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Intrinsically disordered proteins play key roles in regulatory protein interactions, but their
detailed structural characterization remains challenging. Here we calculate and compare
conformational ensembles for the disordered protein Sic1 from yeast, starting from initial
ensembles that were generated either by statistical sampling of the conformational
landscape, or by molecular dynamics simulations. Two popular, yet contrasting
optimization methods were used, ENSEMBLE and Bayesian Maximum Entropy, to
achieve agreement with experimental data from nuclear magnetic resonance, small-
angle X-ray scattering and single-molecule Förster resonance energy transfer. The
comparative analysis of the optimized ensembles, including secondary structure
propensity, inter-residue contact maps, and the distributions of hydrogen bond and pi
interactions, revealed the importance of the physics-based generation of initial ensembles.
The analysis also provides insights into designing new experiments that report on the least
restrained features among the optimized ensembles. Overall, differences between
ensembles optimized from different priors were greater than when using the same
prior with different optimization methods. Generating increasingly accurate, reliable and
experimentally validated ensembles for disordered proteins is an important step towards a
mechanistic understanding of their biological function and involvement in various diseases.
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1 INTRODUCTION

Important biological functions performed by intrinsically disordered proteins (IDPs), such as cell
signaling and regulation (Dyson and Wright, 2005; Forman-Kay and Mittag, 2013; Oldfield and
Dunker, 2014), are mediated by their interesting and nonrandom structural properties. Conversely,
their dysfunction or pathological aggregation is accompanied or preceded by aberrations in these
structural properties (Uversky, 2015). Describing the molecular features of IDPs at atomistic
resolution would therefore provide valuable mechanistic insight into how IDPs (mal) function.
Molecular dynamics (MD) simulations have recently attempted to fill this gap, including
development of new force fields to accurately model disordered proteins (Best et al., 2014;
Rauscher et al., 2015). However, a unique parametrization of force fields suitable for modelling
IDPs is yet to emerge, and atomistic-level simulations over biologically relevant timescales remain
computationally expensive. Alternatively, disordered proteins can be represented by a
conformational ensemble, which is a finite set of 3D structures with corresponding statistical
weights. These ensembles are commonly determined by reweighting or selecting a subset from an
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initial pool of conformations according to a protocol which
optimizes agreement with various experimental data, while
considering experimental uncertainties and avoiding overfitting
(Krzeminski et al., 2013; Jensen et al., 2014; Leung et al., 2016;
Bonomi et al., 2017; Köfinger et al., 2019; Bottaro et al., 2020;
Lincoff et al., 2020; Orioli et al., 2020; Lazar et al., 2021).

Recent and rapid progress in the field of protein disorder
necessitates a re-examination of the ensemble determination
process. Mutual consistency and complementarity have been
demonstrated for the three most commonly used structural
techniques for IDPs: Small Angle X-Ray Scattering (SAXS),
Nuclear Magnetic Resonance (NMR) and single-molecule
Förster Resonance Energy Transfer (smFRET) (Delaforge
et al., 2015; Aznauryan et al., 2016; Voithenberg et al., 2016;
Fuertes et al., 2017; Gomes et al., 2020; Lincoff et al., 2020; Naudi-
Fabra et al., 2021). Technological advances and efforts to
standardize data collection and reporting have also been made
for SAXS (Martin et al., 2020), smFRET (Hellenkamp et al., 2018;
Lerner et al., 2021) and NMR (Dyson andWright, 2019; Alderson
and Kay, 2021; Dyson and Wright, 2021). Improvements in the
accuracy of MD force fields, which correct earlier bias toward
overly compact IDP conformations (Best et al., 2014; Rauscher
et al., 2015; Huang et al., 2017; Robustelli et al., 2018), have
advanced their use for generating initial pools of conformers.
Protocols for calculating ensembles (Leung et al., 2016; Köfinger
et al., 2019; Bottaro et al., 2020; Lincoff et al., 2020) and for
predicting experimental data from structures (Kalinin et al., 2012;
Henriques et al., 2018; Crehuet et al., 2019; Dimura et al., 2020;
Pesce and Lindorff-Larsen, 2021; Tesei et al., 2021) continue to be
developed and refined. As a result of all these developments, the
repository of IDP ensembles validated by agreement with
experimental data, the Protein Ensemble Database, has
recently undergone a major update (PED 4.0) (Lazar et al., 2021).

The high conformational entropy and extreme conformational
dynamics of IDPs, however, remain the major challenges to this
overall project. Experimental data provide time- and ensemble-
averaged structural information which is affected by random and
possibly systematic errors. As such, the number of degrees of
freedom necessary to specify an ensemble of atomic resolution
structures is inherently much larger than the number of
experimentally determined structural restraints. Ensemble
calculation is therefore a mathematically “ill-posed” or
“underdetermined” problem that always has more than one
solution (Marsh and Forman-Kay, 2012; Bonomi et al., 2017;
Bottaro et al., 2020; Lazar et al., 2021).

Differences in how ensembles are determined, such as how an
initial ensemble is generated and which ensemble optimization
algorithm is used, lead to further proliferation in the number of
possible solutions for the same experimental dataset. Trivially, these
ensembles are distinct as they are composed of different protein
conformations. However, whether these differences are significant or
not remains unclear, and it will require a quantitative comparison of
their impact on inferences about sequence-structure or structure-
function relationships. Understanding this variability in calculated
ensembles for the same system is particularly important given the
renewed efforts of PED 4.0 to curate high quality ensemble structural
data (Lazar et al., 2021).

To probe the intrinsic variability of this under-determined
process and evaluate its effect on sequence-structure-function
relationships, we examined ensembles generated from different
conformational priors and using different modelling
methodologies. Broadly, prior ensembles can be generated
using either: 1) MD simulations, which use physics-based
force fields to generate Boltzmann-weighted ensembles; or 2)
statistical coil approaches, which use extensive (un) biased
sampling of the complete conformational phase space. Here,
we selected two MD priors, Amber ff03ws (Best et al., 2014)
(a03ws) and Amber 99SBdisp (Robustelli et al., 2018)
(a99SBdisp), and a statistical coil prior generated by TraDES
(Feldman and Hogue, 2002), TraDES-SC.

A03ws is a force field in which the protein-water interactions
in the a03w protein forcefield were rescaled by a constant factor to
produce more realistic dimensions of denatured and intrinsically
disordered proteins (Best et al., 2014). A99SBdisp is a recently
developed force-field intended to provide accurate descriptions of
both folded and disordered proteins (Robustelli et al., 2018). In a
recent benchmarking study, a03ws was shown to produce global
dimensions agreeing with experiment, but at the expense of
residual secondary structure propensity of IDPs or stability of
folded proteins (Robustelli et al., 2018). In the same study,
a99SBdisp accurately described both ordered and disordered
states, including global dimensions of many IDPs. However,
for larger IDPs with more hydrophobic sequences (α
-synuclein, NTAIL, Sic1), a99SBdisp showed a bias toward
overly compact global dimensions. In contrast, TraDES
generates all-atom conformations in which the only physics-
based interactions are excluded-volume (Feldman and Hogue,
2002).

We have selected two popular, but contrasting modeling
methodologies: the Bayesian Maximum Entropy (BME)
(Bottaro et al., 2020) approach and ENSEMBLE (Krzeminski
et al., 2013). Although there are many specific differences between
these methodologies, the major distinction is in the treatment of
the prior ensemble and of experimental and prediction errors.
The BME approach produces the minimum perturbation to the
prior ensemble (i.e., maximum relative Shannon entropy with
respect to the prior) such that it fits the experimental data, with
experimental and prediction errors accounted for in a Bayesian
framework. The ENSEMBLE approach, in contrast, places no
restriction on the deviation from the prior ensemble while
minimizing pseudo-energy terms quantifying disagreement
with experimental data. These pseudo-energy terms are
typically harmonic potentials with preset scaling and target
energies.

We focus here on the N-terminal 90 residues of the full-length
disordered protein Sic1 (henceforth Sic1) which has been
extensively characterized by NMR, SAXS, and smFRET
experiments (Mittag et al., 2008; Mittag et al., 2010; Liu et al.,
2014; Gomes et al., 2020) and for which we have recently
determined ensembles using the ENSEMBLE method (Gomes
et al., 2020). In their benchmarking study and to test their recently
developed a99SBdisp forcefield, Robustelli et al. (2018) produced
long-timescale (30 μs) simulations of Sic1 using a03ws and
a99SBdisp. The authors have kindly provided these
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simulations to be used as prior ensembles in our calculations.
Importantly, Sic1 was in the test set and not in the training set for
developing a99SBdisp. The extensive experimental
characterization and molecular modelling of Sic1 make it an
ideal case for benchmarking both future force-field developments
and ensemble modelling.

2 METHODS

The SAXS and smFRET data from our group was recently
published (Gomes et al., 2020) and the NMR data was
published elsewhere (Mittag et al., 2008; Mittag et al., 2010).
The unoptimized MD ensembles (a03ws and a99SBdisp) were
generated by resampling the original simulations (Robustelli
et al., 2018) with a stride of 40 frames, resulting in Δt � 7.2
ns between consecutive frames. For BME, forward calculation of
the SAXS data was performed using Pepsi-SAXS (Grudinin et al.,
2017) (see SI Section 2); chemical shift data were calculated using
ShiftX; smFRET data were calculated as described previously
(Gomes et al., 2020). To accommodate smFRETmeasurements in
BME, the J-Coupling module of BME was used, since both
calculations involve a weighted linear average. For
ENSEMBLE, calculations were performed as described
previously (Gomes et al., 2020), using either the default
conformer generation (TraDES-SC) or the resampled MD
simulations (a03ws and a99SBdisp) as initial pools.

PRE intensity ratios were calculated using DEER-PREdict
(Tesei et al., 2021) v0.1.8 with an effective correlation time of the
spin label of τC � 2 ns, total correlation time τt � 0.5 ns, total
INEPT time td � 10 ms, reduced transverse relaxation rate
R2 � 10 Hz, and proton Larmor frequency ωH/2π � 500 MHz.
The root-mean-squared error between the calculated and
experimental intensity ratios was calculated for each label
location (−1, 21, 38, 64, 83, and 90) and the final PRE score
is the root-mean-squared average of the six RMSDs (PRE Score,
Tables 1 and 2 and Figure 1).

Analysis of optimized and unoptimized ensembles (radius of
gyration, scaling maps, DSSP, H-Bonds) were performed using
MDTraj (McGibbon et al., 2015) v1.9.5. Pi-contact analysis was
performed using scripts provided by Vernon et al. (Vernon et al.,
2018) Uncertainties in the secondary structure propensities, and
in the average number of each type of pi-contact were determined
using bootstrapping; i.e., the calculations were performed on N
conformations randomly sampled (with replacement) from the
initial ensemble, with either uniform weights (w0

i � 1/N) for
calculations on the prior ensembles or the ENSEMBLE-
optimized ensembles, or with the BME determined weights wi

for the BME-optimized ensemble. The uncertainties were
calculated as the standard deviation of the parameter of
interest for 1000 bootstrapped ensembles.

3 RESULTS AND DISCUSSION

3.1 Ensemble Calculation
3.1.1 Bayesian Maximum Entropy Method
The BME method is equivalent to minimizing the function
L(w1 . . .wN) � 1

2χ
2
TOTAL(w1 . . .wN) − θSREL(w1 . . .wN) where

the wi are the optimized weights for each conformer in the
ensemble. Here, χ2TOTAL quantifies the total agreement with all
experimental data points and SREL � −∑wi ln(wi

w0
i
) is the relative

entropy which quantifies the deviation from the initial weights,
w0

i , in our case all equal to 1
N. The hyperparameter θ balances the

confidence in the prior with respect to that of the experimental
data and it is determined by tuning (discussed below), given that
the combined uncertainty in the experimental data, the calculated
data, and the prior ensemble is not known accurately. For more
details on the theory behind BME, the reader is referred to the
original author’s publications (Bottaro et al., 2020; Orioli et al.,
2020) and equivalent or similar approaches (Leung et al., 2016;
Köfinger et al., 2019).

In this work, we use SAXS, chemical shifts (CS) and smFRET
data (between residues −1 and 90C, probing approximately the

TABLE 1 | Optimization parameters of BME-calculated Sic1 ensemblesa.

χ2TOTAL χ2SAXS χ2FRET χ2CS PRE score Neff θ Ω

a03ws 1.00 (0.97–1.07 0.998 (0.97–1.04) 0.07 (0.02–0.22) 0.99 (0.96–1.00) 0.313 (0.314–0.313) 0.73 (0.69–0.78) 150 (75–300) 75
a99SBdisp 1.40 (1.3–1.5) 1.96 (1.7–2.2) 0.04 (0.01–0.10) 0.635 (0.63–0.64) 0.276 (0.299–0.264) 0.74 (0.65–0.80) 300 (150–500) 75
TraDES-SC 1.46 (1.3–1.6) 1.89 (1.7–2.1) 0.09 (0.03–0.21) 0.85 (0.81–0.87) 0.273 (0.29–0.26) 0.77 (0.66–0.83) 300 (150–500) 75

aThe values between brackets correspond to lower and upper limits of shaded regions in Figure 1. χ2TOTAL is calculated as χ2TOTAL � χ2SAXS + χ2CS +Ωχ2FRET at the chosen value of θ indicated
in the table and with the determined optimal Ω � 75. The PRE score is a RMSD, calculated using DEER-PREdict.

TABLE 2 | Optimization parameters of ENSEMBLE-calculated Sic1 ensemblesa.

ENSEMBLE energy χ2SAXS PRE score χ2CS z-test FRET Number of trials

a03ws 335 ± 17 0.985 0.285 0.782 0.73 327 ± 102
a99SB-disp 302 ± 6 0.976 0.264 0.478 0.67 452 ± 261
TraDES-SC 272 ± 15 0.986 0.201 0.324 1.03 141 ± 33

azE � |Eens − Eexp|/σ. Uncertainty in ENSEMBLE energy and Number of trials is calculated as the standard deviation of the five independent ENSEMBLE optimizations. χ2SAXS, PRE score
and χ2CS are calculated for the composite 500 conformer optimized ensemble. PRE scores for the final ensembles are calculated using DEER-PREdict to calculate an RMSD, as for the BME
validation scores; however, during optimization the ENSEMBLE’s native PRE module was used.
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end-to-end distance) as restraints, and so χ2TOTAL is the sum of the
individual non-reduced χ2 s. In principle, the relative weights of
each experiment could be determined accurately if the following
could be determined accurately: 1) the degrees of freedom for
each experiment; 2) the statistical and systematic experimental
uncertainties; and 3) the statistical and systematic uncertainties in
the “forward calculation” (calculation of experimental
observables from structures). In this case, χ2TOTAL would
simply be the sum of each experiment’s individual non-
reduced χ2, i.e., χ2TOTAL � χ2SAXS + χ2CS + χ2FRET. However, in
practice (i)—(iii) are not possible to determine accurately, as
discussed below. In the absence of a corrective, datatypes with
many datapoints (i.e., SAXS and CSs) would overwhelm those
with one or a few observations (i.e., smFRET). To compensate for
the undue influence of SAXS and CS relative to FRET on the
χ2TOTAL we introduced and determined a weighting factor Ω such
that χ2TOTAL � χ2SAXS + χ2CS +Ωχ2FRET (SI Section 1,
Supplementary Figures S1, S2). Briefly, increasing Ω from Ω �
1 to Ω ≈ 75 improves the fit to the smFRET data and a set of
independent validation data (see below), without worsening the
SAXS fit, and with only marginally more reweighting.

Figures 1A–C shows how θ was determined for the three prior
ensembles: a03ws, a99SBdisp, and TraDES-SC, respectively.
Lower values of θ result in greater agreement with experiment
(lower χ2TOTAL) but with greater deviation from the prior
ensemble, which is quantified by a lower effective number of
conformations used in the posterior ensemble,Neff � exp(SREL)
(Bottaro et al., 2020; Orioli et al., 2020). Although better
agreement with experiments could be achieved by letting
θ → 0, within the BME framework this would 1) ignore
uncertainties in the experimental and calculated values and 2)
disregard information about molecular interactions encoded in
the priors, e.g., the physics of the force fields in the MD priors.
Enforcing too tight an agreement with the set of restraining data
can also lead to overfitting. To verify if overfitting occurs and find
the optimal value of θ, we assessed the agreement of the
ensembles with six PRE experiments (ca. 400 data points),
which were not used as input for reweighting. As such, we

scanned through different values of θ and simultaneously
monitored Neff, χ2TOTAL and the PRE score calculated using
DEER-PREdict (Tesei et al., 2021).

For all three priors, there is an initial region in which lower
values of θ substantially decrease χ2TOTAL with only small
decreases in Neff, followed by a region in which small
decreases in χ2TOTAL are accompanied by substantial decreases
inNeff. We therefore use L-curve analysis (Hansen and O’Leary,
1993; Orioli et al., 2020) to identify a useful region of θ
corresponding to the “elbow” regions in the Neff vs. χ2TOTAL
plots. For a03ws, the agreement with PRE data initially improves
(possibly because of distances shared by the smFRET restraint
and PRE validation), then it worsens as θ is set beyond the elbow
region. In contrast, for a99SBdisp and TraDES-SC priors,
agreement with the PRE validation data monotonically
worsens as θ decreases. We hypothesize that this is a
consequence of enforcing the SAXS restraint on relatively
compact prior ensembles, as discussed below.

Due to the r−6 averaging of nuclear-electron distances in PRE
measurements, the ensemble averages are dominated by
contributions from compact conformers (Ganguly and Chen,
2009). As such, the presence of few compact conformers can
satisfy the PRE data (Ganguly and Chen, 2009), and decreasing
the weight of these conformers to satisfy the SAXS restraint
worsens agreement with the PRE validation. In contrast to a03ws,
which is already in good agreement with the SAXS data before re-
weighting, a99SBdisp and TraDES-SC are more compact, with
fewer conformations that are expanded above the experimental
radius of gyration, REXP

g (SI, Supplementary Figure S4). As a
result, deriving ensembles for a99SBdisp and TraDES-SC that
agree with the SAXS data involve significant re-weighting of the
prior ensembles by reducing the weight of compact
conformations and increasing the weight of expanded
conformations.

For further analysis, we selected θ resulting in the minimum of
the PRE validation score for a03ws, and θ corresponding to the
“elbow” region of the χ2TOTAL vs. Neff plots for a99SBdisp and
TraDES-SC (Figure 1). Table 1 shows the reduced χ2TOTAL, the

FIGURE 1 | Optimization of Sic1 conformational ensembles using BME and different initial pools: a03ws (A) and a99SBdisp (B), and TraDES-SC (C). For each
value of θ (top x-axis), agreement with the restraining data (SAXS, CS and smFRET) is measured by χ2total (black). Agreement of the posterior ensemble with PRE data
(PRE Score, red) serves as validation. For a03ws (A), θ was chosen to minimize disagreement with the validation data; for a99SBdisp (B) and TraDES-SC (C), θ was
chosen at the “elbow” in the χ2total identified by L-curve analysis. In each case, a range of acceptable θ was evaluated near the optimal values (grey shaded region,
Table 1).
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individual restraining data reduced χ2 s, the PRE validation score,
and the Neff for each prior at their corresponding optimal θ
values. Although re-weighting improved the agreement of
a99SBdisp and TraDES-SC ensembles with the SAXS data, it is
not possible to improve it further without substantially deviating
from the prior ensemble (very low Neff) and incurring
overfitting (e.g., poor PRE validation performance). All three
posterior ensembles agree well with the smFRET data; for a03ws,
this is a result of re-weighting, while prior a99SBdisp and
TraDES-SC ensembles were already in reasonably good
agreement. However, the end-to-end distance measured by
smFRET has a high restraining strength, as in its absence the
global expansion dictated by the SAXS data would lead to
anomalously expanded ensembles for a99SBdisp and TraDES-
SC (Fuertes et al., 2017; Gomes et al., 2020).

3.1.2 ENSEMBLE Method
The ENSEMBLE method (Krzeminski et al., 2013) minimizes a
total pseudo-energy, which is the weighted sum of each individual
experiment’s pseudo-energy, wherein lower energies correspond
to better agreement with experimental restraints. To perform this
minimization, ENSEMBLE employs a switching Monte-Carlo
algorithm within a simulated annealing protocol to select
subsets of conformers from the initial ensemble. The
optimization terminates when all experimental restraints are
below their respective target energies that are set by default in
ENSEMBLE (Krzeminski et al., 2013). The relative weights of
different experiments are adjusted during optimization, with
increased weight given to experiments that are above their
target energies. We perform five independent ENSEMBLE
calculations with 100 conformations and combine the results
to form ensembles with 500 conformations, based on previous
calculations (Marsh and Forman-Kay, 2012; Gomes et al., 2020).
This ensemble size balances between the concerns of overfitting
and underfitting and ideally, structural features resulting from
overfitting should be averaged out in independent calculations.
When applying ENSEMBLE to Sic1, we used SAXS, CS, and PRE
data as experimental restraints, and reserved the smFRET data as

a validation. Allocating the experimental data into restraints and
validation identically for both optimization methods is not
currently possible since ENSEMBLE and BME accommodate
different experimental data types.

Figure 2 shows typical ENSEMBLE pseudo-energy
minimizations for all three priors as a function of the number
of Monte-Carlo trials. Note that because the ENSEMBLE
optimization is stochastic, no two trajectories will be identical.
Each pseudo-energy is normalized by its ENSEMBLE-defined
target energy, such that a value less than one is considered “fit” by
the program (gray shaded region). The smFRET validation is
shown as a solid blue line with the right-hand axis, with the blue-
shaded region corresponding to the experimental FRET efficiency
Eexp and its uncertainty. Ensembles with a FRET value within the
blue region are within one σ of the experimental value.

For a03ws (Figure 2A), energy minimization is largely focused
on improving the agreement with the PRE data, whereas the trial
ensembles agree with the CS and SAXS data either initially or
after relatively few trials. For a99SBdisp (Figure 2B), the initial
disagreement with the PRE data is less than for a03ws, though the
initial disagreement with the SAXS data is greater. However, in
relatively few trials the SAXS data is fit, and further energy
minimization is focused on the PRE data. In contrast to a03ws
and a99SBdisp, which are new MD force fields designed to
accurately describe IDPs, TraDES-SC (Figure 2C) only
accounts for excluded volume and random propensities for
varying secondary structure (hence, statistical coil).
Unsurprisingly, the TraDES-SC ensemble initially disagrees
with most of the experimental data. Optimization first reduces
the SAXS restraint below its target energy, before finally fitting the
PRE data.

For all ENSEMBLE calculations, the PRE restraint was the last
to be fit below its target energy, while the CS data was fit either
initially or within the first few trials. This suggests that CSs are a
comparatively easy experimental restraint to meet, perhaps
because of the comparatively large CS calculator uncertainties.
Consequently, the secondary structure propensities of the
optimized ensembles will be largely dictated by the

FIGURE 2 | Optimization of Sic1 conformational ensembles using ENSEMBLE and different initial pools: a03ws (A) and a99SBdisp (B), and TraDES-SC (C).
Individual restraint pseudo-energies are normalized by their ENSEMBLE-defined target energy, such that a value less than one is considered “satisfied” (gray shaded
region). Shown here are typical trajectories from the ENSEMBLE optimization of each prior (a03ws, a99SBdisp, TraDES-SC) using the following restraints: SAXS (red),
chemical shifts (alpha—green, beta—magenta), and PRE (yellow). smFRET (blue) is used as an external validation, with the blue-shaded region showing the
measured efficiency, Eexp, and its uncertainty.
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propensities of the prior ensembles (see below). As shown in
Figure 2, trial ensembles which fit the SAXS data but not the PRE
data have overly expanded end-to-end distances resulting in
E<Eexp. Jointly fitting the SAXS and PRE data places strong
restraints on the end-to-end distance distribution, and
consequently on E. This reinforces the conclusions drawn by
Gomes et al., which were made using only the TraDES-SC prior
ensemble, and emphasizes the inability of SAXS to determine
specific inter-residue distances, except in the case of ideal polymer
models (Gomes et al., 2020).

Table 2 shows the mean and standard deviation of the non-
normalized ENSEMBLE total energy upon termination for the
five independent trials. Although ENSEMBLE minimizes an
ENSEMBLE-defined energy term for each experimental data
type, Table 2 shows the reduced χ2 for SAXS and CS data (Cα
and Cβ combined) to facilitate comparison of the fits with those
done by BME. ENSEMBLE optimization considers PRE restraints
as 〈r−6〉−1

6 distance restraints and approximates the electron
location of the paramagnetic probe to the position of the Cβ
atom of the spin-labelled residue (Krzeminski et al., 2013). In
Table 2, the PRE score is the RMSD between the calculated and
experimental PRE intensity ratios using the more accurate
rotamer library approach, DEER-PREdict (Tesei et al., 2021),
which was also used to calculate BME validation scores (see
above). Additionally, the agreement with the smFRET validation
data is reported using a z-test.

Interestingly, the ENSEMBLE-optimized TraDES-SC
ensemble is in better agreement with the PRE and CS data
than the ENSEMBLE-optimized a03ws and a99SBdisp
ensembles. This may be due to the much larger
conformational diversity in the TraDES-SC initial pool. When
optimizing for a03ws and a99SBdisp, no new conformations are
generated, and ENSEMBLE must select from the fixed initial pool
of MD-generated conformers. For TraDES-SC, we used
ENSEMBLE’s built-in conformer generation and management
(Krzeminski et al., 2013), in which new conformations are
regularly replenished using TraDES. The conformer
management algorithm favors conformers that have been
selected fewer times in Monte-Carlo trials. Moreover,
conformations in the MD prior ensembles will naturally have
some degree of structural correlation as they are generated by the
system’s time-evolution. The increased sampling of
conformational space for the ENSEMBLE optimized TraDES-
SC ensemble might explain the more rapid approach to the final
solution (fewer trials, see Table 2), and the lower PRE score and
χ2CS when compared to the optimization using MD priors.

3.2 Analysis of Optimized Ensembles
3.2.1 Secondary Structure Propensity
Secondary structures of proteins are defined by specific patterns
of hydrogen bonds, dihedral angles and other geometrical
restraints. Based on the continuously expanding library of 3D
structures in the Protein Data Bank (PDB, www.rcsb.org), various
algorithms were developed to classify and predict secondary
structure motifs in proteins (Reeb and Rost, 2019). Define
Secondary Structure of Proteins (DSSP) annotates secondary
structure elements to one of eight possible states and groups

them into three classes: helical (α-, 310-, and π-helices), strand/
extended (β-bridges and β-bulges) and loop/coil (turn, bend and
other) (Kabsch and Sander, 1983; Touw et al., 2015). Figure 3
shows the DSSP distributions of the three classes of secondary
structure (helical, extended and coil) for 6 optimized Sic1
ensembles (2 methods and 3 priors).

The TraDES-SC ensembles stand out as almost exclusively
consisting of coil structures (>90% for BME, >95% for
ENSEMBLE), with essentially null fraction of extended
elements, and at most 10% of helical fraction quasi-uniformly
distributed throughout the sequence (Figures 3C,F). At the other
end of the spectrum, the a03ws ensembles exhibit much larger
helical propensities at the expense of the coil fraction. There are
six 5–10 residue helical patches distributed throughout the
sequence around serine residues, with propensities ranging
from ~0.2 near the C-terminus (S87) to ~0.5 around S26
(Figures 3A,D). The ENSEMBLE optimization allows the
experimental restraints to act on the prior more aggressively,
leading to a reduction of the helical propensities by ~0.05 for each
patch, although the sequence distribution is preserved. While the
extended structure propensities are higher than when using the
TraDES-SC prior, they do not exceed 0.05 and appear as short
patches interleaved with the larger helical patches.

The ensembles calculated from the a99SBdisp prior reveal an
intermediate picture between the two other cases (Figure 3B,E).
The 6 helical patches present in the a03ws ensembles are still
present here, albeit at a reduced propensity (~0.1–~0.25), with the
BME method again exhibiting slightly larger values. Notably, a
higher beta/extended propensity is observed at various points
throughout the sequence, with the BME ensemble showing more
of them and with larger values (~0.2) than the one obtained by
ENSEMBLE (~0.1).

To a large extent, the differences in the DSSP maps reflect
inherent differences in the structural ensembles used as priors.
The impact of the optimization method on secondary is limited,
with BME (by design) effecting a smaller bias of the prior than
ENSEMBLE. TraDES-SC, which we used in a recent study of Sic1
(Gomes et al., 2020), is the least sophisticated prior of the three
studied here, as it includes only excluded-volume interactions
between chain residues. It is not surprising that imposing
averaged size and chemical shift restraints on this ensemble
cannot create “de novo” secondary structure. The chance of
bringing patches of residues within hydrogen bond contact
with peptide backbone forming specific dihedral angles is
infinitesimally small, especially given the level of imprecision
in the back calculators and the error margins of the experimental
values.

Robustelli et al. (2018) benchmarked several MD force fields to
describe the properties (size, secondary structure, etc.,) of both
folded and disordered proteins, including Sic1. Among those,
a03ws, which empirically optimized protein-water dispersion
interactions for disordered protein (Best et al., 2014),
reproduced REXP

g most accurately and exhibited relatively large
helical propensities. However, in addition to experimentally
observed helices, it also populated regions where helical
propensity were not observed experimentally. As such, it is
not surprising that the a03ws prior contains the highest
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fraction of helicity of all the priors used here. On the other hand,
a99SBdisp is a force field with modified Lennard-Jones
parameters (Nerenberg et al., 2012) and optimized torsion
angles and van der Waals parameters, which achieved best
scores in matching the experimental observables for both
folded and unfolded proteins in the benchmark set (Robustelli
et al., 2018). For disordered proteins (e.g., α-synuclein) a99SBdisp
shows less helical propensity than a03ws, a trend that is also
observed for Sic1. As mentioned above for TraDES, the impact of
experimental restraints on biasing the secondary structure in
ensemble calculations is minor (a slight decrease for a03ws and a
slight increase for a99SBdisp). The physics model of the prior,
i.e., the force field parametrization, is by far the most important
factor that drives formation of stable/transient secondary
structure motifs.

In the case of Sic1, it is worth comparing the DSSP maps of
the optimized ensembles with the SSP scores calculated using
chemical shift data (Mittag et al., 2010). Three of the six helical
patches observed in the DSSP maps are also present in the SSP
map (around res. #26, 50, and 65), however, in contrast to SSP,
regions of extended secondary structure were not significantly
populated by DSSP for any of the 6 cases examined. Notably,
each of the seven phosphorylation sites (indicated by vertical
grey bars in Figure 3) lies outside the helical patches, in the coil
regions of Sic1. This may ensure access of kinase enzymes to
these sites, and favor a binding model in which the multiple

CPD sites in Sic1 engage the single receptor site of Cdc4 in a
fast dynamic equilibrium. On the other hand, the
ubiquitination sites in Sic1 (Lys 32, 36, 50, 53, 84, and 88)
must bridge a 64 Å between the binding site on Cdc4 and a
catalytic cysteine residue on Cdc34 within the SCFCdc4

ubiquitin ligase dimer (Tang et al., 2007). These sites lie
predominantly in non-helical regions (all except 53 and 84),
which seems consistent with the prerequisite for Sic1 to
simultaneously be docked on Cdc4 and reach the
ubiquitination site on Cdc34.

3.2.2 Inter-residue Contact Maps
Inter-residue distance maps are two-dimensional representations
of IDP structural propensities. Here, for each pair of residues in
the Sic1 sequence, we calculated the average Cα—Cα distances in
the optimized ensembles and normalized them to the respective
distances in a random coil (RC) state (Figure 4). This type of
analysis identifies regional biases for expansion (red) or
compaction (blue). Alternatively, the inter-residue distances of
the optimized ensemble can be normalized by the prior ensemble
(see SI Supplementary Figure S5). Ensembles which agree well
with the SAXS data (Figure 4A,D-F) have inter-residue distances
rij that are overall more expanded than that of a RC, since
REXP
g >RRC

g and Rg �
���������
1
2n2 ∑n

ij〈r2ij〉
√

, where n is the number of
residues. Conversely, the BME-optimized a99SBdisp and
TraDES-SC ensembles (Figure 4B,C) are overall more

FIGURE 3 | Secondary structure propensity (SSP) of optimal Sic1 ensembles using the DSSP algorithm (Kabsch and Sander, 1983; McGibbon et al., 2015). The
ensembles were calculated using BME (A–C) or ENSEMBLE (D–F), and different initial ensembles: a03ws (A,D) a99SBdisp (B,E), and TraDES-SC (C,F). For each
ensemble, secondary structure elements shown are coil (blue), helix (orange), and beta/extended (green). Error bars were calculated using bootstrapping.
Phosphorylation sites (S and T residues) are shown in the Sic 1 sequence at the top of each panel in red, and as grey vertical lines in each panel.
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compact. Compact regions near the diagonal indicate a
propensity for secondary structure (see also Figure 3). Since
all ensembles agree with the FRET data between residues -1 and
90C, this region is similarly compact across all ensembles.

Notably, ENSEMBLE-optimization with different priors leads to
different patterns of intermediate- and long-range distances, despite
identical experimental restraints which included PREmeasurements
from six sites throughout the Sic1 sequence. This suggests, as Naudi-
Fabra et al. have recently demonstrated (Naudi-Fabra et al., 2021),
that multiple FRET and PRE measurements, which sufficiently
sample the linear sequence of the protein, are needed to
accurately reproduce intermediate- and long-range distances.
Incorporating additional FRET restraints is expected to make
ensembles optimized from different priors more similar in this
respect. Indeed, certain distances (e.g., approximately 1,40) appear
to be less restrained (vary more between optimized ensembles) than
other distances (e.g., approximately 40,70), suggesting these pairs for
future FRET labelling locations.

3.2.3 Molecular Interactions
Determining which specific molecular interactions determine the
observed structural properties of IDP ensembles is an important
goal. Knowledge of these interactions connect sequence
properties to structural properties, allow testable predictions
for the effects of mutations, and aid the rational design of

molecules that bind disordered protein sequences with high
affinity and specificity, stabilizing distinct IDP conformations
(Ambadipudi and Zweckstetter, 2016; Robustelli et al., 2021).
However, the experimental data, which are spatially and
temporally averaged and are affected by noise, are insufficient
to restrain distances and angles between groups of atoms, such
that specific molecular interactions in conformations could be
identified (e.g., hydrogen bond).

Including information from a force field which describes
bonded and nonbonded interactions between the atoms,
partially removes the degeneracy of the problem. The BME
approach, which produces the minimum perturbation to the
prior ensemble so that it fits the experimental data, is expected
to retain the maximum amount of this information possible.
Conversely, in the ENSEMBLE and similar approaches, which
do not explicitly consider deviation from the prior ensemble, it
is unclear in what capacity information about specific
molecular interactions is retained. We therefore sought to
compare the specific interactions in the resulting optimized
ensembles. It is important to note that in our use of
ENSEMBLE, PRE data was used as a restraint, whereas in
our use of BME, PRE data was used as validation. This is
expected to affect the inferred patterns of molecular
interactions, in addition to the differences between
optimization methods.

FIGURE 4 | Inter-residue scaling maps of optimized Sic1 ensembles relative to a reference random-coil Sic1 ensemble (TraDES-RC). The ensembles were
calculated using BME (A–C) or ENSEMBLE (D–F), and different initial ensembles: a03ws (A,D) a99SBdisp (B,E), and TraDES-SC (C,F). Ensemble-averaged distances
between the Cα atoms of every unique pair of residues are normalized by the respective distances in a random coil. Regions in red are expanded relative to a random coil,
while those in blue are more compact.
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Excluding hydrophobic contacts, which are relatively
non-specific, we hypothesized that the most likely
interactions were hydrogen bonds (Figure 5) and pi-
contacts (Figure 6). The Sic1 sequence has a high fraction
of polar and charged residues (~54%) that can participate in
hydrogen bonding. Sic1 also has a high fraction of residues
with sidechain pi bonds (~23%) and small residues with
relatively exposed backbone peptide bonds (~52%) (Vernon
et al., 2018). Prior to phosphorylation, Sic1 does not have
any negatively charged residues, thus excluding salt-bridges
and electrostatic attraction. To distinguish short-range/
secondary structure (Figure 3) from long-range tertiary
contacts, we examine only those interactions with a
sequence separation |i − j|> 10.

3.2.3.1 Hydrogen Bonds
Figure 5 shows the probability mass function (PMF) of the
number of hydrogen bonds (H-bonds) per conformer in the
prior (grey) and in the BME and ENSEMBLE optimized (blue)
ensembles. H-bond contacts were defined using the distance and
angle criteria established previously (Baker and Hubbard, 1984)
and implemented in MDTraj (McGibbon et al., 2015). Vertical
lines show the first moments of the corresponding PMFs. The
TraDES-SC prior, for which there is no force-field describing
non-bonded interactions, has very few H-bonds (i.e., average
number of H-bonds per conformer nH−bonds � 0.7),
corresponding to the small but finite probability of meeting
the H-bond criteria by chance. As such, both BME and
ENSEMBLE optimization have a very small effect on the
H-bond propensity (Figure 5E,F).

As expected, there are significantly more H-bond contacts in
the a03ws prior compared to the statistical noise in TraDES-SC

(Figure 5A,B). Optimization using either BME or ENSEMBLE
slightly increases the average number of H-bonds per
conformer. This is consistent with the slight decrease in Rg

and root-mean-squared end-to-end distance Ree, as the
individual conformer radii of gyration rg are inversely
correlated with the number of H-bonds/conformer (see SI
Supplementary Figure S6).

The a99SBdisp prior has an even higher average number of
H-bonds/conformer than the a03ws prior, and the PMF is
bimodal (Figure 5C,D). The differences in hydrogen bonding
between a03ws and a99SBdisp may reflect parameterization
choices in a99SBdisp to maintain accuracy for folded proteins
(Robustelli et al., 2018). Alternatively, this may reflect incomplete
sampling of extended structures, as simulations of Sic1 using
enhanced-sampling techniques and the a99SBdisp force field
produced Rg similar to that of a03ws and experiment
(Shrestha et al., 2021). Interestingly, while a03ws has higher
helical propensities than a99SBdisp and helical stability is
largely driven by hydrogen bonding, it shows lower propensity
for long-range H-bond interactions.

Whereas for a03ws both optimization methods result in
qualitatively similar H-Bond PMFs, for a99SBdisp they differ
considerably. Both optimizations reduce the average number
of H-bonds per conformer; however, ENSEMBLE
optimization removes the highly H-bonded subpopulation,
and the resulting PMF is monotonically decreasing and
similar to that of a03ws. Conversely, BME optimization
retains this minor subpopulation, and shifts the center of
the major subpopulation.

One reason for discrepant ENSEMBLE and BME H-bond
inferences is how they achieve agreement with the SAXS data.
The subpopulation of highly H-bonded conformations has a
very compact radius of gyration (~2 nm, see SI
Supplementary Figure S6) compared to the experimental
radius of gyration (~3 nm). ENSEMBLE optimization
prioritizes agreement with experimental data by eliminating
the compact and highly H-bonded subpopulation. BME
optimization seeks a balance between agreement with
experiments and deviation from the prior, retaining this
subpopulation at the expense of SAXS agreement, but
smaller deviation from the a99SBdisp prior.

Experimental data is known to make ensembles more similar
to one another (Tiberti et al., 2015; Larsen et al., 2020; Ahmed
et al., 2021). Our results show that ensembles that agree with
experimental data and were generated from anMD prior (a03ws-
BME, a03ws-ENSEMBLE, a99SBdisp-ENSEMBLE) have similar
H-bond PMFs. They are monotonically decreasing and have an
average number of H-bonds per conformer nH−bonds, between 3
and 4. However, our experimental data alone is insufficient to
define H-bonds, as shown by the ENSEMBLE posterior
ensembles (Figure 5B,D,F). Overall, this analysis suggests that
the specific tertiary contacts and the nature of their molecular
interactions in ensembles should be interpreted with caution. The
type and amount of experimental data used here is insufficient,
however incorporation of information about non-bonded
interactions from MD force fields removes at least some of
this degeneracy.

FIGURE 5 | Probability mass functions (PMFs) of hydrogen bonds per
conformer in prior (gray) and posterior (blue) Sic1 ensembles. The ensembles
were calculated using BME (A,C,E) or ENSEMBLE (B,D,F), and different
priors: a03ws (A,B) a99SBdisp (C,D), and TraDES-SC (E,F). Note that
the x-axis for the a99SBdisp prior is larger than that of the a03ws and TraDES-
SC priors.
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3.2.3.2 Pi Interactions
Although fixed charge atomistic MD force-fields do not
explicitly include polarization and quantum effects to
describe pi-interactions, they are valuable for understanding
the relative importance of pi-interactions vs. other modes of
interactions in stabilizing liquid-liquid phase separation in
IDPs (Murthy et al., 2019; Schuster et al., 2020; Zheng et al.,
2020). In folded protein structures, Vernon et al. (2018) found
that the frequency of planar pi contacts strongly correlates
with the quantity and quality of the experimental data and with
the quality of the fit of the structure to the data. This suggests
that current force fields may underestimate the relative
importance of pi-pi interactions, and thus they appear more
frequently when structures are more experimentally
constrained. We therefore sought to determine: 1) whether
the experimental data on Sic1 would refine the average number
of planar pi-pi contacts per conformer in the ensembles and 2)
whether BME and ENSEMBLE optimization would result in
different pi-pi contact frequencies.

Figure 6 shows the average number of planar pi-pi contacts
per conformer, npi−pi,, in the optimized ensembles and the
differences upon optimization. Pi contacts were defined using
the distance and angle criteria presented by Vernon et al. (2018)
and calculated using custom Python scripts provided by the
authors. These contacts are classified as interactions between
backbone amide groups (bb-bb), side chain amide, carboxyl,
guanidinium or aromatic groups (sc-sc), or between backbone
and side chain (bb-sc).

The TraDES-SC ensembles show the average number of each
type of pi-contacts formed by chance, since there is no force field
describing non-bonded interactions. Like for H-bonds,
optimization of prior TraDES ensembles using either BME or

ENSEMBLE did not change the frequency of pi contacts. A03ws
exhibits higher npi−pi than TraDES-SC, suggesting that this force-
field can somehow reproduce the pi-interaction geometries even
without explicitly including polarization and quantum effects.
Both BME and ENSEMBLE optimization did not significantly
alter npi−pi. Like for H-bonds, the correlation between
compactness, especially rg, with the number of contacts is the
major driver for changes in npi−pi, upon optimization. In contrast
to H-bonds, there are few conformations with more than one pi-
interaction, and so the effect of optimization is more attenuated.
Moreover, planar pi-pi interactions often involve groups with
H-bond donors and acceptors, presenting an additional degree of
degeneracy since the current experimental data do not directly
report on pi-interactions.

Like for H-bonds, a99SBdisp has a higher average number of all
types of pi-contacts than does a03ws and conformations with more
than one pi-interaction are more compact (e.g., rg <Rprior

g <REXP
g ).

Consequently, both optimization methods significantly reduce the
average number of pi-contacts. However, ENSEMBLE optimization,
which results in better fits to the SAXS data, reduces npi−pi more than
BME optimization, which balances agreement with the SAXS data
with deviation from the prior.

Intuitively, experimental data alone is insufficient tomeaningfully
describe pi-interactions in the absence of a force field (e.g., the
TraDES-SC optimized ensembles). When the prior is constructed
using a force field that describes the interaction geometries/strengths
and the optimized ensembles agree with experimental data (e.g.,
BME-a03ws, ENSEMBLE-a03ws, and ENSEMBLE-a99SBdisp) the
resulting ensembles have similar average numbers of pi-contacts (see
also Supplementary Figure S7). As previously mentioned,
experimental data makes the ensembles more similar, only when
there exist interactions which can be reweighted, and they are
correlated with experimental data.

CONCLUSION

Conformational ensembles for the disordered Sic1 protein were
obtained by using experimental data (SAXS, CS, PRE, and smFRET)
as restraints and validation on three prior ensembles that were
generated using either MD force fields or a statistical coil approach.
The ensembles were optimized for agreement with the experiment
using two contrasting modeling methodologies, BayesianMaximum
Entropy (Bottaro et al., 2020) (BME) and ENSEMBLE (Krzeminski
et al., 2013). We compared the six different outcomes by examining
global dimensions (e.g., Rg), secondary structure propensities, inter-
residue distances and specific non-local interactions, i.e., H-bonds
and pi-interactions. Overall, differences between ensembles
optimized using different priors were greater than when using
the same prior with different optimization methods. Differences
between methods were greatest when the priors were in poor
agreement with experimental data, as BME balances perturbation
of the prior ensemble with experimental agreement, whereas
ENSEMBLE only focuses on the latter.

An advantage of MD priors is that they contain explicit
information about specific molecular interactions (e.g., H-bonds
and pi-interactions) that can be modulated, though not uniquely

FIGURE 6 | Pi-interactions in optimized Sic1 ensembles. Average
number of pi-contacts per conformer using BME (A) and ENSEMBLE (B) and
different priors. Pi contacts are separated into sidechain—sidechain (sc-sc,
blue), back-bone—back-bone (bb-bb, orange) and
sidechain—backbone (sc-bb, green). The change in the average number of
pi-contacts per conformer induced by ensemble optimization via BME (C) and
ENSEMBLE (D). Error bars are estimated by bootstrapping.
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determined by experimental data. However, a disadvantage of MD
priors is that they, by design and/or due to computational limitations,
only sample a limited region of the entire conformational landscape.
If incorrectly biased (e.g., overly compact) this will result in more
significant reweighting and experimental data may be insufficient to
debias the ensemble. Future work would benefit from priors which
are in better agreement withmore than one type of experimental data
prior to optimization.

Noting that ensembles optimized from different priors
make different predictions regarding secondary structure,
intermediate- and long-range distances, it appears that
additional experimental data is needed, either as restraints
or post-hoc validation. For secondary structure, this could
include RDC data, which has been published for Sic1 but was
not used in this analysis (Mittag et al., 2008; Mittag et al.,
2010), and fluorescence anisotropy decay, which reports on
segmental dynamics of IDPs (Milles and Lemke, 2014). For
intermediate- and long-range contacts, the Cα—Cα distance
maps can be used to design maximally informative FRET label
locations. Lastly, development of more rigorous ensemble
optimization tools that integrate complementary biophysical
data on multiple scales will lead to more accurate descriptions
of conformational ensembles of IDPs and enable a mechanistic
understanding of their biological function in implication in
pathologies.
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