
expression signature (RT-PCR-based) has been commercialized
to stratify different risk groups for resected non-squamous
NSCLC patients (Kratz et al, 2012). A 25-immune gene
signature and a 31-proliferation gene signature both have
shown promising clinical utility for risk stratification and
individualized management in NSCLC patients (Wistuba et al.,
2013; Li et al., 2017). However, none of these signatures was
further analyzed in patients with and without adjuvant therapy to
validate the potential clinical utility in the guidance of adjuvant
therapy.

Genomic instability is one of the key hallmarks of cancer, and
DNA damage response (DDR) plays a significant role in
maintaining genomic integrity (Hanahan and Weinberg,
2011). The DDR system is a complex signaling network which
involves eight pathways: base excision repair (BER), mismatch
repair (MMR), homologous recombination repair (HRR),
nonhomologous end joining (NHE]), checkpoint factors
(CPF), Fanconi anemia (FA), nucleotide-excision repair
(NER), and DNA translesion synthesis (TLS) (Scarbrough
et al, 2016). These pathways operate collectively to detect
diverse types of DNA lesions and activate signaling
mechanisms to boost the repair machine (Jackson and Bartek,
2009). Previous studies have demonstrated that the DDR
pathways play significant roles in cancer progression and the
response to cancer therapies. Several prognostic models, based on
DDR genes, have been constructed for glioblastoma, ovarian
cancer, and low-grade gliomas (Knijnenburg et al, 2018;
Gobin et al, 2019; Sun et al, 2019; Pang et al, 2020).
However, the DDR genes identified in these prognostic models
vary widely between different cancers, suggesting that DDR genes
may exert different molecular effects in different cellular
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environments. The relationships of various DDR genes with
prognosis in lung adenocarcinoma are not well-established.

In this study, we aimed to identify and validate a group of
DDR genes to stratify early-stage LUAD patients into different
subtypes with different prognoses and guide the use of adjuvant
therapy.

MATERIALS AND METHODS

Molecular and Clinical Data

The LUAD dataset of The Cancer Genome Atlas (TCGA) and six
microarray datasets of Gene Expression Omnibus (GEO) were
included in the analysis. For the TCGA dataset, RNA-sequencing
data (FPKM format), genetic mutations, copy number variant
(CNV), and clinical features, including age, sex, tumor stage,
histology ~subtype, adjuvant treatment, and follow-up
information, were obtained from the GDC (https://portal.gdc.
cancer.gov/). In addition, normalized microarray data and the
corresponding clinical characteristics of patients with early-stage
(stages I and II) lung adenocarcinoma from six GEO cohorts
(GSE31210, GSE37745, GSE68465, GSE30219, GSE72094, and
GSE13213) were obtained for further external validation in
this study.

DDR Gene-Based Signature Construction
A total of 200 DDR-related genes were curated and analyzed to
identify prognosis-related markers (Scarbrough et al, 2016).
These genes used in the study are listed in Supplementary
Table S1. Univariable Cox regression and LASSO Cox
regression analyses with minimum partial likelihood deviance
were performed to select genes associated with OS. We defined
the risk score using the following formula

riskscore = Z(coef of gene k * exprof gene k),

k=0

where n is the number of markers. The nearest neighbor
estimation method was applied to identify the best cutoff
point of risk score to stratify patients into high- and low-risk
subgroups. Kaplan-Meier (KM) analysis and receiver operating
characteristic (ROC) curve were used to assess the performance of
the signature.

Association Between DDR Signature and
Genome Features and Gene Expression

In order to explore the potential molecular mechanisms of the DDR-
gene-based signature, the associations of the DDR signature with
somatic mutation, CNV, genomic scar signature, and gene expression
data were analyzed based on TCGA data.

DDR Molecular Subtype Identification and
Validation

Unsupervised clustering with the hierarchical cluster algorithm
(based on Euclidean distance and Ward’s linkage) of the
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FIGURE 1 | Selection of prognostic markers. (A) Tuning parameter (\) selection in the LASSO model using 10-fold cross-validation via minimum criteria. (B) Forest
plot showing the results of univariable Cox regression analyses. (C) Predictive value of 16 genes in the overall survival of patients in the LUAD dataset. (D) Kaplan—-Meier
curves of overall survival for high- and low-risk patient groups in the TCGA-LUAD dataset. Patients were divided into two groups with a cutoff score of 21.96. (E)
Predictive value of 16 genes in the disease-free survival of patients in the LUAD dataset. (F) Kaplan-Meier curves of disease-free survival for high- and low-risk
patient groups in the TCGA-LUAD dataset. Patients were divided into two groups with a cutoff score of 21.96.

expression profiles of the genes in the DDR signature was
performed to identify molecular subtype in early-stage LUAD.
The default parameters of the hclust function were used to
perform the classification. The cluster number was selected as
2. It was further validated in six GEO datasets.

Statistical Analyses

R software v4.0.2 was used for all the bioinformatics and
statistical analyses, including data preprocess, LASSO Cox
regression, CNV and mutation visualization, and ROC
analysis. The KM method and log-rank test were adopted to
generate and evaluate the statistical significance of the survival
curves between groups. The specificity and sensitivity of the

signature were evaluated using the ROC curve, and the area
under the curve (AUC) of distinct survival time was quantified
using R-package pROC. The Kappa consistency test was used to
analyze the consistency between the two group methods. The Cox
proportional hazards model was applied to identify the
independence of the signature. The prognostic values of single
genes in signatures were accessed using the “szcox” function of
the ezcox package. R-package SubgrPlots was used for subgroup
analysis, which was visualized using the Forester package. A
propensity score matching (PSM) analysis was performed
according to a 1:1 ratio between the two subgroups (with or
without adjuvant therapy) to adjust for clinicopathologic
characteristics bias using the Matchlt package. Heat maps of
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TABLE 1 | Univariable analysis and multivariable Cox regression analyses of OS and DFS in TCGA cohorts.

oS DFS
Cohort Characteristics Sample Univariable Cox Multivariable Cox Univariable Cox Multivariable Cox
size HR (95% Cl)  P-value HR(95% Cl)  P-value HR (95% Cl)  P-value  HR (95% Cl)  P-value

TCGA

— Age (<60 vs. >60) 490 0.86 (0.62-1.18)  0.3400 — — 1.03 (0.77-1.38) 0.8590 0.69 (0.49-0.96) 0.0295

— Sex (Male vs. 500 1.05 (0.78-1.40) 0.7530 — — 0.59 (0.41-0.83)  0.0031 — —
Female)

— Stage (I_Il vs. 492 0.39 (0.28-0.53)  <0.001 0.43 (0.31-0.58)  <0.001 1.00 (0.65-1.53) 0.9970 0.66 (0.46-0.95) 0.0271
I1_IV)

— Smoking (Never 486 114 (0.75-1.72)  0.5450 — — 2.19 (1.18-4.06)  0.0130 — —
vs. Ever)

— EGFR (MUT 383 2.38 (1.31-4.34) 0.0005 3.08 (1.66-5.71) <0.001 0.84 (0.56-1.27) 0.4130 2.55 (1.33-4.92) 0.0050
vs. WT)

- KRAS (MUT 383 0.87 (0.55-1.36)  0.5310 — — 0.99 (0.41-2.42)  0.9850 — —
vs. WT)

— ALK (MUT 383 0.60 (0.19-1.89)  0.3820 — — 1.04 (0.73-1.47) 0.8420 — —
vs. WT)

— TP53 (MUT 383 1.23 (0.84-1.80) 0.2790 — — 0.90 (0.49-1.68) 0.7940 — —
vs. WT)

— BRAF (MUT 383 0.68 (0.31-1.46)  0.3200 — — 0.60 (0.45-0.81)  0.0007 — —
vs. WT)

— DRG (low vs. 500 0.38 (0.28-0.53)  <0.001 0.42 (0.30-0.58)  <0.001 0.72 (0.52-1.00)  0.0479 0.58 (0.43-0.79)  0.0005
high)

TCGA-LUAD and GEO datasets were generated using the
pheatmap package. The maftools package was used to visualize
the mutation landscape in the TCGA-LUAD dataset. Two-sided
p < 0.05 was considered to be statistically significant.

RESULTS

Construction of a 16-Gene Signature

A total of 1,785 primary LUAD tumors and their
clinicopathological features were downloaded from TCGA and
GEO databases, and the baseline characteristics are summarized
in Supplementary Table S2. To identify the survival-related
genes, univariable Cox regression was performed in the
200 DDR-related genes with the TCGA-LUAD dataset (n =
500), and 46 DDR genes were identified to be significantly
associated with OS. Then, ten-fold cross-validation of LASSO
Cox was implemented using the “glmnet” package, and 16 genes
(PCNA, XRCC5, XRCC6, RFC3, FANCL, NEILI, NEIL3, NBN,
ERCC1, REV3L, REVI1, HFM1, DDBI, EXOI, RAD23B, and
POLD2) were identified to be the most informative and were
used to construct a risk score (Figure 1A). In brief, NEIL1, HFM1,
REV3L, and REV1 genes were protective factors (all HRs < 1, p <
0.05), while the others genes were risk factors for the prognosis in
patients with LUAD (all HRs > 1, p < 0.05) (Figure 1B). Then, we
established a DNA damage response gene (DRG)-based
signature for each patient based on the following formula:
DRG = (-0.0618*"PCNA)+(0.2175*XRCC5)+(0.1094*XRCC6)+
(—0.0929*RFC3)+(0.1894*FANCL)+(-0.0008*NEIL1)+(0.0095*
NEIL3)+(0.1651*NBN)+(0.1594*ERCC1)+(—0.08 17*REV3L)+
(-0.0640"REV1)+(-0.0119*HFM1)+(0.1600*DDB1)+(0.1070*
EXO1)+(0.2896*RAD23B)+(0.0548*POLD2). The best cutoff of
21.96 was used to stratify the patients into high- or low-risk

groups. The AUCs for 1-, 3-, and 5-year overall survival (OS) rate
predictions for the DRG of the TCGA-LUAD dataset were 0.716,
0.707, and 0.644, respectively (Figure 1C). The KM curves
revealed significantly higher OS with lower DRG (HR = 0.38,
95% CI: 0.28-0.53, p < 0.001, Figure 1D). Similar results for
disease-free survival (DFS) were obtained. The AUCs for 1-, 3-,
and 5-year were 0.650, 0.622, and 0.589, respectively, (Figure 1E)
and the association between the DRG and DFS was significant
(log-rank p < 0.001; HR = 0.60, 95% CI: 0.45-0.81, Figure 1F).
Next, we tested the independent prognostic prediction value of
the DRG. After adjusting for clinical features, including age, sex,
tumor stage, and smoking, as well as the driver gene mutation
(EGFR, KRAS, ALK, ROSI, BRAF, and TP53), the DRG served as
an independent prognostic biomarker for predicting outcomes
(OS, HR: 0.42 (0.30-0.58); DFS, HR: 0.43 (0.31-0.53), Table 1).

Association Between the 16 Genes and

Clinicopathological Factors

To further study the underlying mechanism of the DRG, we
explored the molecular function and the association with
prognosis of genes in the DRG. Most of them had positive
coefficients in this regression equation with HR > 1, indicating
poor prognostic genes, while genes (REV3L, REV1, NEILI, and
HFM1) had negative coefficients with HR < 1 (Figure 2A). To
depict the genomic and expression alterations of the 16 DDR
genes, we further described the prevalence of somatic mutations,
CNV, and mRNA expression of the 16 genes in LUAD patients
(Figure 2B). Of the 486 LUAD patients, 63 (13.0%) patients
harbored at least one mutation of the pattern genes. Among them,
HFMI had the highest mutation frequency (4%) followed by
EOX1 and REV3L, while there were no mutations in ERCCI,
NEIL1, and PCNA. Meanwhile, CNV analysis showed that EXO1,
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FIGURE 2 | Mechanism of validation in mutation, CNV, mRNA expression, and genome instability. (A) Sankey plot showing the correlations among 16 genes, DDR
pathways, and prognostic value. (B) Left panel is the CNV variation frequency of 16 genes, and the deletion frequency is shown by gray dots; the middle panel is the
mutation frequency of 16 genes between high- and low-DDR score samples. The right panel is the expression of 16 genes between normal tissues and tumor tissues.
Tumor, gray; normal, yellow. (C-0) Comparison of the genome instability (NtAl, LST, LOH, HRD, Aneuploidy Score (AS), AS_del, AS_amp, TMB, SNP, and indel)
and expression pattern of TP53, ATM, and ATR between high-risk and low-risk patients in the TCGA dataset. High, gray; low, yellow. (P) Expression profiles of 16 genes
between high- and low-risk groups in the stages | and Il TCGA-LAUD dataset. p-value of continuous variables was tested using Wilcoxon rank-sum test. Pearson’s chi-
square test was used to test the categorical variables.

NBN, and POLD2 had a widespread frequency of CNV gain.
Furthermore, the mRNA expressions for these genes were
significantly higher in patients with CNV gain, suggesting
CNV alteration may be a vital contributor to the altered
mRNA expression of these genes. Moreover, protein
expression levels of 13 genes were obtained from The Human
Protein Atlas (THPA). Representative IHC images revealed that
these proteins had upregulated expression in lung
adenocarcinoma tissues and downregulated expression in
normal lung tissues (Supplementary Figure S1 and
Supplementary Table S3).

To identify the biological significance of the genes in the DRG
signature, GO analysis was conducted, and the results revealed

that these genes were enriched in DNA-dependent DNA
replication, nucleotide-excision repair, DNA recombination,
and DNA geometric change. Furthermore, the outcomes of
KEGG pathway analysis illustrated that these genes were
mainly enriched in the Fanconi anemia pathway, base excision
repair, and homologous recombination (Supplementary
Figure S2).

Next, we investigated the associations between the two groups
and various genomic features. The high-risk group was associated
with higher aneuploidy score (AS), tumor mutational burden
(TMB), SNP, and indel burden than the low-risk group
(Figure 2C-H). Higher mRNA expression of ATM was
observed in the low-risk group than in the high-risk group,
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FIGURE 3 | Molecular subtype identification. (A) Expression profiles of 16 genes between DRG1 and DRG2 in the stages | and Il TCGA-LAUD dataset. p-value of
continuous variables was tested using the Wilcoxon rank-sum test. The consistency of DRG and molecular subtype was tested using the Kappa consistency test.
Pearson’s chi-square test was used to test the categorical variables. (B) Venn plot presenting the intersection of patient share by molecular subtype and DRG. (C)
Kaplan-Meier curves showing DFS between DRG1 (yellow) and DRG2 (gray) in patients with early-stage LUAD. (D) Kaplan-Meier curves showing OS between
DRG1 (yellow) and DRG2 (gray) in patients with early-stage LUAD. (E) Multivariable analysis of DFS and OS with a Cox proportional hazards model in early-stage lung

while not for TP53 and ATR (Figure 2I-K). We also observed
that samples in the high-risk group exhibited higher genomic
instability—telomeric allelic imbalance (TAI), large-scale state
transitions (LST), loss of heterozygosity (LOH), and an
incorporated homologous recombination deficiency (HRD)
score (Figure 2L-O). These results showed the heterogeneity
in genomic scar and DDR checkpoint gene expression between
the two groups.

Molecular Subtype Identification

As shown in Figure 2P, two expression patterns of the 16 genes
were identified from the expression heat map of these signature
genes in patients with stages I and II LUAD from the TCGA
cohort. Patients in the low-risk group had better clinical

outcomes (OS and DFS) and showed significantly higher
expressions of REV1, REV3L, HFMI, and NEILI, while the
other genes had significantly lower expressions in this group.
Meanwhile, the low-risk group had a higher percentage of
patients with stage I than in the high-risk group (Chi test, p =
0.0025). The abovementioned results demonstrated that the
DRG-related genes could be used to classify the early-stage
LUAD patients.

Unsupervised hierarchical clustering (based on Euclidean
distance and Ward’s linkage) of the expression profiles of
DDR genes was used to identify molecular subtype instead of
the formula derived from the TCGA cohort. The expression
profile of the 16 genes was used to develop a DRG-related
molecular subtype to stratify early-stage LUAD into two
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FIGURE 5 | Expression pattern of 16 genes is a prognostic biomarker and predicts adjuvant therapy benefits in the GSE31210 dataset. (A) Subgroup analyses of
overall survival to estimate the clinical prognostic value between DRG1 and DRG2 as independent clinical factors. (B) Subgroup analyses of disease-free survival to
estimate the clinical prognostic value between DRG1 and DRG2 in independent clinical factors. (C) Kaplan-Meier curves of overall survival between patients treated with
or without adjuvant therapy. (D) Kaplan—-Meier curves of disease-free survival between patients treated with or without adjuvant therapy.

subtypes (DRG1 and DRG2) with statistically significant
differences in clinical outcomes. A clustering heat map was
generated to illustrate that the expressions of DRG-related
genes were significantly different between the two subtypes
(Figure 3A). The Kappa consistency test revealed the
consistency of the two methods (DRG and molecular subtype,
K = 0.61, p < 0.001, Figure 3A). As shown in Figure 3B, 71.4%
(142/199) of the low-risk DRG patients were grouped into DRG1
subtype, and 89.9% (169/188) of the high-risk DRG patients were
grouped into DRG2 subtype. Similar results were also
documented in the Kaplan-Meier analysis (DFS, log-rank p =
0.001; HR = 0.57, 95% CI: 0.40-0.80; OS, log-rank p < 0.001; HR =
0.43,95% CI: 0.28-0.65, Figure 3C,D). After adjusting for clinical
factors, the molecular subtype remained an independent
prognostic molecular classifier for DFS and OS (DFS, HR =
0.60, 95% CI: 0.41-0.86, p = 0.006; OS, HR = 0.50, 95% CI:
0.32-0.76, p = 0.011, Figure 3E). These results indicated that
DRG-related genes could stratify early-stage LUAD into two
molecular subtypes with distinct prognosis.

Validation in GEO Datasets and

Meta-analysis

In order to validate the molecular subtype and prognostic
prediction of the DRG-related genes, a total of 1,285 stage III
LUAD patient RNA expression microarray data were collected.
The expression patterns of these genes and the survival status of
patients in each GEO dataset are shown in Figure 4 and
Supplementary Figure S3. The patients in the DRGI1 subtype

had a longer OS and DFS than those in the DRG2 subtype
(GSE31210: OS, log-rank p < 0.001, HR = 0.28, 95% CI: 0.15-0.55;
DES, log-rank p < 0.001, HR = 0.33, 95% CI: 0.20-0.55.
GSE37745: OS, log-rank p = 0.003, HR = 047, 95% CI:
0.28-0.78; DFS, log-rank p = 0.039, HR = 0.39, 95% CI:
0.16-0.98. GSE68465: OS, log-rank p = 0.003, HR = 0.60, 95%
CIL: 0.43-0.84; DFS, log-rank p < 0.001, HR = 0.50, 95% CI:
0.37-0.68. GSE30219: OS, log-rank p = 0.002, HR = 0.40, 95% CI:
0.22-0.72; DFS, log-rank p < 0.001, HR = 0.22, 95% CI: 0.09-0.53.
GSE72094: OS, log-rank p = 0.002, HR = 0.49, 95% CI: 0.32-0.77.
GSE13213: OS, log-rank p < 0.001, HR = 0.22, 95% CI: 0.01-0.49).

A meta-analysis was performed with a fixed-effects model, and
the results indicated that compared with the DRG2 subtype,
patients with the DRG1 subtype exhibited higher OS (HR = 0.48,
95% CI: 0.41-0.57, p < 0.01, Figure 4I) and DES (HR = 0.5, 95%
CL 0.41-0.62, p < 0.01, Figure 4J) in the overall dataset.
Heterogeneities were not significant in all pooled analyses (OS,
p = 0.63; DES, p = 0.43).

Then, we tested whether the molecular subtype could serve as
an independent prognostic factor for early-stage lung
adenocarcinoma. In multivariable analysis, the associations of
DDR subtypes and prognosis were still significant (Tables 2, 3),
which confirmed that the selected DDR genes could stratify
patients with different prognoses.

Subgroup Analysis

A stratification analysis was conducted to assess whether clinical
factors had interaction effects on the DRG subtypes. Patients in
TCGA and GSE31210 datasets were artificially stratified based on
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TABLE 2 | Univariable analysis and multivariable Cox regression analyses of OS in six validation cohorts.

Univariable Cox Multivariable Cox

Cohort Characteristics Sample size
GSE31210

- Age (<60 vs. >60) 226
- Sex (Male vs. Female) 226
- Stage (Il vs. I) 226
- Smoking (Never vs. Ever) 226
— Adjuvant (Y vs. N) 226
— Subtype (DRG1 vs. DRG2) 226
GSE37745

- Age (<60 vs. >60) 106
- Sex (Male vs. Female) 106
— Stage (IlI_IV vs. I_Il) 106
- Subtype (DRG1 vs. DRG2) 106
GSE68465

- Age (<60 vs. >60) 371
— Sex (Male vs. Female) 371
- Smoking (Never vs. Ever) 297
- Subtype (DRG1 vs DRG2) 371
GSE30219

— Age (<60 vs. >60) 84
— Sex (Male vs Female) 84
- Stage (Il vs I) 84
— Subtype (DRG1 vs DRG2) 84
GSE72094

- Age (<60 vs >60) 398
- Sex (Male vs Female) 398
— Stage (III_IV vs I_ll) 393
- Smoking (Never vs Ever) 331
- Subtype (DRG1 vs DRG2) 398
GSE13213

- Age (<60 vs >60) 117
— Sex (Male vs Female) 117
- Stage (Il vs I) 92
- Stage (Il vs I) 104
- Smoking (Never vs Ever) 117
- Subtype (DRG1 vs DRG2) 117

clinical factors, such as age (<60/>60), sex (female/male), stage (I/
II), smoking (ever/never), and adjuvant treatment (no/yes). As
shown in Figure 5A,B and Supplementary Figure S4A-B, patients
in the DRG1 subtype had higher OS and DFS than the DRG2
subtype irrespective of their age, sex, and smoking status.
Meanwhile, a significant interaction (p = 0.01) between
adjuvant treatment and DRG subtypes was observed in early-
stage LUAD patients. Furthermore, we examined the association
between adjuvant treatment and prognosis in DRG1 and DRG2
subtypes. We found that in the DRG2 subtype, patients with
adjuvant treatment tended to have longer OS and DFS than
patients without adjuvant treatment (OS, log-rank p = 0.259, HR
=0.33,95% CI: 0.04-2.5; DFS, log-rank p = 0.105, HR = 0.32, 95%
CI: 0.08-1.4), while in the DRG1 subtype, the results were
opposite (OS, log-rank p = 0.001, HR = 5.3, 95% CI: 1.7-16;
DES, log-rank p < 0.001, HR = 6.7, 95% CI: 3.0-15). The
abovementioned observation was not statistically significant
because the sample size was limited (Supplementary Figure
S$4C,D and Figure 5C,D). After the patients were matched by
propensity score, similar results were observed (Supplementary
Figure S5).

HR (95% CI) P-value HR (95% CI) P-value
0.79 (0.4-1.54) 0.4860 - -
1.52 (0.78-2.96) 0.2190 - -
4.23 (2.17-8.24) <0.001 3.23 (1.59-6.55) 0.0012
0.61 (0.31-1.19) 0.1500 - -
2.04 (0.79-5.27) 0.1420 - -
0.28 (0.15-0.55) 0.0002 0.41 (0.2-0.83) 0.0139
0.82 (0.52-1.3) 0.3980 - —
1.26 (0.8-1.97) 0.3160 - -
1.79 (1.01-3.17) 0.0449 2.35 (1.28-4.3) 0.0056
0.51 (0.32-0.82) 0.0053 0.43 (0.26-0.71) 0.0009
0.53 (0.37-0.74) 0.0002 0.49 (0.34-0.7) 0.0001
1.43 (1.06-1.93) 0.0198 1.52 (1.11-2.09) 0.0097
1.13 (0.67-1.91) 0.6360 - -
0.6 (0.43-0.84) 0.0030 0.6 (0.43-0.85) 0.0036
0.66 (0.36-1.21) 0.1780 - -
1.05 (0.51-2.19) 0.8870 - -
2.04 (1.04-3.97) 0.0370 1.68 (0.85-3.34) 0.1370
0.4 (0.22-0.72) 0.0027 0.43 (0.23-0.79) 0.0068
0.72 (0.42-1.23) 0.2300 - -
1.55 (1.07-2.25) 0.0198 1.78 (1.22-2.6) 0.0028
2.61 (1.74-3.91) <0.001 - -
0.73 (0.32-1.68) 0.4590 2.81 (1.86-4.24) <0.001
0.56 (0.39-0.81) 0.0023 0.57 (0.39-0.83) 0.0030
0.96 (0.55-1.69) 0.8900 - -
1.36 (0.77-2.39) 0.2860 - -
1.57 (0.64-3.82) 0.3240 1.38 (0.57-3.38) 0.4780
3.2 (1.74-5.88) 0.0002 2.73 (1.48-5.05) 0.0014
1.36 (0.77-2.39) 0.2840 - -
0.33 (0.18-0.6) 0.0002 0.37 (0.21-0.68) 0.0012
DISCUSSION

In this study, we trained and validated 16 DDR genes with prognostic
values and classification effects in early-stage lung adenocarcinoma
and classified patients into two subtypes, DRG1 and DRG2.
Furthermore, we found that the DRG1 patients without adjuvant
therapy and the DRG2 patients with adjuvant therapy tended to have
prolonged survival than other patients in the corresponding subtypes.

The DDR system comprised eight pathways with diverse
biological functions to maintain genomic integrity. In this study,
we discovered that the 16 identified DDR genes were mainly involved
in TLS, NER, and BER pathways. REV3L and REVI were involved in
TLS whose lower expressions were associated with worse prognoses.
In human cells, when the expressions of TLS genes decrease, the
DNA replication stress escalates the accumulative fork stalling and
double-strand breaks (DSBs), resulting in genome instability and
poor survival (Ghosal and Chen, 2013). These two genes are
important DNA polymerase and deoxycytidyl transferase, which
play significant roles in maintaining genome stability in the
advent of DNA damage (Sasatani et al., 2020; Zhou et al, 2020).
It has been reported that lower REV3L expression was also shown to
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TABLE 3 | Univariable analysis and multivariable Cox regression analyses of DFS in four validation cohorts.

Univariable Cox Multivariable Cox

Cohort Characteristics Sample size
GSE31210

- Age (<60 vs >60) 226
- Sex (Male vs Female) 226
- Stage (Il vs I) 226
- Smoking (Never vs Ever) 226
— Adjuvant (Y vs N) 226
— Subtype (DRG1 vs DRG2) 226
GSE37745

- Age (<60 vs >60) 53
- Sex (Male vs Female) 53
— Stage (Il_IV vs I_ll) 53
— Subtype (DRG1 vs DRG2) 53
GSE68465

- Age (<60 vs >60) 143
— Sex (Male vs Female) 143
- Smoking (Never vs Ever) 130
— Subtype (DRG1 vs DRG2) 143
GSE30219

— Age (<60 vs >60) 84
— Sex (Male vs Female) 84
- Stage (Il vs I) 84
— Subtype (DRG1 vs DRG2) 84

HR (95% CI) P-value HR (95% CI) P-value
0.61 (0.37-1.02) 0.0575 — -
1.27 (0.78-2.07) 0.3380 - —
3.16 (1.92-5.21) 0.0000 2.4 (1.36-4.21) 0.0024
0.75 (0.46-1.23) 0.2520 — —
2.37 (1.2-4.66) 0.0127 1.07 (0.51-2.26) 0.8540

0.33 (0.2-0.55) 0.0000 0.45 (0.26-0.78) 0.0044
1.28 (0.56-2.71) 0.6140 — -
1.07 (0.48-2.38) 0.8680 — -
1.72 (0.64-4.61) 0.2800 2.06 (0.75-5.64) 0.1610
0.42 (0.18-0.98) 0.0441 0.38 (0.16-0.9) 0.0282
1.01 (0.7-1.44) 0.9700 — —
1.05 (0.76-1.47) 0.7570 - —
1.02 (0.63-1.66) 0.9210 — —
0.51 (0.36-0.73) 0.0002 0.51 (0.36-0.73) 0.0002
0.83 (0.38-1.79) 0.6280 - —
1.17 (0.44-3.11) 0.7480 — —
3.35 (1.49-7.57) 0.0036 2.71 (1.19-6.19) 0.0180
0.22 (0.09-0.53) 0.0007 0.25 (0.1-0.59) 0.0018

be associated with lower DES and OS (Agullo-Orturio et al,, 2020),
which was consistent with our findings.

Furthermore, we discovered that genes with higher expression in
the DRG2 subtype were mainly involved in NER and BER pathways.
RAD23B, DDBI, and ERCC family genes (ERCC1, ERCCS5, and
ERCC6) are key genes in the NER pathway. Many studies have
reported that they are significantly correlated with prognosis in
different cancer types, such as colorectal cancer, pancreatic cancer,
gastric cancer, and so on (Luo et al,, 2018; Zhang et al., 2019; Li et al,,
2021). NEIL3, PCNA, RFC3, and POLD2 play important roles in the
BER pathway which are recruited to DNA lesions and cleave and repair
the damaged bases cooperatively (Robertson et al., 2009; Hurst et al,,
2021; Wang et al,, 2021). Zhao et al. found that NEIL3 activated cell
cycle progression, leading to poor prognosis (Zhao et al., 2021). Zhang
et al. discovered that RFC3 was involved in the epithelial-mesenchymal
transition in lung adenocarcinoma, resulting in worse survival (Gong
et al,, 2019). In tumorigenesis, increased DNA replication stress results
in the increased generation of reactive oxygen species (ROS), leading to
DNA damage (Jackson and Bartek, 2009). Accumulating evidence
supports that NER and BER pathways are involved in the repair of
oxidative DNA lesions. Therefore, high expressions of NER and BER
genes suggest that more oxidative DNA lesions are being generated,
which lead to genome instability and poor prognosis (Melis et al,
2013). Therefore, the imbalance of DNA damage and repair can
increase the genome instability and promote tumor cell
proliferation which might contribute to worse survival.

The use of adjuvant therapy in early-stage (IA-IIB) lung
adenocarcinoma is controversial in NCCN guidelines and mainly
depends on the physician’s experience (Zheng and Bueno, 2015).
Although several studies have constructed various gene expression
signatures to stratify LUAD patients, none of them have provided
sufficient evidence about whether the high-risk patients could benefit
from adjuvant therapy (Chen et al., 2007; Shedden et al., 2008; Sun

et al,, 2008). In our study, we classified LUAD patients into DRG1
and DRG2 subtypes and explored the interaction between these
subtypes and adjuvant therapy in the GSE31210 dataset, which was a
relatively rigorous clinical trial with clear inclusion and exclusion
criteria. The patients in GSE31210 received no neoadjuvant therapies
before surgery, whose stages were pathologically defined. Based on
the GSE31210 cohort, we found that in the DRG2 subtype, the
prognosis of patients who received adjuvant therapy had prolonged
survival than those who did not, whereas in the DRGI subtype, the
patients without adjuvant therapy had better prognosis. Several
previous studies also revealed that the low activity of TLS
including low expression of REV3L enhanced the chemosensitivity
of cancer (Wang et al,, 2015; Yang et al., 2015; Agull6-Ortuiio et al,
2020), which supports our findings that patients in the DRG2 subtype
may benefit from adjuvant chemotherapy. In summary, the different
clinical benefits of adjuvant therapy in various subtypes suggest that
DRG subtypes have the potential to guide the selection of adjuvant
therapy for early-stage LUAD patients.

In the present study, we identified novel DDR-gene expression
subtypes and explored the association with prognosis and adjuvant
therapy. However, there are still some limitations in our study. The
current study was a retrospective analysis with a limited sample size in
a public database. In addition, the mRNA expression in our study was
based on RNA-seq or microarray whose results were less stable than
those of RT-PCR or IHG, so the evidence would be more solid if it
was validated by RT-PCR or IHC, as well as more cost-effective in
clinical application scenarios (Pisapia et al, 2022). However, our
findings have been validated in six independent cohorts to reduce
false-positive results, and they were further validated in the adjuvant
therapy subgroups to confirm the role in guiding therapy selection. In
the future, prospective studies with large sample sizes are required to
confirm the clinical utility of the 16 DDR-gene expression subtypes
on the platform of RT-PCR or IHC.
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In summary, we explored the association between DDR gene
expression and prognosis in patients with stage I or II LUAD.
Sixteen DDR gene-related subtypes were constructed to predict
prognosis and guide the use of adjuvant therapy. More research
studies are warranted to further confirm the clinical utility of the
16 DDR-gene classifiers.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

Conceptualized and designed by JD and LC; administrative
support provided by JD and LC; provision of study

REFERENCES

Agullé-Ortufio, M. T., Garcfa-Ruiz, L., Diaz-Garcia, C. V., Enguita, A. B., Pardo-
Marqués, V., Prieto-Garcia, E., et al. (2020). Blood mRNA Expression of REV3L
and TYMS as Potential Predictive Biomarkers from Platinum-Based
Chemotherapy Plus Pemetrexed in Non-small Cell Lung Cancer Patients.
Cancer Chemother. Pharmacol. 85, 525-535. doi:10.1007/s00280-019-04008-9

Beer, D. G., Kardia, S. L. R., Huang, C.-C., Giordano, T. J., Levin, A. M., Misek, D.
E., etal. (2002). Gene-Expression Profiles Predict Survival of Patients with Lung
Adenocarcinoma. Nat. Med. 8, 816-824. doi:10.1038/nm733

Bender, E. (2014). Epidemiology: The Dominant Malignancy. Nature 513, S2-S3.
doi:10.1038/513S2a

Chen, H.-Y,, Yu, S.-L., Chen, C.-H., Chang, G.-C., Chen, C.-Y., Yuan, A, et al.
(2007). A Five-Gene Signature and Clinical Outcome in Non-small-cell Lung
Cancer. N. Engl. J. Med. 356, 11-20. doi:10.1056/nejmoa060096

Ghosal, G., and Chen, J. (2013). DNA Damage Tolerance: a Double-Edged Sword
Guarding the Genome. Transl. Cancer Res. 2, 107-129. doi:10.3978/j.issn.2218-
676X.2013.04.01

Gobin, M., Nazarov, P. V., Warta, R., Timmer, M., Reifenberger, G., Felsberg, .,
et al. (2019). A DNA Repair and Cell-Cycle Gene Expression Signature in
Primary and Recurrent Glioblastoma: Prognostic Value and CLinical
Implications. Cancer Res. 79, 1226-1238. doi:10.1158/0008-5472.CAN-18-2076

Gong, S., Qu, X,, Yang, S., Zhou, S., Li, P., and Zhang, Q. (2019). RFC3 Induces
Epithelial-mesenchymal Transition in Lung Adenocarcinoma Cells through the
Wnt/B-catenin  Pathway and Possesses Prognostic Value in Lung
Adenocarcinoma. Int. J. Mol. Med. 44. doi:10.3892/ijmm.2019.4386

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of Cancer: The Next
Generation. Cell 144, 646-674. doi:10.1016/j.cell.2011.02.013

Howington, J. A., Blum, M. G., Chang, A. C., Balekian, A. A., and Murthy, S. C.
(2013). Treatment of Stage I and IT Non-Small Cell Lung Cancer: Diagnosis and
Management of Lung Cancer, 3rd ed: American College of Chest Physicians
Evidence-Based Clinical Practice Guidelines. Chest 143, 2785-¢313S. doi:10.
1378/chest.12-2359

Hurst, V., Challa, K., Shimada, K., and Gasser, S. M. (2021). Cytoskeleton Integrity
Influences XRCC1 and PCNA Dynamics at DNA Damage. Mol. Biol. Cell. 32,
bré6. doi:10.1091/mbc.E20-10-0680

Jackson, S. P., and Bartek, J. (2009). The DNA-Damage Response in Human
Biology and Disease. Nature 461, 1071-1078. doi:10.1038/nature08467

Knijnenburg, T. A., Wang, L., Zimmermann, M. T., Chambwe, N., Gao, G. F,,
Cherniack, A. D., et al. (2018). Genomic and Molecular Landscape of DNA
Damage Repair Deficiency across the Cancer Genome Atlas. Cell Rep. 23,
239-e6. doi:10.1016/j.celrep.2018.03.076

A Molecular Subtype of Lung Adenocarcinoma

materials or patients by YZ, BQ, CX, JZ, YL, PC, GW, SC,
and YS; collection and assembly of data by BQ and JZ.
Data analysis and interpretation conducted by YZ, CX,
and YL. All authors contributed to the writing of
manuscript. All authors have provided final approval of
the manuscript.

FUNDING

This work was supported by the General Program of National
Natural Science Foundation of China (81972905).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.901829/
full#supplementary-material.

Kratz, J. R, He, J., Van Den Eeden, S. K., Zhu, Z. H., Gao, W., Pham, P. T, et al.
(2012). A Practical Molecular Assay to Predict Survival in Resected Non-
squamous, Non-small-cell Lung Cancer: Development and International
Validation Studies. Lancet 379, 823-832. doi:10.1016/S0140-6736(11)61941-7

Li, B,, Cui, Y., Diehn, M., and Li, R. (2017). Development and Validation of an
Individualized Immune Prognostic Signature in Early-Stage Nonsquamous
Non-Small Cell Lung Cancer. JAMA Oncol. 3, 1529. doi:10.1001/jamaoncol.
2017.1609

Li, J., Tian, L, Jing, Z., Guo, Z., Nan, P., Liu, F., et al. (2021). Cytoplasmic RAD23B
Interacts with COROIC to Synergistically Promote Colorectal Cancer
Progression and Metastasis. Cancer Lett. 516, 13-27. doi:10.1016/j.canlet.
2021.05.033

Listi, A., Barraco, N., Bono, M., Insalaco, L., Castellana, L., Cutaia, S., et al. (2018).
Immuno-targeted Combinations in Oncogene-Addicted Non-small Cell Lung
Cancer. Transl. Cancer Res. 8, $55-563. doi:10.21037/tcr.2018.10.04

Luo, S. S, Liao, X. W, and Zhu, X. D. (2018). Prognostic Value of Excision Repair
Cross-Complementing mRNA Expression in Gastric Cancer. Biomed. Res. Int.
2018. doi:10.1155/2018/6204684

Melis, J. P. M., Van Steeg, H., and Luijten, M. (2013). Oxidative DNA Damage and
Nucleotide Excision Repair. Antioxidants Redox Signal. 18, 2409-2419. doi:10.
1089/ars.2012.5036

Necchi, A., Joseph, R. W., Loriot, Y., Hoffman-Censits, J., Perez-Gracia, J. L.,
Petrylak, D. P., et al. (2017). Atezolizumab in Platinum-Treated Locally
Advanced or Metastatic Urothelial Carcinoma: Post-Progression Outcomes
from the Phase II IMvigor210 Study. Ann. Oncol. 28, 3044-3050. doi:10.1093/
annonc/mdx518

Pang, F.-M.,, Yan, H., Mo, J.-L,, Li, D., Chen, Y., Zhang, L., et al. (2020). Integrative
Analyses Identify a DNA Damage Repair Gene Signature for Prognosis
Prediction in Lower Grade Gliomas. Future Oncol. 16, 367-382. doi:10.
2217/fon-2019-0764

Passiglia, F., Galvano, A., Gristina, V., Barraco, N., Castiglia, M., Perez, A, et al.
(2021). Is There Any Place for PD-1/CTLA-4 Inhibitors Combination in the
First-Line Treatment of Advanced NSCLC?-a Trial-Level Meta-Analysis in PD-
L1 Selected Subgroups. Transl. Lung Cancer ResLung Cancer Res. 10,
3106-3119. doi:10.21037/TLCR-21-52

Pisapia, P., Pepe, F., Baggi, A., Barberis, M., Galvano, A., Gristina, V., et al. (2022).
Next Generation Diagnostic Algorithm in Non-Small Cell Lung Cancer
Predictive Molecular Pathology: The KWAY Italian Multicenter Cost
Evaluation Study. Crit. Rev. Oncology/Hematology 169, 103525. doi:10.1016/
j.critrevonc.2021.103525

Robertson, A. B, Klungland, A., Rognes, T., and Leiros, I. (2009). DNA Repair in
Mammalian Cells: Base Excision Repair: the Long and Short of it. Cell. Mol. Life
Sci. 66, 981-993. doi:10.1007/s00018-009-8736-z

Frontiers in Molecular Biosciences | www.frontiersin.org

June 2022 | Volume 9 | Article 901829


https://www.frontiersin.org/articles/10.3389/fmolb.2022.901829/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.901829/full#supplementary-material
https://doi.org/10.1007/s00280-019-04008-9
https://doi.org/10.1038/nm733
https://doi.org/10.1038/513S2a
https://doi.org/10.1056/nejmoa060096
https://doi.org/10.3978/j.issn.2218-676X.2013.04.01
https://doi.org/10.3978/j.issn.2218-676X.2013.04.01
https://doi.org/10.1158/0008-5472.CAN-18-2076
https://doi.org/10.3892/ijmm.2019.4386
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1378/chest.12-2359
https://doi.org/10.1378/chest.12-2359
https://doi.org/10.1091/mbc.E20-10-0680
https://doi.org/10.1038/nature08467
https://doi.org/10.1016/j.celrep.2018.03.076
https://doi.org/10.1016/S0140-6736(11)61941-7
https://doi.org/10.1001/jamaoncol.2017.1609
https://doi.org/10.1001/jamaoncol.2017.1609
https://doi.org/10.1016/j.canlet.2021.05.033
https://doi.org/10.1016/j.canlet.2021.05.033
https://doi.org/10.21037/tcr.2018.10.04
https://doi.org/10.1155/2018/6204684
https://doi.org/10.1089/ars.2012.5036
https://doi.org/10.1089/ars.2012.5036
https://doi.org/10.1093/annonc/mdx518
https://doi.org/10.1093/annonc/mdx518
https://doi.org/10.2217/fon-2019-0764
https://doi.org/10.2217/fon-2019-0764
https://doi.org/10.21037/TLCR-21-52
https://doi.org/10.1016/j.critrevonc.2021.103525
https://doi.org/10.1016/j.critrevonc.2021.103525
https://doi.org/10.1007/s00018-009-8736-z
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Zhao et al.

Sasatani, M., Zaharieva, E. K., and Kamiya, K. (2020). The In Vivo Role of Revl in
Mutagenesis and Carcinogenesis. Genes Environ 42, 9. doi:10.1186/s41021-020-
0148-1

Scarbrough, P. M., Weber, R. P., Iversen, E. S., Brhane, Y., Amos, C. L, Kraft, P.,
et al. (2016). A Cross-Cancer Genetic Association Analysis of the DNA Repair
and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and
Colorectal Cancer. Cancer Epidemiol. Biomarkers Prev. 25, 193-200. doi:10.
1158/1055-9965.EPI-15-0649

Shedden, K., Taylor, J. M. G., Enkemann, S. A., Tsao, M. S., Yeatman, T. J., Gerald,
W. L, et al. (2008). Gene Expression-Based Survival Prediction in Lung
Adenocarcinoma: A Multi-Site, Blinded Validation Study. Nat. Med. 14,
822-827. doi:10.1038/nm.1790

Sun, Z., Wigle, D. A., and Yang, P. (2008). Non-Overlapping and Non-Cell-Type-
Specific Gene Expression Signatures Predict Lung Cancer Survival. J. Clin.
Oncol 26, 877-883. doi:10.1200/JC0O.2007.13.1516

Sun, H., Cao, D., Ma, X., Yang, J., Peng, P., Yu, M., et al. (2019).
Identification of a Prognostic Signature Associated with DNA Repair
Genes in Ovarian Cancer. Front. Genet. 10, 839. do0i:10.3389/fgene.2019.
00839

Sung, H., Ferlay, ], Siegel, R. L., Laversanne, M., Soerjomataram, I, Jemal, A., et al.
(2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 71,
209-249. doi:10.3322/caac.21660

Wang, W., Sheng, W., Yu, C,, Cao, J., Zhou, J., Wu, J, et al. (2015). REV3L
Modulates Cisplatin Sensitivity of Non-small Cell Lung Cancer H1299 Cells.
Oncol. Rep. 34, 1460-1468. doi:10.3892/0r.2015.4121

Wang, X., Janowczyk, A., Zhou, Y., Thawani, R., Fu, P., Schalper, K,, et al. (2017).
Prediction of Recurrence in Early Stage Non-Small Cell Lung Cancer Using
Computer Extracted Nuclear Features from Digital H&E Images. Sci. Rep. 7,
13543. doi:10.1038/s41598-017-13773-7

Wang, W., Yin, Q.,, Guo, S., and Wang, J. (2021). NEIL3 Contributes toward the
Carcinogenesis of Liver Cancer and Regulates PI3K/Akt/mTOR Signaling. Exp.
Ther. Med. 22, 1053. doi:10.3892/etm.2021.10487

Wistuba, I. I, Behrens, C., Lombardi, F., Wagner, S., Fujimoto, J., Raso, M. G., et al.
(2013). Validation of a Proliferation-Based Expression Signature as Prognostic
Marker in Early Stage Lung Adenocarcinoma. Clin. Cancer Res. 19, 6261-6271.
doi:10.1158/1078-0432.CCR-13-0596

A Molecular Subtype of Lung Adenocarcinoma

Yang, L., Shi, T., Liu, F., Ren, C., Wang, Z,, Li, Y, et al. (2015). REV3L, a Promising
Target in Regulating the Chemosensitivity of Cervical Cancer Cells. Plos One
10, €0120334. doi:10.1371/journal.pone.0120334

Zhang, Y., Lei, Y., Xu, J., Hua, J., Zhang, B., Liu, J,, et al. (2019). Role of Damage
DNA-Binding Protein 1 in Pancreatic Cancer Progression
Chemoresistance. Cancers 11, 1998. doi:10.3390/cancers11121998

Zhao, C,, Liu, J., Zhou, H., Qian, X,, Sun, H., Chen, X,, et al. (2021). NEIL3 May Act
as a Potential Prognostic Biomarker for Lung Adenocarcinoma. Cancer Cell Int.
21, 228. doi:10.1186/s12935-021-01938-4

Zheng, Y., and Bueno, R. (2015). Commercially Available Prognostic Molecular
Models in Early-Stage Lung Cancer: a Review of the Pervenio Lung RS and
Myriad myPlan Lung Cancer Tests. Expert Rev. Mol. Diagnostics 15, 589-596.
doi:10.1586/14737159.2015.1028371

Zhou, Y.-K,, Li, X.-P., Yin, J.-Y., Zou, T., Wang, Z., Wang, Y., et al. (2020).
Association of Variations in Platinum Resistance-Related Genes and Prognosis
in Lung Cancer Patients. J. Cancer 11, 4343-4351. doi:10.7150/jca.44410

and

Conflict of Interest: JZ, YL, PC, GW, and SC are employees of Burning Rock
Biotech.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhao, Qing, Xu, Zhao, Liao, Cui, Wang, Cai, Song, Cao and
Duan. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org

12

June 2022 | Volume 9 | Article 901829


https://doi.org/10.1186/s41021-020-0148-1
https://doi.org/10.1186/s41021-020-0148-1
https://doi.org/10.1158/1055-9965.EPI-15-0649
https://doi.org/10.1158/1055-9965.EPI-15-0649
https://doi.org/10.1038/nm.1790
https://doi.org/10.1200/JCO.2007.13.1516
https://doi.org/10.3389/fgene.2019.00839
https://doi.org/10.3389/fgene.2019.00839
https://doi.org/10.3322/caac.21660
https://doi.org/10.3892/or.2015.4121
https://doi.org/10.1038/s41598-017-13773-7
https://doi.org/10.3892/etm.2021.10487
https://doi.org/10.1158/1078-0432.CCR-13-0596
https://doi.org/10.1371/journal.pone.0120334
https://doi.org/10.3390/cancers11121998
https://doi.org/10.1186/s12935-021-01938-4
https://doi.org/10.1586/14737159.2015.1028371
https://doi.org/10.7150/jca.44410
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	DNA Damage Response Gene-Based Subtypes Associated With Clinical Outcomes in Early-Stage Lung Adenocarcinoma
	Introduction
	Materials and Methods
	Molecular and Clinical Data
	DDR Gene–Based Signature Construction
	Association Between DDR Signature and Genome Features and Gene Expression
	DDR Molecular Subtype Identification and Validation
	Statistical Analyses

	Results
	Construction of a 16-Gene Signature
	Association Between the 16 Genes and Clinicopathological Factors
	Molecular Subtype Identification
	Validation in GEO Datasets and Meta-analysis
	Subgroup Analysis

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


