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Scope: Nitrate supplementation is a popular ergogenic aid that improves

exercise performance by reducing oxygen consumption during exercise. We

investigated the effect of nitrate exposure and exercise on metabolic pathways

in zebrafish liver.

Materials and methods: Fish were exposed to sodium nitrate (606.9 mg/L), or

control water, for 21 days and analyzed at intervals during an exercise test. We

utilized untargeted liquid chromatography-tandem mass spectrometry (LC-

MS/MS) analysis and measured gene expression of 24 genes central to energy

metabolism and redox signaling.

Results: We observed a greater abundance of metabolites involved in

endogenous nitric oxide (NO) metabolism and amino acid metabolism in

nitrate-treated liver at rest, compared to rested controls. In the absence of

exercise, nitrate treatment upregulated expression of genes central to nutrient

sensing (pgc1a), protein synthesis (mtor) and purine metabolism (pnp5a and

ampd1) and downregulated expression of genes involved in mitochondrial fat

oxidation (acaca and cpt2).

Conclusion: Our data support a role for sub-chronic nitrate treatment in the

improvement of exercise performance, in part, by improving NO bioavailability,

sparing arginine, and modulating hepatic gluconeogenesis and glycolytic

capacity in the liver.
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Introduction

Dietary nitrate improves exercise performance by reducing

the oxygen cost of exercise and improving the efficiency of ATP

resynthesis in mitochondria, however the mechanisms for this

effect are not well understood (Larsen et al., 2011; Affourtit et al.,

2015). We demonstrated a dose-dependent effect of nitrate on

exercise performance in zebrafish in two previously published

studies (Axton et al., 2019; Keller et al., 2021). Using untargeted

metabolomics technologies of whole zebrafish and zebrafish

muscle, we attributed these nitrate-induced, performance-

enhancing effects to changes in the metabolic programming of

muscle prior to exercise by increasing the availability of energy-

producing metabolites, including phosphocreatine and ATP,

required for exercise. Nitrate supplementation is

acknowledged as a performance-enhancing dietary component

by an expert committee appointed by the International Olympic

Committee (Maughan et al., 2018).

In addition to its performance-enhancing effect, dietary

nitrate is shown to have protective effects against a milieu of

cardiometabolic diseases including cardiovascular disease,

fatty liver disease, type 2 diabetes, and metabolic syndrome

(McNally et al., 2016; Lundberg et al., 2018; Cordero-Herrera

et al., 2019). The effect of nitrate treatment is primarily

attributed to its reduction to nitrite (NO2
−) and nitric

oxide (NO), termed the nitrate-nitrite-nitric oxide pathway

(Govoni et al., 2008). NO is a ubiquitous signaling molecule

responsible for regulating vasodilation and blood flow by

stimulating cyclic guanosine monophosphate (cGMP)-

dependent vasodilation (Gewaltig and Kojda, 2002). NO is

produced endogenously through metabolism of the amino

acid L-arginine and O2 to L-citrulline in the vascular

endothelium via endothelial nitric oxide synthase (eNOS).

NO stimulates uptake and oxidation of glucose and fatty acids

in liver, heart, adipose and skeletal muscle tissue (Higaki et al.,

2001; Dai et al., 2013). Both exercise and nitrate treatment are

known to have beneficial effects on liver function in adults

with fatty liver disease (Liu et al., 2021). Yet little is known

about the effect of nitrate on liver metabolism (Ahlborg et al.,

1974; Hu et al., 2020). It is of interest to determine the effect of

nitrate on endogenous NO metabolism and energy

metabolism in metabolically active tissues such as the liver.

The liver is a primary storage organ of nitrate and uptake

of nitrate in liver is increased with nitrate supplementation in

rodents (Gilliard et al., 2018), making it a relevant organ to

investigate the impact of nitrate exposure on liver metabolism.

The liver plays a crucial role in energy homeostasis during

exercise by regulating hepatic uptake, release of glucose, and

oxidation of triglycerides to be exported to skeletal muscle

(Trefts et al., 2015). Amino acids are a major fuel for the liver

and their oxidative conversion to glucose accounts for about

half of daily oxygen consumption of the liver (Jungas et al.,

1992). Most amino acids are converted to glucose, via

gluconeogenesis, and this allows the liver to make nearly

two thirds of the total energy available from oxidation of

amino acids accessible to peripheral tissues, especially skeletal

muscle during exercise (Jungas et al., 1992). Generally, fish

have higher dietary requirements for protein and lower

requirements for fat and carbohydrate than humans (Jia

et al., 2017). A recent study measured the contribution of

amino acids, carbohydrates and fatty acids to provide ATP in

liver and skeletal muscle in zebrafish using stable isotope

tracers (Jia et al., 2017). Glutamate, glutamine, alanine and

leucine were shown to provide ~80% of ATP production in

liver and skeletal muscle (Jia et al., 2017). Furthermore, a

newly developed technique to measure oxidation of fuels

showed that 6 h post-feeding, amino acids were

preferentially metabolized for energy production (Ferreira

et al., 2019). In fed fish, the respiratory quotient increased

from 0.89 to 0.97, whereas the nitrogen quotient increased

from 0.072 to 0.140, representing ~52% amino acid/protein

usage (Ferreira et al., 2019). Taken together, these studies

demonstrate a greater need for amino acid availability to

produce ATP.

To our knowledge, this is the first study to investigate the

effect of nitrate treatment on whole liver metabolism using

untargeted metabolomics. Our previous experimental analysis

in whole zebrafish showed that 21 days of nitrate exposure

reduced the oxygen cost of exercise, similar to humans (Axton

et al., 2019). Metabolomics analysis in whole zebrafish and

zebrafish muscle revealed that this exercise performance effect

was coincident with increased availability of metabolite fuels

(i.e., ATP, glycolytic and tricarboxylic acid (TCA)

intermediates, lactate and ketone bodies) in rested zebrafish

(Axton et al., 2019; Keller et al., 2021). These findings in whole

fish were striking and led us to investigate organ-specific

changes in metabolism specifically in the liver. Here, we

sought to survey potential metabolic and genomic

determinants for the effect of nitrate exposure and exercise

on liver metabolism using an untargeted discovery-based

approach. Zebrafish have become increasingly popular as a

model organism to study developmental biology, as the

development and function of zebrafish organs are strikingly

similar to humans and have been used to study liver disease,

cardiovascular disease, muscle disease and cancer (Pham et al.,

2017). Furthermore, the molecular regulation of liver

development is largely conserved between zebrafish and

mammals (Pham et al., 2017). Due to the importance of

the concerted action between skeletal muscle and liver

during acute exercise, we aimed to determine the effect of

nitrate exposure on liver metabolism, with and without

exercise, using untargeted metabolomics. Liver gene

expression data of rested zebrafish treated with nitrate or

controls were analyzed to find a potential overlap between

exercise-regulated metabolites and relevant targets in the

hepatic transcriptome.
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Methods and materials

Zebrafish husbandry

Wild type zebrafish (5D) were raised and maintained at the

Sinnhuber Aquatic Research Laboratory (SARL) at Oregon State

University on standard lab diet (Gemma Micro. Skretting,

Tooele, France) in accordance with protocols approved by the

OSU Institutional Animal Care and Use Committee (ACUP#

5087). Adult fish were maintained at six fish per tank (3 male and

3 female) in 4-L of aerated water in metal tanks. Experiments

were conducted in several cohorts of healthy adult fish, fish from

each cohort were equally distributed between all treatment

groups. A total of 124 male and female zebrafish were

exposed to 606.9 mg/L sodium nitrate, or control water, for

21 days as described previously (Axton et al., 2019). The fish

water was replaced every 36–42 h to maintain low ammonia

concentrations and consistent nitrate treatments, monitored for

pH (6.8–7), total ammonia concentrations (0–2.0 ppm), and

temperature (27–29°C). Nitrate was dissolved in freshly

prepared fish water and, unless otherwise indicated, chemicals

were purchased from Sigma-Aldrich (St. Louis, MO). Fish were

exercised in a strenuous, graded exercise test as previously

described (Axton et al., 2019). The rested condition

constituted zebrafish that never entered the swim tunnel post-

treatment. Peak exercise condition was directly after the 20-min

swim at the highest speed (40 cm/second) and a total of 130 min

of swimming in the tunnel. The post exercise period is defined as

the period immediately after the completion of the assay where

fish returned to 5 cm/second for 20 min. The six experimental

conditions analyzed were named as follows for treatment and

exercise state: 1) control-rest, 2) control-peak exercise, 3)

control-post exercise, 4) nitrate-rest, 5) nitrate-peak exercise,

and 6) nitrate-post exercise. Fish were humanely euthanized with

an overdose of the anesthesia drug tricaine mesylate, and all

efforts were made to minimize suffering. A subset of fish used for

gene expression analysis were humanely euthanized with rapid

colling, followed by cervical dislocation (Wallace et al., 2018).

Fish were then dried, weighed, measured for standard length, and

liver were collected and snap frozen in liquid nitrogen. Samples

were stored in −80°C until used for gene expression and

metabolomics analysis.

Extraction of zebrafish liver for analysis

Eighteen livers per treatment group were snap frozen using

liquid nitrogen after 3 weeks of treatment and two livers were

pooled together for each sample (n = 9/treatment group). Each

sample was added into 2 ml pre-filled tubes containing 300 mg of

RNAse and DNAse free zirconium oxide beads (0.5 mm

diameter, ceria stabilized, Next Advance, Averill Park, NY). A

mixture of 80:20 methanol: water at −80°C was used as the

extraction solvent as previously described (Choi et al., 2015).

Liver samples were homogenized with a bullet blender

(Precellys1 24-bead-based homogenizer three times for 30 s at

6500 rpm). Extracts were incubated at −20°C for 1 h and then

centrifuged at 13,000 rpm (Eppendorf, Hauppauge, NY). The

supernatant was split into two 1.5 ml Eppendorf tubes: 200 μL

was aliquoted for untargeted metabolomics analysis, and the

remainder (variable volume) was reserved and stored at −80°C.

The residual liver solids were then freeze-dried and re-suspended

in solvent (1 mg tissue/50 μl 80:20 methanol:water) and 10ul

CUDA internal standard. Extracts were sonicated for 5 min,

clarified by centrifugation (13,000 × g, 10 min) and

supernatants transferred to mass spectrometry vials.

LC-MS/MS untargeted metabolomics

Liquid chromatography tandemmass spectrometry (LC-MS/

MS) -based untargeted metabolomics was performed in both

negative and positive ion modes, as previously described (Axton

et al., 2019; Garcia-Jaramillo et al., 2020). Briefly, high pressure

liquid chromatography (HPLC) was performed on a Shimadzu

Nexera system (Shimadzu, Columbia, MD) with a phenyl-3

stationary phase column (Inertsil Phenyl-3, 2.1 mm ×

150 mm, GL Sciences, Torrance, CA) coupled to a quadrupole

time-of-flight mass spectrometer (AB SCIEX TripleTOF 5600).

The flow rate was 0.1200 ml/min, and mobile phases were

composed of water (A) and methanol (B), both with 0.1%

formic acid. The auto-sampler temperature was held at 15°C,

the column oven temperature at 50°C, and the injection volume

was 1 μl. Time-of-flight (TOF) mass spectrometry (MS) was

operated with an acquisition time of 0.25 s and a scan range

of 70–1,200 Da. Each MS/MS scan had an accumulation time of

0.1 s and a range of 80–1,200 Da using information-dependent

MS/MS acquisition (IDA). The mass calibration was

automatically performed every 6 injections using an APCI

positive/negative calibration solution (AB SCIEX) via a

calibration delivery system (CDS). A separate quality control

(QC) pool sample was prepared by combining 10 μl of each

sample. Quality of sample run was assured by: 1) randomization

of the sequence of samples in which they were analyzed, 2)

injection of QC samples every 10 samples, 3) auto-calibration

performed every 2 samples. All samples were analyzed in time-

of-flight (TOF) scan mode in both positive and negative ion

mode. MS/MS analysis (IDA and SWATH®) were performed on

QC samples.

LC-MS/MS data processing

LC-MS/MS data was analyzed with PeakView with XIC

Manager 1.2.0 (AB SCIEX, Framingham, MA) and Progenesis

QI (Waters Corporation, Newcastle, UK) software. Data were
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evaluated based on the accurate mass similarity, isotope

similarity, and fragmentation score. Supporting Information

(Supplementary Table S1, DOI: 10.6084/m9.figshare.19287542

URL: https://figshare.com/s/616b1258de1ad40ffc74) lists

identified (L1) and putatively assigned metabolites

(L2 annotations), and provides access to the following

properties: formula, retention time, monoisotopic ion mass,

adducts, mass error, and molecular formula. Level 1 (L1) and

level 2 (L2) metabolite annotations were assigned based on level

of confidence of annotations as described previously (Sumner

et al., 2007; Alcazar Magana et al., 2020). L1 annotations were

determined using PeakView by matching accurate mass

(error <10 ppm), retention time (error <10%), MS/MS

fragmentation (library score >70), and isotope distribution

(error <20%) with an in-house library of 650 commercially

available standards (including IROA Technology, Bolton,

MA). L2 metabolite identities were assigned using Progenesis

QI software that queries METLIN, Human Metabolome

Database, ChemSpider, and LipidBlast databases. Peak lists

from PeakView were exported to MultiQuant 4.0.2 (SCIEX) to

integrate chromatograms to obtain peak areas. Samples were

normalized to the peak abundance of the internal standard.

Gene expression

Expression of genes related to glucose metabolism, lipid

metabolism, redox signaling and nutrient signaling were

evaluated after 21 days of treatment in liver by quantitative

real-time PCR (Supplementary Table S2, DOI: 10.6084/m9.

figshare.19287560, URL: https://figshare.com/s/

c658383947c487bfe713). Whole liver were homogenized in

700 μl of Trizol reagent (ThermoFisher) with 0.5 mm

zirconium oxide beads in a bullet blender (Next Advance,

Averill Park, NY). RNA was purified using with Direct-zol

RNA MiniPrep kit (Zymo Research, Irvine, CA) following

manufactures recommendations. cDNA was synthesized using

2 μg of total RNA and SuperScript IV First-Strand Synthesis

SuperMix (ThermoFisher Scientific, Waltham, MA). Expression

of 24 genes were performed using real-time quantitative PCR

(7,900 Fast Real-Time PCR System, Applied Biosystems) as

previously described (Beaver et al., 2017). Final gene

expression was calculated using the 2̂−ΔΔCT method, relative

to the level of the housekeeping genes selenoprotein F (selenof) or

ribosomal protein L13a (rpl13a). In order to normalize and

control for changes in gene expression, the copy number of

the gene of interest was divided by the copy number of the

housekeeping gene and then expressed relative to the mean level

found in control samples.

Statistical analysis

For untargeted metabolomics analyses, annotated

metabolites were used to conduct multivariate statistical

analysis. Pathway analysis and partial least squares-

discriminant analysis (PLS-DA) and Variable Importance in

Projection (VIP) scores were generated with MetaboAnalyst

5.0. The significance of individual metabolites between the

treatment groups was assessed with a one-way ANOVA

followed by Fisher’s post-hoc analysis and Holm FDR-

correction, with a p-value of <0.05 and a q-value <
0.1 indicating significance. If needed, data were

logarithmically transformed to correct for unequal variance or

non-normal distribution. Gene expression data was assessed

using individual non-parametric Wilcoxon rank tests using

GraphPad Prism (La Jolla, CA). Figures were generated with

Prism 8 (GraphPad Software, San Diego, CA), PowerPoint 2016

(Microsoft, Redmond, WA), and MetaboAnalyst 5.0.

Results

Untargeted metabolomics results

Untargeted metabolomics was performed using LC-MS/MS

analysis and 157 metabolites were annotated (Supplementary

Table S1). Of these, 31 metabolites were significantly changed

among at least one treatment group (Supplementary Table S3,

DOI: 10.6084/m9.figshare.19287569, URL: https://figshare.com/

s/b3f74b8bd32c56b04395). Peak abundance of annotated

metabolites is provided in Supplementary Table S4 (DOI: 10.

6084/m9.figshare.19287572, URL: https://figshare.com/s/

4e04511dc8e02064ba12. The PLS-DA plot demonstrates

technical separation between control liver and nitrate-treated

liver at rest and clustering of quality control samples

(Supplementary Figure S5 (DOI: 10.6084/m9.figshare.

19967969, URL: https://figshare.com/s/d901d5a287aa96fe413a).

Relative standard deviation of the internal standard was 28.6%

for QC samples and 69.6% for biological samples. The majority of

significant changes were independent of exercise and were found

between control and nitrate-treated liver at rest. A heatmap

illustrates the relative number of metabolites significantly

changed in at least one treatment group that were relevant to

energy metabolism. A pattern of greater abundance of

metabolites with nitrate treatment was observed at rest

compared to control liver at rest (Figure 1). Nitrate treatment

significantly increased amino acids, B vitamins (pantothenic acid

and riboflavin), dopamine, trigonelline and TCA cycle

intermediates in rested liver, relative to control liver.
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NO homeostasis

Nitrate is known to alter endogenous NO synthesis and

arginine bioavailability. Therefore, we next aimed to

determine the effect of nitrate on NO homeostasis in the liver

(Figure 2). We observed an increase in arginine, ornithine and

arginosuccinate metabolite levels by 2.5–5.1-fold in nitrate-

treated liver at rest, compared to rested controls, and these

metabolites in nitrate-treated liver returned to control levels

with exercise. No significant difference in arginine, ornithine

or arginosuccinate was observed in nitrate-treated liver at peak

exercise or post exercise conditions relative to control liver at the

same exercise condition. No statistically significant increase in

hypoxanthine, xanthine or urate was observed at rest in any

treatment group.

Amino acid metabolism

Amino acids contribute significantly to energy production in

zebrafish. We observed several glucogenic and ketogenic amino

acids that were significantly higher in rested nitrate liver

compared to rested controls (Figure 3). Specifically, we

observed an increase in glucogenic amino acids (arginine,

aspartate, histidine, proline, alanine, serine, threonine, and

tryptophan) by 1.7–3.1-fold (Figure 3A) and ketogenic amino

acids (tyrosine, phenylalanine, and leucine) by 1.5–3.9-fold

(Figure 3B) in rested nitrate-treated liver compared to control

liver. With exercise, the abundance of these amino acids were

reduced in nitrate-treated liver but no changes was observed in

control liver with exercise. No change in glutamate or glutamine

was observed.

TCA cycle intermediates

We observed a greater abundance of the TCA cycle

intermediates fumarate and malate in both rested nitrate and

rested control liver compared to peak exercise and post exercise

conditions (Figure 3C). Nitrate treatment did not significantly

alter malate or fumarate with nitrate-treatment at any time point

compared to control liver.

Fatty acid metabolism

In nitrate-treated liver at rest, lauric acid was significantly

reduced by 2.4-fold compared to rested controls (Figure 3D). At

FIGURE 1
Nitrate treatment altered abundance of metabolites at rest, compared to control liver at rest. The metabolites were chosen based on top FDR-
corrected p-values and physiological significance. Colors indicate z-score (standard deviation from the mean). The heat map was generated with
MetaboAnalyst 5.0 using normalized data (log transformation, auto-scaling) using Euclidean distance measure (n = 7–9/group).
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peak exercise, lauric acid was higher with nitrate treatment at

peak-exercise compared to nitrate-treated liver at rest by 2.6-fold.

No significant change in lauric acid, was observed in controls at

any exercise condition. We did not see changes in palmitate, a

primary fatty acid oxidized for energy metabolism

(Supplementary Table S3).

Glucose-alanine metabolism

Alanine, a prominent source of ATP production in the liver,

was higher in nitrate-treated liver at rest by 2.2-fold compared to

rested controls (Figure 3E). No significant difference in controls

was observed for alanine at any exercise condition. Likewise, no

FIGURE 2
Metabolites related to NO homeostasis in zebrafish. Relative levels of metabolites metabolized by nitric oxide synthase (NOS), arginase (ARG)
and xanthine oxidoreductase (XOR). Citrulline can also be recycled back to arginine. Asl, argininosuccinate lyase; Ass, argininosuccinate synthase.
Labeled means without a common letter differ. (One-way ANOVA with Fisher’s post-hoc and Holm FDR-correction, p < 0.1 indicating significance,
n = 7–9/group).
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significant change in glucose metabolite abundance was

observed with nitrate treatment or control at any exercise

condition.

Dopamine synthesis pathway

Interestingly, we observed increased abundance in several

metabolites in the dopamine synthesis pathway with nitrate

treatment at rest. (Figure 4). At rest, nitrate treatment

increased phenylalanine, tyrosine, and dopamine by 1.5–3.9-

fold, as compared to rested controls.

Gene expression

In order to glean possible underlying mechanisms that may

contribute to nitrate-induced changes in liver metabolism, we

examined the expression of genes that encode key enzymes and

transcription factors involved in energy metabolism and redox

signaling (Figure 5). This analysis was focused on the rested

condition where most metabolic changes were noted. Nitrate

treatment significantly upregulated hexokinase isoform 1 (hk1)

(p = 0.0175), purine nucleoside phosphorylase isoform 5a

(pnp5a) (p = 0.0022) and AMP deaminase isoform 1 (ampd)

(p = 0.0289) compared to rested control liver. No significant

FIGURE 3
Nitrate exposure increased metabolites involved in amino acid metabolism, fatty acid metabolism, and the TCA cycle in liver. Labeled means
without a common letter differ. (One-way ANOVA with Fisher’s post-hoc and Holm FDR-correction, p < 0.1 indicating significance, n = 7–9/group).
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difference in expression of fructose-1,6-bisphosphatase (fbp1a),

lactate dehydrogenase isoform a (ldha) or glucose-6-phosphate

dehydrogenase (g6pd) was observed between rested nitrate and

rested control liver. Nitrate treatment significantly upregulated

the nutrient sensors, namely peroxisome proliferator-activated

receptor gamma coactivator 1-alpha (pgc1a) (p = 0.008) and

mechanistic target of rapamycin (mtor) (p = 0.0023) compared to

rested control liver. No significant differences were observed with

cytochrome c oxidase (cycs), nicotinamide riboside kinase 2

(nmrk2), or sirtuin 3 (sirt3), nrf2b, nrf2a, or nos2b between

rested nitrate and rested control liver. Nitrate treatment

significantly downregulated acetyl-CoA carboxylase (acaca)

(p = 0.0018) and carnitine palmitoyl transferase 2 (cpt2) in

NRT muscle.

Discussion

To our knowledge, this is the first study to report the effect of

nitrate exposure and exercise on the metabolomic profile in

whole liver. We measured the effect of nitrate and exercise to

identify potential mechanisms by which nitrate treatment

improves exercise performance. We observed a significant

effect of nitrate treatment on glucogenic and ketogenic amino

acid abundance, which was coincident with upregulation ofmtor

and pgc1a at rest, compared to rested controls. Glucogenic amino

acids are metabolized to glucose, via gluconeogenesis in the liver,

increasing glucose output to peripheral tissues (Jungas et al.,

1992). In addition, ketogenic amino acids are ultimately

degraded to CO2 in the TCA cycle and contribute to ATP

production. As with our observations in whole zebrafish and

zebrafish skeletal muscle (Axton et al., 2019; Keller et al., 2021),

the effect of nitrate was most prominent at the rested condition

and not at peak-exercise or post-exercise. A primary finding of

our study is that 21 days of sub-chronic nitrate exposure

significantly increased arginine bioavailability, sparing arginine

and likely modulating endogenous NO metabolism. Similarly, to

our previously published results in whole fish and zebrafish

muscle, we observed a greater abundance of arginine in

nitrate-treated liver at rest (Axton et al., 2019; Keller et al.,

2021). Our data support that sub-chronic nitrate treatment

may improve exercise performance, in part, by improving NO

bioavailability, sparing arginine, and increasing indices of hepatic

gluconeogenesis in the liver.

Nitrate treatment has been shown to increase nitrate liver

nitrate storage and spare arginine locally (Gilliard et al., 2018).

This suggests that nitrate treatment spares arginine by producing

NO via the nitrate-nitrite-NO pathway. Indeed, nitrate has been

shown to increase arginine by inhibiting arginase in the hypoxic

rat heart, redirecting arginine from ornithine/citrulline

production to NO/citrulline formation (Ashmore et al., 2014).

We observed a greater abundance of ornithine at rest and no

FIGURE 4
Nitrate exposure increased metabolites in the dopamine
synthesis pathway. Labeled means without a common letter differ.
(One-way ANOVA with Fisher’s post-hoc and Holm FDR-
correction, p < 0.1 indicating significance, n = 7–9/group).
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change in abundance of citrulline with nitrate exposure at rest

compare to rested controls, possibly suggesting increased

arginase activity. However, this effect of nitrate on arginase

enzyme remains to be elucidated. Previous research in

humans has shown that arginine supplementation improves

exercise performance, similar to nitrate supplementation, by

reducing the oxygen cost of exercise and extending time to

exhaustion (Bailey et al., 2010). We previously showed that

exogenous nitrate exposure in this model is converted to

nitrite in blood, as occurs in humans, and that nitrate and

nitrite treatment changed the abundance of metabolites

related to endogenous NO production (Axton et al., 2019).

NO and arginine supplementation have independently been

shown to be reduce liver injury and enhance liver

regeneration after liver resection, offering another possible

benefit of nitrate for liver function (Cantre et al., 2008;

Kurokawa et al., 2012). We cannot comment directly on the

mechanisms of nitrate reduction to nitrite and NO directly in

FIGURE 5
Expression of genes involved in liver energy metabolism and redox signaling resulting from nitrate treatment. The heat mapwas generated with
Prism and color mapping represents the mean of each treatment group. Negative and positive values indicate downregulation and upregulation
compared to control values, respectively. Asterisks indicate significance; *, p < 0.01; **, p < 0.001. (n = 6–8/group). hk1, hexokinase 1; fbp1a,
fructose-1,6-bisphophatase a; ldha, lactate dehydrogenase a; g6pd, glucose-6-phosphate dehydrogenase; pnp5a, purine nucleoside
phosphorylase 5a; ampd1, adenosine monophosphate 1; nrf2a, nuclear factor erythroid 2-related factor 2a; nrf2b, nuclear factor erythroid 2-related
factor 2 b; nos2b, nitric oxide synthase 2b; pgc1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha;mtor, mammalian target
of rapamycin; sirt3, sirtuin 3; cycs, cytochrome c oxidase; nmrk2, nicotinamide riboside kinase 2; acat1, acetyl-CoA acetyltransferase 1; acaca,
acetyl-CoA carboxylase a; hmgcs1, 3-hydroxy-3-methylglutaryl-CoA synthase 1; hmgcl, 3-hydroxy-3-methylglutaryl-CoA lyase; cpt1b, carnitine
palmitoyltransferase 1b; cpt2, carnitine palmitoyltransferase 2; bdh1, 3-hydroxybutyrate dehydrogenase; pparg, peroxisome proliferator activated
receptor gamma; pparaa, peroxisome proliferator activated receptor alpha a isoform; pparab, peroxisome proliferator activated receptor alpha b
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zebrafish liver but the sparing of arginine may support NO

bioavailability and liver function in our model and could

plausibly influence whole-organism metabolic efficiency.

Future research should measure enzymatic activity of xanthine

oxidoreductase in liver, which reduces nitrite to NO, to

determine whether nitrate treatment alters hepatic NO

metabolism (Lu et al., 2005; McNally et al., 2020).

Another key finding of this study was that nitrate treatment

in liver had a greater abundance of glucogenic and ketogenic

amino acids compared to rested controls. The primary role of the

liver during exercise is to metabolize waste products of muscle

metabolism and contribute to ATP production. During exercise,

the liver is responsible for maintaining glucose homeostasis

during exercise via glycogenolysis and gluconeogenesis. In

zebrafish, the amino acids glutamine, glutamate, leucine and

alanine contribute significantly to ATP production in the liver

and skeletal muscle (Jia et al., 2017). Zebrafish also initiate

gluconeogenesis during fasting similar to mammals and

inhibition of the phosphoenolpyruvate carboxykinase gene

(pck1) results in sustained hyperglycemia in zebrafish embryos

(Jurczyk et al., 2011).

The increase in alanine and leucine with nitrate treatment

were coincident with upregulation of mtor and pgc1a, two key

nutrient sensing genes involved in glucose and lipid metabolism.

The nitrate-mediated effects on the nutrient sensing genes, mtor

and pgc1a, are of interest because they play a central role in

regulation of cell growth, autophagy, and are involved in the

training-mediated benefits of exercise (Wang et al., 2019). The

zebrafish target of rapamycin (mtor) has 90% homology with

mTOR, however its physiological role is less understood (Makky

and Mayer, 2007). Arginine and leucine are two amino acids

known to activate mTOR, both of which were elevated in

nitrated-treated liver at rest compared to rested controls. In

rainbow trout hepatocytes, leucine has been shown to activate

the mTOR signaling pathway stimulating gluconeogenic

pathways (Lansard et al., 2010).

The observed upregulation of pgc1a in zebrafish liver with

nitrate treatment at rest suggests modulation of hepatic

gluconeogenesis and lipid metabolism. PGC-1 α is a

transcriptional coactivator that regulates hepatic

gluconeogenesis and β-oxidation of fatty acids in the liver

(Liang and Ward, 2006). Tissue culture studies have revealed

that overexpression of PGC-1 α in primary hepatocytes drives the

expression of gluconeogenic genes (Yoon et al., 2001; Liang and

Ward, 2006). Upregulation of PGC-1 α is associated with

increased hepatic glucose production in a fasted state (Liang

andWard, 2006). In liver, we observed an increase in alanine and

leucine and a trend toward increased glutamine abundance with

nitrate treatment at rest, further supporting a potential increase

in gluconeogenesis and glutaminolysis for ATP production.

Unlike our previous results in whole zebrafish, we did not

observe a change in glucose-6-phosphate with nitrate exposure or

exercise. In nitrate-treated skeletal muscle at rest, we observed an

increase in glucose and glucose-6-phosphate, likely from

increased glucose uptake in muscle (Keller et al., 2021). It is

important to note that we did not see changes in expression of

genes central to gluconeogenesis including fpb1a and g6pd.

Further research is needed on the effect of nitrate exposure on

expression of phosphoenolpyruvate carboxykinase and post-

translational modification, primary regulators of hepatic

gluconeogenesis (Zhang et al., 2018). Furthermore, future

research should aim to better understand the involvement of

mtor and pgc1a on lipid regulation and glucose metabolism in

zebrafish liver to determine the translational significance of this

model to humans.

Initiation of fatty acid oxidation is tightly controlled by

acetyl-CoA carboxylase (ACC) activity and is important in

exercise because it diminishes ACC activity and increases fatty

acid oxidation in muscle and liver (Carlson and Winder, 1999;

Dean et al., 2000). More specifically, inhibition of ACC stimulates

fatty acid oxidation and inhibits fatty acid synthesis. Long-term

regulation of ACC is primarily regulated at the transcription level

(Park and Kim, 1991). When ACC is downregulated, as we

observed with nitrate treatment, fatty acid oxidation is

favored, suggesting increased fatty acid oxidation in liver. This

is coincident with a decreased abundance of lauric acid (C12), a

saturated fatty acid, in nitrate-treated liver at rest compared to

rested controls. Lauric acid was higher in nitrate-treated liver at

peak-exercise compared to nitrate-treated liver at rest and

subsequently reduced in nitrate-treated liver post exercise,

likely indicating increased β-oxidation post-exercise. Studies

using a high-fat diet in rodent models show that nitrate

supplementation may be protective against high-fat diet-

induced steatosis by preventing lipid accumulation (Cordero-

Herrera et al., 2019). Further targeted lipidomic analyses are

needed to quantify the effect of nitrate on the metabolism on a

greater number of fatty acids in liver.

Notably, we observed a nitrate-dependent increase in

abundance of dopamine and dopamine precursors in liver.

The majority of dopamine is synthesized in the substantia

nigra, tegmental area, and hypothalamus in of the brain (Best

et al., 2009; Juarez Olguin et al., 2016; Xue et al., 2018). However,

peripheral dopamine can be produced by the autonomic nervous

system, gut epithelial cells, and immune cells such as dendritic

cells, regulatory T cells, B cells and macrophages (Xue et al.,

2018). About 50% of dopamine is produced in the gut by enteric

neurons and intestinal epithelial cells, leading to increased

dopamine concentration in the hepatic portal vein (Xue et al.,

2018). Interestingly, a study in mice showed that stimulation of

central dopamine D2 receptors increases plasma glucose levels by

increasing hepatic glucose production through parasympathetic

nerves (Ikeda et al., 2020). The increased abundance of dopamine

in liver may be another mechanism by which nitrate exposure

mediates hepatic glucose output. However, the significance of

this effect of nitrate exposure on dopamine synthesis remains to

be discovered.
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Several challenges arose with our study including variability

and potential sex differences in liver metabolism. Due to the

small size of zebrafish liver, we pooled 2 livers for each sample

and combined males and females, which may explain the

variability observed within treatment groups, potentially

confounding our results. Indeed, sex specific differences in

oral nitrate-reducing bacteria in humans exists (Kapil et al.,

2018). Our treatments cannot differentiate between the

potential direct and indirect effects of nitrate through

reduction to nitrite and NO. Methodological considerations

include the static nature of the metabolomics data, as opposed

to metabolic flux experiments, requiring us to make inferences

based on relative abundance of metabolite concentrations at each

time point. However, this model did allow us to gain insight into

a wide array of metabolic pathways related to energy metabolism

and aerobic exercise performance. These conditions give rise to

opportunities for future experiments to explore the sex-specific

effects of nitrate, rate of flux of nitrate-mediate fuel sources in

liver during aerobic exercise, and the potential conservation of

these mechanisms in humans.

In conclusion, this study aimed to use a metabolomics-

driven, discovery-based approach to determine the

performance enhancing effects of nitrate treatment on liver

metabolism. Our unique study design allowed us to gain

insight into the global metabolic effects of nitrate and exercise

on whole liver in zebrafish. We have shown that nitrate exposure

spares arginine in liver and alters arginine, amino acid and lipid

metabolism which is coincident with upregulation of central

nutrient sensing genes, mtor and pgc1a. These data suggest

nitrate may improve aerobic exercise performance by

increasing NO bioavailability and hepatic production of

glucose, via gluconeogenesis. Our findings are significant

because the nitrate-induced changes in gene expression and

metabolism provide insight into the mechanisms by which

nitrate can prevent liver steatosis in pre-clinical models

(Cordero-Herrera et al., 2019). Furthermore, these data

support our previous analysis that nitrate increases glycolytic

capacity and may contribute to improved aerobic exercise

performance in our model. Taken together with our results in

whole zebrafish and zebrafish muscle, these data support a

conclusion that nitrate induces multi-organ metabolic

reprogramming to support improved exercise performance in

zebrafish.
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