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The study of the mechanisms whereby proteins achieve their native functionally competent
conformation has been a key issue in molecular biosciences over the last 6 decades.
Nevertheless, there are several debated issues and open problems concerning some
aspects of this fundamental problem. By considering the emerging complexity of the so-
called “native state,”we attempt hereby to propose a personal account on some of the key
topics in the field, ranging from the relationships between misfolding and diseases to the
significance of protein disorder. Finally, we briefly describe the recent and exciting
advances in predicting protein structures from their amino acid sequence.
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INTRODUCTION

One of the most fascinating topics in life sciences lies in the understanding of the processes of self-
assembly of supramolecular architectures. Because of its vital importance in essentially all cellular
pathways, the study of the folding of proteins has undoubtedly taken center stage in biomolecular
sciences over the last few decades (Eaton 2021). The birth date of the protein-folding problem has
been assigned to the publication of the pioneering article by Anfinsen, Haber, Sela, andWhite on the
refolding of denatured ribonuclease on 15 September 1961 (Anfinsen et al., 1961), which therefore
last year celebrated its 60th anniversary. In 1972, half a century ago, Chris Anfinsen was awarded the
Nobel prize in Chemistry with the following motivation: for his work on ribonuclease, especially
concerning the connection between the amino acid sequence and the biologically active conformation.

There were two critical breakthroughs arising from this work: first, it was unambiguously
demonstrated that a protein might refold spontaneously to its physiologically active state, a
statement that, incidentally, fits the concept of substance as defined by Aristotle (Substantia
causa sui); second, by analyzing the dependence of the enzymatic activity versus the time of
reoxidation, the authors could contribute the first attempt to describe the order of events of the
molecular pathway leading to the biologically active state. Noteworthy, these aspects reflect the bi-
faceted nature of the protein-folding problem—the description of i) the amino acid code that
specifies for a given structure and ii) the mechanism by which this state is achieved.

In a nutshell, protein folding is the reaction leading a polypeptide from disorder to order,
from unfolded to folded. In his seminal assay “Case and Necessity,” Jacques Monod suggested
that one of the key foundations of life is in the ability to spontaneously reach an active state (self-
organization of its constituents). Thus, folding is the manifestation of the morphogenesis of a
protein, whereby an amino acid sequence is able to self-assemble into a so-called native
conformation, from Latin “nativus—born,” which is the biologically active state endowed of
a specific function. Whilst the native conformation of a protein is generally assigned to its precise
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three-dimensional structure as obtained, for example, by X-ray
diffraction in a crystal, intense research carried out over the
last few decades has tremendously increased our
understanding of its complexity. In this mini-review, we
attempt to offer a critical outlook on some of the key
aspects arising from the study of such complexity, vis-a-vis
the essence of the protein-folding problem, as framed by the
pioneering work of Anfinsen and co-workers. Furthermore, we
attempt to highlight some key questions that, in our opinion,
demand to be elucidated.

Native State in Solution
Since life primarily occurs in hydration, the maintenance of
protein solubility is an essential feature to achieve the native
condition. It is generally known that native globular proteins are
highly soluble in water. For example, in the human red blood cell,
hemoglobin A is at a concentration of >100 g L−1, not far from
solubility (Antonini and Brunori 1971). Intracellular
precipitation of the protein is avoided because of (i) the
simultaneous presence of oxy and deoxy hemoglobins that
have different solubility (Adachi and Asakura 1979) and (ii)
the continuous mixing of the intracellular components due to
squeezing of the erythrocytes while traveling through the
capillaries and more. In other species, intracellular
precipitation is contrasted by the presence of more than one
hemoglobin component having similar functional properties but
different amino acid sequences.

The great solubility in water of native globular proteins
may appear in contrast with the statement made long ago by
Linus Pauling that: “. . . proteins are sticky.” It is common
practice that heating leads to coagulation and massive
aggregation of unfolded, denatured proteins, the
condensed state being stabilized by-and-large by
hydrophobic interactions. Biochemists have often been
discouraged, if not irritated, by the unwanted precipitation
of an interesting protein that may occur during purification;
this is why a cold room is classically present in every
biochemistry institute.

Of interest, in the cellular environment, it has been reported
that the expression of human genes is anti-correlated with
aggregation propensity of their phenotypes (Tartaglia et al.,
2007; Vecchi et al., 2020). This finding indicates that human
proteins evolved to escape the formation of aggregates.
Accordingly, detection of supersaturated proteins in specific
tissues may represent a possible source of vulnerability and
could reveal a potential link to cellular dysfunction (Ciryam
et al., 2016; Kundra et al., 2017; Yerbury et al., 2019).
Additionally, it was observed that minor changes to the
amino acid composition on the surface of proteins can
dramatically change their solubilities (Garcia-Seisdedos
et al., 2017; Garcia Seisdedos et al., 2022), illustrating the
fine balance of forces driving protein aggregation. Thus, as
briefly recapitulated as follows, it is of great importance to
understand the complex scenario that links the
thermodynamics of the soluble native state to the formation
of aberrant insoluble structures.

Protein Aggregation: The Amyloid State and
Cell Toxicity
The end of the last century has witnessed a neat revolution in our
understanding of native state thermodynamics and stability. In
fact, whilst Anfinsen’s experiment would theoretically imply that
the native state is the most stable conformation of a given
polypeptide chain, it was observed that a protein may form
fibrillar aggregates displaying significantly higher stabilities
(Prusiner 1985; Canet et al., 1999; Chiti and Dobson 2006;
Tycko and Wyckner 2013). This type of state, built by a single
specific protein polymerizing into (intra or inter) cellular long
filaments with a characteristic 3D structure, has been called an
amyloid, a generic name adopted after Rudolf Virkow in 1853
(Figure 1).

The association between amyloid and human disease dates
back to the early identification by Dr. Alois Alzheimer of
mysterious aggregates in the brain of Mme. Auguste Deter,
who died in her fifties with a devastating dementia, nowadays
carrying the name of the discoverer. However, an increasing
number of globular proteins with no obvious connection to
pathology has been shown to have an intrinsic propensity to
yield, under appropriate conditions, fibrillar aggregates with the
characteristic overall morphology of an amyloid (Chiti et al.,
2002; Chiti and Dobson 2009; Knowles et al., 2014; Dobson et al.,
2020). This suggested that the inclination to form an amyloid is
an inherent generic property of virtually all proteins, although the
propensity to aggregate can vary dramatically with sequences and
conditions. Chris Dobson summarized the matter by stating that
“. . . in principle every protein can assemble into an amyloid state.”

From a structural perspective, an amyloid filament is generally
contributed by a single type of protein assembled in a thread-like

FIGURE 1 | Protein aggregation and misfolding. Panel (A) Electron
microscopy image of the amyloid state of Aβ, adapted from Lu et al. (2013). As
discussed in the text, it appears that in spite of differences in the amino acid
sequences or in the structure of the protein involved, the typical amyloid
state consists of thread-like fibrils of about 10 nm diameter and rich in β-sheet
structure. Panel (B) Schematic representation of the folding of a small globular
protein and the formation of amyloid. The native state (depicted on the top left)
consists of two α-helices (in red) and two β-strands (in blue). Aggregation and
formation of the amyloid is triggered by the accumulation of a misfolded
intermediate (in square parenthesis).
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structure of approximately 7–13 nm diameter, formed by
protofilaments associated laterally (Balbach et al., 2000;
Eisenberg and Juncker 2012; Tycko and Wyckner 2013;
Iadanza et al., 2018; Gallardo et al., 2020). The stability of the
fibrils depends on hydrophobic interactions and H-bonds along
the main axis. Association of protofilaments leads to an amyloid
whose thermodynamic stability exceeds that of the originating
native protein. In addition, the barrier to depolymerization is very
high making the reaction essentially irreversible (Chiti and
Dobson 2009).

The monotony of the basic architecture led to believe that in
all cases the 3D structure is essentially the same (Brunori 2021).
However studies by solid state NMR and cryo-electron
microscopy have indicated that despite recurrent canonical
features in the morphology, the 3D structure displays a
certain degree of polymorphism for different types of
amyloid (ex vivo or in vitro; from the brain of cadavers or
assembled in vitro from synthetic polypeptides) (Colvin et al.,
2016; Wälti et al., 2016; Cao et al., 2021; Iakovleva et al., 2021;
Yang et al., 2022)). This is particularly evident when an amyloid
is assembled from shorter peptides, but it is also seen with whole
proteins such as Tau or α-synuclein (Ulamec et al., 2020). In
some cases, polymorphism has been correlated to the binding of
different cofactors or truncation of a domain or interactions
with cellular components (Gallardo et al., 2020). Notably, it is
still unknown whether the amyloid made of a single protein may
or may not display differences in the onset of cellular
dysfunction or in the progression of a disease, which may be
correlated to polymorphism.

Many biochemists have been attracted over the years by the
significance of amyloids in the brains of people those died of
one or another disease associated to neurodegeneration and
eventually dementia. This group of pathologies expanded with
time, from the more frequent syndromes named after Dr.
Alzheimer and Dr. Parkinson to many others affecting not
only the central or peripheral nervous tissue(s) but also other
organs in the body such as the pancreas, the heart, and more
(Kelly 1998; Chiti and Dobson 2006; Chiti and Dobson 2009;
Singh et al., 2021; Cascella et al., 2022; Chiti and Kelly 2022;
Koopman et al., 2022). At the very beginning of this century,
there was enough reliable information to pursue and defend a
general view assigning a central role to (i) the aggregation of a
specific protein typical of a specific neurodegenerative disease;
(ii) the correlation between the intrinsic propensity of a
protein to aggregate and single site mutations that further
reduce solubility; and (iii) the population of misfolded states
(often quite compact) in the mechanism of formation of the
kernel and the extended amyloid, largely by β-sheet
interactions. In fact, this class of devastating fatal diseases
which prevail in older people (see below) are nowadays called
misfolding disorders (Chiti and Dobson 2006; Knowles et al.,
2014; Chiti and Kelly 2022). In summary, although aggregation
may initiate starting from different states (native, denatured,
or intermediate), clear-cut data indicate that even elusive
misfolded intermediates play a significant role in the
formation of amyloids (Figure 1) (Kelly 1998; Chiti and

Dobson 2006; Chiti and Dobson 2009; Knowles et al., 2014;
Dobson et al., 2020; Cawood et al., 2021).

A quantitative description of the complex aggregation kinetics
is very difficult, and a dissection of the microscopic events
involved is very challenging (Buell et al., 2014). The overall
time course seems to mimic the one reported for the
polymerization of the deoxygenated sickle cell hemoglobin
single mutant ((Hofrichter et al., 1974; Eaton and Hofrichter
1990). The formation of the amyloid follows a time lag whose
length depends on the specific protein involved and on its
concentration. It is accepted that a classical
nucleation–propagation mechanism is inadequate to fit
experimental data, and a crucial role for filament
fragmentation and secondary nucleation has been advocated.
Determination of the rate constants for the microscopic steps
and their dependence on experimental conditions is very difficult;
the nonlinear nature of the rate equations makes it difficult to
apply a rigorous quantitative analysis. Breaking down the
significant parameters demands (a) extensive experiments to
unveil the role of protein concentration and seeding on the
time course of aggregation and (b) very sophisticated
mathematical analysis.

Unveiling the mechanism and sorting out intermediates is
crucial to combat the disease because of the following reasons:
the first goal is to search for drugs or antibodies that may bind
with high affinity to the misfolded monomers or oligomers and
thereby interfere with polymerization; clearly, this demands
the identification and structural characterization of reaction
intermediates and their kinetics of formation and
interconversion. The search to discover molecules to
combat neurodegeneration following this strategy seems to
produce some positive results. Dobson and co-workers
provided self-consistent solutions of the equations
describing the steps of primary and secondary nucleation,
as well as fragmentation of the growing fibers (Knowles
et al., 2009). By systematically dissecting each microscopic
step in the mechanism of aggregation of Aβ42 (the peptide
forming the amyloid in Alzheimer’s disease), it was discovered
that bexarotene, an approved anticancer drug, may act as a
controller of the primary nucleation, thus delaying the
formation of larger aggregates and toxic species (Habchi
et al., 2016; Ruggeri et al., 2021).

An important second goal is to tackle the problem of
identifying the toxic species and defining the mechanism
of cellular toxicity. The hypothesis that brain damage was
caused primarily, if not exclusively, by the extensive brain
plaques or intracellular fibrillary tangles has lost some of the
initial relevance. Recent data suggest that some of the
polymerization intermediates are likely to be the main
species toxic to neurons (Fusco et al., 2017; Cascella et al.,
2019; Venkatramani et al., 2022); in particular, the oligomers
are presumed to increase the level of cellular damage because
of their propensity to bind to and diffuse inside the cellular
membrane and kill the cell. Moreover, they are crucial to the
multiplication of the amyloid being able to condense into new
kernels starting the formation of secondary protofibrils.
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Why Is Aging AssociatedWith an Increase in
Misfolding Diseases?
Neurodegenerative diseases are quite frequent in older people,
with a devastating impact on individuals, families, and societies. It
has been estimated that Alzheimer’s disease alone will affect
between one-third and one-half of people above 85 years of
age. Currently, these diseases have no cure; therefore, the
individual, social, and financial burden of assisting these
disabled patients will grow, and by 2050, the economic toll is
expected to rise to about one trillion US$ per year in the USA
alone. In spite of obvious clinical differences—with symptoms
ranging from progressive dysfunction of motor control to mood
disorders and cognitive deficits, and eventually full-blown
dementia—at the molecular and cellular levels, these disabling
diseases display some fundamental commonalities (Small and
Petsko 2015; Brunori 2021). As outlined previously, an important
step forward has been the discovery that protein misfolding is
likely to be a unifying molecular mechanism. Unveiling the
molecular, genetic, and cellular commonalities of these age-
related disorders and discovering methods and drugs that
either prevent or interfere with the formation and
accumulation of misfolded proteins are mandatory.

The mechanism whereby longevity affects the onset of a
disease is still somewhat of a conundrum. The likelihood to
produce intracellular or intercellular amyloids depends to a
first approximation on a few factors, starting with the intrinsic
propensity to aggregate of the protein/peptide involved. Quite
often, a mutation of the protein in question is associated to a
considerable increase in the propensity to aggregate and clinically
with an early onset of the disease. This effect, discovered long ago
for synuclein which forms the Levy’s bodies typical of Parkinson’s
disorder (Goedert et al., 2017), has been observed for most other
cases including, for example, the amyloid precursor protein (APP)
involved in Alzheimer’s and superoxide dismutase (SOD)
involved in a quota of amyotrophic lateral sclerosis (ALS)
(Morrison and Morrison 1999; Nordlund and Oliveberg 2006).
It should not be overlooked that a mutant protein endowed with
an increased propensity to aggregate is synthesized from the time
of conception, yet deposition of the fibrils almost always begins
late in life—why?

At present, the aging-dependent cellular processes that
jeopardize the efficiency of the homeostasis network are not
fully clear (Brunori 2021). A major task is to unveil the
biochemical mechanisms responsible for the enhanced rate of
formation of the amyloidogenic proteins/peptides or the decrease
in efficiency of clearance of the misfolded states. Protein
homeostasis is a complex biochemical network whose job is
cleaning the cell from molecular garbage. Under normal
conditions, the potentially amyloidogenic proteins/peptides are
processed via the physiological degradation paths. With aging
however, proteostasis may begin to decline with an increase in the
concentration of the amyloidogenic species and formation of
kernels which promote polymerization and subsequently
fragmentation, with an increase in the oligomeric toxic species.

Aging may depend on deterioration of several different
components of the homeostasis network and a decrease of the

necessary biological energy supply. The complexity of
neurodegenerative disorders that deserves the highest priority
along two main lines: (i) to understand the biochemical
mechanisms responsible for the decline in the clearance
efficiency of the amyloidogenic events and to device a protocol
to rescue control; (ii) to unveil the reactions responsible for the
increase in the rate of production of the amyloidogenic species in
an attempt to interfere with accumulation of toxic oligomers,
thereby reducing the rate of fibrillation.

An interesting hypothesis that emerged at the end of the last
century is based on the age-dependent dysfunction of the
retromer (Seaman et al., 1998; Seaman 2012), a complex
protein assembly which is crucial for endosomal protein
trafficking, including the intracellular sorting and recycling of
the APP (Figure 2). Early on, it was observed by optical
microscopy of the Alzheimer’s brain that endosomes, the
intracellular hub collecting membrane proteins to be recycled

FIGURE 2 | Intracellular protein trafficking and the retromer. Top panel:
the retromer is part of the endosome, the hub in intracellular protein trafficking;
retromer’s role is to transfer proteins to the Golgi apparatus or to the lysosome
for proteolysis. Retromer’s dysfunction in Alzheimer’s disease causes
improper sorting of APP (the amyloid precursor protein) with accumulation of
Aβ40/42 and eventually plaque formation (inspired by a scheme suggested by
Prof. G Petsko, New York, USA, reproduced with permission). Bottom panel:
structural organization of the retromer. The crystal structure of human VPS6A
is shown in cyan (PDB 2FAU), and those of human VPS29 and VPS35 are
shown in green and red, respectively (PDB 2R17). Residues surrounding the
inactive metallophosphoesterase site of VP29 are shown in a stick model. The
structure of the SNX dimer is represented in purple (Adapted from Brunori and
Gianni (2016); reported with permission).
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and physiologically addressed to the Golgi, appeared damaged.
More recently, it was shown by genetic and functional studies that
retromer dysfunction is linked to Alzheimer’s disease and
(afterward) to Parkinson’s disease as well (Small and Petsko
2015; Small et al., 2017; Small and Petsko 2020). In the last
few years, the number of neurological disorders linked to a
retromer dysfunction has increased considerably, including
Down syndrome (Curtis et al., 2022). From a structural
perspective, the retromer complex appears to be assembled in
an arch-shaped scaffold with highly dynamic properties
(Chandra et al., 2020). Furthermore, it appears that the
retromer exists as monomers and low-order oligomers
(dimers, trimers, and tetramers) when interacting with
membranes (Mecozzi et al., 2014; Deatherage et al., 2020); an
observation that is consistent with single-particle cryo-EM data
indicating that dimers and tetramers were the prevalent retromer
species in vitrified ice (Chen et al., 2019).

A very interesting aspect highlighting the role of the retromer
in the pathophysiology of some misfolding diseases of the brain
emerged from structural studies on the proteins forming this
complex assembly, proteins which are defective in Alzheimer’s
disease. In fact, depleting the retromer complex of the core’s
central protein (called VPS35) is associated to the disruption of
physiological recycling functions; therefore, the APP is not
addressed to the Golgi as normal but to the lysosome, with an
increase in the cleavage of APP and thus an enhanced formation
of the Aβ40/42 amyloidogenic peptides feeding the growth of
amyloid plaques. Small and Petsko (2015) and Small and Petsko
(2020) went further presenting a set of VPS35
depletion–repletion studies in mice and even selecting small
molecular weight pharmacological chaperones that have
beneficial effects on the stability of the retromer.

Intrinsically Disordered Proteins:
Frustration and Disorder
As briefly recalled previously, Anfinsen’s experiments
demonstrated the presence in proteins of a strong energetic
bias toward the native conformation, resulting in spontaneous
folding. One of the most elegant theories to explain folding
implies the so-called principle of minimal frustration, which
postulates proteins to display a minimal degree of frustration.
In physical systems, frustration occurs when it is impossible to
simultaneously minimize the free energy of all the possible
interactions (Bryngelson et al., 1995; Onuchic et al., 1996). A
critical corollary of such a principle implies that the amino acidic
sequence of a polypeptide is optimal for its corresponding native
structure. In line with Anfinsen’s observations, the free energy
landscape appears funneled and strongly biased toward the native
state. Recalling that proteins are principally optimized to
function, the evolutionary constraint on function might be
remarkably different from that of optimizing folding.
Therefore, it is observed that proteins contain local frustration
of non-optimized structure that often overlaps with their
functional sites (Ferreiro et al., 2007; Ferreiro et al., 2011;
Gianni et al., 2014). Local frustration is therefore a signature
of the conflicting demands between folding and function.

As championed by Hans Frauenfelder (Austin et al., 1973;
Frauenfelder et al., 1991; Frauenfelder et al., 2001), it may be
assumed that all proteins possess some degree of frustration,
sampling a continuum between the order (low frustration) and
disorder (high frustration). Since frustration promotes the
formation of multiple local minima in a free energy landscape,
its increase would imply the population of different
conformational sub-states resulting in more heterogeneous
ensembles (Austin et al., 1973; Frauenfelder et al., 2001;
Gianni et al., 2021). This leads to the emergence of a
structural multiplicity which may be manifested in different
ways such as (i) different alternative secondary structures; (ii)
conformations of flexible linkers, dictating tertiary long distance
interactions; or (iii) highly heterogeneous disordered domains
populating different interconvertible conformations (Figure 3).
Proteins possessing such very broad structural ensembles are
often denoted as “intrinsically disordered proteins” (IDP). In this
case, the native state is in fact a conformational ensemble of
rapidly interconverting states, displaying very different properties
compared to the relative order of a canonical globular protein.

The discovery that a considerable fraction of the human
proteome contains a significant quota of dynamic disorder has
substantially changed the outlook on our understanding of the
linkage between the structure and function (Dunker et al., 2008;
Uversky and Dunker 2010; Tantos et al., 2012; Uversky 2018). In
fact, since IDPs are abundant and often very important in cell
metabolism, a recurrent question in molecular bioscience is whether
there is a hitherto overlooked potential value of protein disorder.
More than one hypothesis has been put forward to unveil the

FIGURE 3 | Protein structure and disorder. (A) As discussed in the text,
the concept of a native state has been recently enriched by the identification of
a disorder that characterizes several proteins. To exemplify this concept, we
report three different cases characterized by a remarkable difference in
the protein disorder. The pbd codes of the different cases are 1ay7, 2ly4, and
2fft (from left to right). (B) 3D structure of Gα88, Gβ88, and the variant E19Q of
Gβ88 as predicted by the AlphaFold algorithm. Structures were obtained at
the web server reported in Mirdinta et al. (2021).
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significance of disorder. From a thermodynamic viewpoint, it has
been suggested that the destabilization of a structured native state
may result in reduction of affinity for the physiological ligand,
without necessarily jeopardizing specificity (Spolar and Record
1994; Uversky 2018). The latter model represents to date one of
the most controversial aspects (Gianni and Jemth 2019). From a
kinetic viewpoint, it has been suggested that the IDPs populate an
increased capture radius to recognize a partner (Shoemaker et al.,
2000). In fact, a disordered protein could form with a physiological
partner an extended high-energy complex that would be locked in
place by the induced folding reaction. Importantly, it should be
stressed that not all IDPs necessarily fold upon binding to their
physiological partners, and a broad spectrum of disorders may still
be found in bound complexes. Moreover, the presence of disordered
stretches connecting folded domains might be crucial in regulating
their transient interaction, thereby providing an allosteric platform
to regulate function. Finally, more recently, IDPs have been
associated with their capability to assemble in cell membrane-less
organelles, thereby contributing to compartmentalization of the
cellular environment.

Predicting the Atomic Structure of the
Native State
The general concept that emerged from Anfinsen’s experiment is
that the amino acid sequence of a protein contains in itself all the
information necessary to fold to the native state, in water. Thus, it
was clear that the 3D structure of a protein could, in principle, be
calculated from the amino acid sequence, provided the code
relevant to morphogenesis was cracked. Over the last 50 years,
many smart scientists have engaged in attempts to solve this
terribly difficult problem, with fantastic but not definitive
solutions. To evaluate progress and praise the best models for
predicting the protein structure, an international competition
called Critical Assessment of Protein Structure Prediction
(CASP) has been organized every 2 years since 1994 by Moult
et al. (1995). Our friend and colleague, the late Anna
Tramontano, Professor of Biochemistry in Rome, represented
a critical personality engaged in running several CASP meetings
until 2016, when she sadly passed away.

In 2020, at the 14th CASP event, it was recognized that a
Google algorithm called AlphaFold based on artificial intelligence
allowed to calculate the 3D structure of a globular protein in water
to an unprecedented accuracy that rivaled the best experimental
structures (Kryshtafovych et al., 2021). The success achieved by
AlphaFold seems to result from the remarkable improvements of
the artificial intelligence methodologies in general and their
applications to biological systems (Thorn 2022). At the same
CASP meeting, David Baker reported exciting results comparable
to AlphaFold obtained with an extension of his algorithm called
the Rosetta fold (Humphreys et al., 2021). Remarkably, these
innovative techniques appear to return in few minute predictions
whose reliability is comparable to the experimental uncertainties
arising in crystallographic experiments.

As an example for the predicting power of AlphaFold, we ran a
structural prediction on two particularly difficult proteins, named
Gα88 and Gβ88, sharing an 88% sequence identity but displaying

completely different 3D structures (Alexander et al., 2007).
Because of the exceptionally high-sequence identity of these
two structurally different proteins, running this test would
appear particularly challenging for the algorithm. Remarkably,
AlphaFold correctly predicted the two alternative structures (as
shown in Figure 3) despite the fact that the two proteins differed
by only 7 out of 56 amino acid residues. In the course of our study,
we designed a single-point mutation of Gβ88, where Glu19 was
mutated to Gln, and observed by CD spectroscopy an increase in
the propensity of Gβ88 to partially populate a helical fold (Gianni
et al., 2018). To our delight, subjecting the mutated sequence to
AlphaFold, the program correctly predicted such a structural
heterogeneity returning different models, which include among
others a conformation that appears hybrid between Gα88 and
Gβ88 (Figure 3B). The extraordinary performance of AlphaFold
will be extremely valuable to investigate the role of IDPs,
considering that the program is exceptionally user-friendly and
freely available to the scientific community (Mirdinta et al., 2021).

CONCLUDING REMARKS

Since the pioneering work of Anfinsen and his co-workers (1961),
our understanding of the native state of a protein has been
enormously enriched. In fact, the initial assumption that
protein function is fully compatible with the structural
architecture of a relatively static macromolecule has been
challenged long ago by introducing a more complex picture,
taking into account both the dynamics of the polypeptide and its
tendency to aggregate. Importantly, the large repertoire of folds of
native globular proteins, each dictated by a genetically
determined sequence, underlies the Darwinian selection
process driven by functional evolutionary pressure; a
mechanism that notably has not emerged for the amyloid fold
as far as we know. In this context, it is accepted that dynamics,
frustration, and local instability are often crucial components of
protein function, at variance with the monotonous structure, the
minimal frustration, and the pronounced stability of an amyloid.
Since the latter state is generally very stable and resistant to heat
or proteolytic attack, it may be said that a protein molecule
captured into an amyloid is immortalized, this state being
incompatible with the life of the cell. To close, it may be
appropriate to quote the French poet Paul Claudel: “L’ordre
est le plaisir de la raison; mais le désordre est le délice de
l’imagination.”
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