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Objective: Head and neck squamous cell carcinoma (HNSCC) is a common

heterogeneous cancer with complex carcinogenic factors. However, the

current TNM staging criteria to judge its severity to formulate treatment

plans and evaluate the prognosis are particularly weak. Therefore, a robust

diagnostic model capable of accurately diagnosing and predicting HNSCC

should be established.

Methods: Gene expression and clinical data were retrieved from The Cancer

Genome Atlas and Gene Expression Omnibus databases. Key prognostic genes

associated with HNSCC were screened with the weighted gene co-expression

network analysis and least absolute shrinkage and selection operator (LASSO)

Cox regression model analysis. We used the timeROC and survival R packages

to conduct time-dependent receiver operating characteristic curve analyses

and calculated the area under the curve at different time points of model

prediction. Patients in the training and validation groups were divided into high-

and low-risk subgroups, and Kaplan-Meier (K-M) survival curves were plotted

for all subgroups. Subsequently, LASSO and support vector machine algorithms

were used to screen genes to construct diagnostic model. Furthermore, we

used the Wilcoxon signed-rank test to compare the half-maximal inhibitory

concentrations of common chemotherapy drugs among patients in different

risk groups. Finally, the expression levels of eight genes were measured using

quantitative real-time polymerase chain reaction and immunohistochemistry.

Results: Ten genes (SSB, PFKP, NAT10, PCDH9, SHANK2, PAX8, CELSR3,

DCLRE1C, MAP2K7, and ODF4) with prognostic potential were identified, and

a risk score was derived accordingly. Patients were divided into high- and low-

risk groups based on the median risk score. The K-M survival curves confirmed

that patients with high scores had significantly worse overall survival. Receiver

operating characteristic curves proved that the prognostic signature had good

sensitivity and specificity for predicting the prognosis of patients with HNSCC.

Univariate and multivariate Cox regression analyses confirmed that the gene

signature was an independent prognostic risk factor for HNSCC. Diagnostic
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model was built by identifying eight genes (SSB, PFKP, NAT10, PCDH9, CELSR3,

DCLRE1C, MAP2K7, and ODF4). The high-risk group showed higher sensitivity

to various common chemotherapeutic drugs. DCLRE1C expression was higher

in normal tissues than in HNSCC tissues.

Conclusion: Our study identified the important role of tumor-driver genes in

HNSCC and their potential clinical diagnostic and prognostic values to facilitate

individualized management of patients with HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is a

heterogeneous group of malignancies that can originate in the

tongue, mouth, paranasal sinuses, nasopharynx, oropharynx,

hypopharynx, or larynx. Globally, it is the sixth most common

cancer type and eighthmost common cause of cancer-related deaths

(Bray et al., 2018). There are more than 650,000 newly diagnosed

cases and 330,000 deaths (Tumban, 2019). The following

carcinogenic factors may lead to the occurrence and development

of HNSCC: exposure of the upper gastrointestinal mucosa to

carcinogens, such as tobacco and alcohol; human papillomavirus

infection; and less commonly, Epstein–Barr virus infection

(Rickinson, 2014; Diez-Fraile et al., 2020).

The current standard treatment for HNSCC is surgery

with or without chemotherapy and/or radiotherapy (Sacconi

et al., 2020). Approximately two-thirds of patients with locally

or regionally advanced disease adopt a certain combination of

these three treatments (Cognetti et al., 2008; Rosenberg and

Vokes, 2021). Although surgical methods are constantly being

updated and new therapeutic approaches are being developed,

the survival rate of patients with HNSCC has not improved

significantly. Currently, the standard method for clinicians to

judge the severity of HNSCC is TNM staging (Syed et al.,

2020). However, the TNM stage considers only the anatomical

factors of the tumor; therefore, using it to develop treatment

plans for patients and assess the prognosis is particularly

inefficient. Coupled with the diverse etiology and high

degree of heterogeneity of HNSCC, accurate prediction of

patient prognosis poses a great challenge. Therefore, robust

prognostic models should be developed.

Some gene mutations induce changes in gene information or

abnormal expression of their products, which can transform normal

cells to tumor cells with malignant biological behaviors (Ma et al.,

2021). These mutant genes are often referred to as tumor-driver

genes. They promote the development and progression of tumors

and pose a threat to human health (Steeg, 2006; Zhu et al., 2013).

Models based on tumor-driver gene sets that can predict the

prognosis of patients with HNSCC are lacking.

With the rapid growth and development of next-

generation sequencing, bioinformatics analysis has been

widely used and adopted for microarray platforms and data

to further explore the underlying genetic and molecular

mechanisms of diseases and detect specific biomarkers of

disease (Morganti et al., 2019). Weighted gene co-

expression network analysis (WGCNA) is a popular

algorithm that enables highly correlated genes to be

grouped into the same module, with the advantage of being

able to link, including but not limited to, clinicopathological

parameters (Zhang and Horvath, 2005; Emilsson et al., 2008).

In this study, we used WGCNA to identify tumor-driver genes

that are strongly associated with HNSCC. We then screened

the training dataset (The Cancer Genome Atlas [TCGA]) for

28 tumor-driver genes that were significantly related to the

prognosis and established a prognostic signature using least

absolute shrinkage and selection operator (LASSO) and

multivariate Cox regression analysis. In addition, we

reevaluated the model’s performance using a different

independent dataset, i.e., GSE41613. Accordingly, we

constructed a robust diagnostic model capable of accurately

diagnosing HNSCC. In addition, our prognostic model can

predict the sensitivity of patients with HNSCC to

chemotherapeutic drugs.

Materials and methods

Data collection

We obtained expression data from TCGA public database

for 546 patients with HNSCC (44 normal and 502 tumor

tissues) and follow-up data for each patient (Table 1). The

expression and clinical data for patients in the GSE41613

(97 HNSCC tissues), GSE127165 (57 laryngeal squamous

cell carcinomas and paired adjacent normal tissues), and

GSE37991 (40 paired HNSCC and adjacent carcinomas)

datasets were downloaded from the Gene Expression

Omnibus (GEO). We downloaded 2,372 tumor-driver genes

from an online website (http://ncg.kcl.ac.uk/cancer_genes.

php). Data were obtained from databases that were freely

available to all and, therefore, did not require ethics

committee approval.
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WGCNA construction and HNSCC-related
modules

To identify the tumor-driver genes associated with HNSCC, we

constructed a co-expression network using the “WGCNA”Rpackage

based on the gene expression matrix of the training dataset

(Langfelder and Horvath, 2008). First, we filtered genes with a

small range of fluctuating expression levels across all samples. We

then examined the expression matrix in TCGA dataset and removed

the missing values. The cluster analysis was used to identify discrete

samples, which were subsequently removed. When the average

connectivity was infinitely close to 0 and the scale-free topology fit

index (R2) was almost 0.9, the β value was chosen as the soft threshold
power. Subsequently, we calculated the topological overlap matrix

(TOM) and used matrix 1-TOM to identify hierarchically clustered

genes and modules. To ensure reliability of the results, the minimum

number of genes in each module was set to 25, and the module

branchmerge cut height was set to 0.25. The first principal element of

each gene module was identified as module eigengenes (MEs). The

k-ME value was used as a measure of intra-module connectivity,

which represents the correlation between the gene expression level

and ME. The modules (|r| ≥ 0.4) that were strongly related to the

tumorwere selected for the next analysis, and the genes (red, blue, and

black) in the eligible modules were extracted.

Construction of risk signature

We first extracted the gene expression matrix from TCGA

dataset for the three eligible modules (655 genes in total). A

univariate Cox regression analysis was used to screen tumor-

driver genes associated with overall survival (OS) in patients

with HNSCC in TCGA training dataset (p < 0.005). Immediately

afterwards, we used the LASSO regression analysis for 10-fold cross-

validation, filtering tumor-driver genes that were more strongly

correlated to avoid overfitting. Finally, we used a multivariate Cox

regression analysis to develop an optimal prognostic risk model

based on the Akaike information criterion (AIC = 2297.34). In the

previous process, the genes used to construct the model and their

corresponding coefficients were obtained, and a formula for

calculating the patient’s risk score was derived, as follows: risk

score = õgene 1* gene 1 expression + õgene 2 * gene 2 expression +

····· + õgeneN * geneN expression. Samples in each TCGA-HNSCC

cohort and validation cohort were categorized into low- and high-

risk groups, consistent with the median risk score. We used

Kaplan–Meier survival curves with a log-rank test to compare

the differences in prognosis between the two groups of patients.

To assess the predictive power of the prognostic model, we used the

Kaplan–Meier receiver operating characteristic (ROC) and

Kaplan–Meier “survival” R packages to conduct time-dependent

ROC (tROC) analyses and calculated the area

under the curve (AUC) at different time points for model

prediction.

Ten-gene risk signature validation

To determine the robustness and generalizability of the

developed predictive models, an independent external dataset

validation is necessary. Therefore, GSE41613, an external

TABLE 1 Clinical data of patients in the TCGA and the GEO validation cohort.

Variables Subgroups TCGA Variables Subgroups GEO

(N = 502) (N = 97)

Age < 60 221 Age < 60 50

> = 60 280 > = 60 47

NA 1 Gender Female 31

Gender Female 134 Male 66

Male 368 Stage I-II 41

Stage I 19 III-IV 56

II 95

III 102

IV 272

NA 14

Grade I 62

II 300

III 119

IV 2

NA 19
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dataset, was used to evaluate the model’s performance. Similarly,

patients in the validation dataset were divided into high- and low-

risk subgroups using the same cutoff values, and Kaplan–Meier

survival curves were plotted for both subgroups of patients. A

meta-analysis (I2 < 50%, fixed-effects model) was performed using

TCGA andGSE41613 datasets to assess the prognostic value of the

model in the combined cohort. Furthermore, a stratification

analysis was performed to confirm the prognostic importance

of the gene signature in all stratified subgroups.

Alterations and differential expression
analysis of ten genes in the TCGA dataset

We used cBioPortal, which is a free web server that allows

interactive exploration of cancer genomic data (Cerami et al., 2012),

to predict the specific mutational profiles of these ten genes in

patients with HNSCC (TCGA, PanCancer Atlas). Most of these ten

genes were significantly differentially expressed in normal and

tumour tissues, but the differences in expression of SHANK2 and

DCLRE1C were not significant (Supplementary Figure S1).

Establishment and validation of candidate
diagnostic biomarkers

To elucidate whether the prognostic model could also serve

as a diagnostic model, the genes used to construct the prognostic

model were used to screen candidate genes. LASSO is a powerful

analysis method that enables both regularization and variable

selection to ensure that the model has strong predictive accuracy.

In addition, we used another approach (support vector machine

recursive feature elimination [SVM-RFE]) to screen the set of

diagnostic genes with the highest discriminant ability. Finally, we

used the intersecting genes obtained by the two algorithms to

construct a diagnostic model. The superior performance of the

diagnostic model in a single dataset was not highly convincing;

therefore, its performance was re-validated using two other

independent datasets (GSE127165 and GSE37991).

Prediction of chemotherapy drug
sensitivity in patients with HNSCC

Since not all patients with HNSCC are sensitive to

chemotherapy owing to individual differences, we used the

‘pRRophetic’ R package to predict the drug sensitivity of

patients to reduce the financial burden on patients.

Commonly used chemotherapeutic drugs in oncology

include cisplatin, lapatinib, methotrexate, and docetaxel.

The half-maximal inhibitory concentration (IC50) of

multiple chemotherapeutic drugs in each patient with

HNSCC was calculated using ridge regression, and the

accuracy of prediction was assessed using 10-fold cross-

validation. We used the Wilcoxon signed-rank test to

compare IC50 of common chemotherapy drugs across risk

groups.

Collection of tissue samples

Fresh primary HNSCC samples and corresponding non-

tumor tissues were collected immediately after surgical

resection at the First Affiliated Hospital of Anhui Medical

University. The tissues were transported to the laboratory

within 2 h. The collected tissue samples were stored at −80°C

until use. Clinical samples were approved by the Research

Ethics Review Committee of the First Affiliated Hospital of

Anhui Medical University. Written informed consent was

obtained from all patients.

Real-time reverse transcription
quantitative polymerase chain reaction
(qRT-PCR)

RNA isolation and purification were performed using

TRIzol RNA. The Complementary DNA Synthesis

SuperMix Kit (ThermoFisher Scientific) was used to

synthesize complementary DNA, which was subjected to

qRT-PCR using SYBR® Premix Ex TaqTM II (TaKaRa) and

the Real-Time System (Lin et al., 2021) (Roche Life Science).

The gene expression levels were normalized to GAPDH

messenger RNA (mRNA) expression. Supplementary Table

S1 shows the primer sequences used.

Western blotting

Tissues were lysed with the RIPA lysis buffer (Beyotime,

Jiangsu, China), separated by polyacrylamide gel

electrophoresis using sodium dodecyl sulfate and transferred

to polyvinylidene fluoride membranes (Millipore, Billerica, MA,

United States ). Closure with 5% skim milk for 1 h was

incubated with the primary antibody overnight for primary

antibodies (diluted 1:1000) at 4°C overnight. The membranes

were then incubated with horseradish peroxidase-conjugated

secondary antibody for 1 h at room temperature. Finally, the

protein bands were visualized using chemiluminescence (Wan

et al., 2021).

Immunohistochemistry assay

Twelve pairs of tissue samples were approved by the First

Affiliated Hospital of the Anhui Medical University. All tissue
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samples were approved by patients. Tumor tissues were

paraffin-sectioned. HNSCC tissue sections were

deparaffinized in xylene and dehydrated in ethanol.

Antigen retrieval was performed using citrate buffer

(pH 6), followed by blocking with bovine serum albumin

for 1 h to prevent nonspecific binding of antibodies. After

tumor tissues were paraffin embedded, they were incubated

with specific primary antibodies (DCLRE1C, 1:100,

ThermoFisher Scientific) at 4°C overnight. The paraffin

sections were then incubated with horseradish peroxidase-

conjugated secondary antibodies for 20 min at room

temperature. Finally, photographs were acquired using an

inverted microscope (Wang et al., 2020). The positive rate

was calculated using the immunohistochemistry toolbox

plugin in ImageJ software.

Results

Tumor-driver genes in the HNSCC-
associated modules identified by WGCNA

To obtain the key modules for HNSCC, we first

constructed a co-expression network using 44 normal and

502 HNSCC samples from the training dataset (TCGA cohort;

Figure 1A). We then chose β = 4 as the optimal soft threshold,

based on which 13 modules were obtained (Figures 1B,C).

Furthermore, among these 13 modules, the highest module-

trait positive association was found among the red module (r =

0.41; p = 5e-23), blue module (r = 0.44; p = 1e-27), and black

module (r = 0.84; p = 2e-32) with HNSCC tissue (Figure 1D).

The genes in these modules may play essential biological roles

FIGURE 1
Construction of a co-expression network through WGCNA. (A) Clustering dendrogram of HNSCC samples. (B) Network topology for different
soft-thresholding powers. (C) The cluster dendrogram of co-expression network modules is ordered by a hierarchical clustering of genes based on
the 1-TOM matrix. (D) Module-trait relationships.
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associated with the prognostic signature.

Subsequently, 655 genes from the three key

modules were selected for further analyses (Supplementary

Table S2).

Establishment of a tumor-driver gene-
related signature for the prognosis

A total of 616 overlapping tumor-driver genes were

acquired between TCGA and GSE41613 gene expression

profiles. The univariate Cox regression analysis conducted

between the 616 genes and OS illustrated that 28 genes were

significantly correlated with OS (p < 0.005; Figure 2A). To

identify the best prognostic genes and build a simplified

prognostic model, we applied the LASSO Cox regression

algorithm to the 28 prognosis-related genes. Eleven genes

were excluded (Figure 2B). The 17 genes that met the

screening criteria were subjected to the multivariate Cox

regression analysis, at which point an optimal prognostic

model was created (Figures 2C,D). The risk score was

calculated as follows: risk score = (1.236 * SSB) + (0.628 *

FIGURE 2
Identification of tumor driver genes in TCGA cohort. (A) Univariate Cox regression analysis to identify prognostic genes. (B) LASSO regression
analysis to eliminate collinearity. (C) Coefficients of the 10 genes included in the signature. (D) Multivariable Cox proportional-hazards regression
analysis of the 10 prognostic genes.
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PFKP) + (0.567 * NAT10) + (0.498 * PCDH9) + (0.189 *

SHANK2) + (−0.443 * PAX8) + (−0.529 * CELSR3) + (−0.806

* DCLRE1C) + (−1.865 * MAP2K7) + (−2.439 *

ODF4). The risk score was computed for every case in the

two cohorts, and all cases were classified into low- and high-

risk groups based on the median threshold.

FIGURE 3
Gene signature predicts overall survival (OS) in TCGA and GEO datasets. (A,E) Kaplan-Meier analysis shows that HNSCC patients with higher risk
scores have a poor prognosis. (B,F) The risk score is significantly elevated in patients with HNSCC who died during the follow-up. (C,G)Multivariate
Cox regression analysis shows that the risk score is an independent prognostic factor for OS. (D,H) tROC analysis shows that the risk score is an
accurate variable for survival prediction.
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Confirmation and validation of the gene
signature

Patients in the two datasets were divided into low- and high-

risk groups using the median risk score. Kaplan–Meier curves

revealed that patients with HNSCC in the high-risk group had

significantly shorter survival times than those in the low-risk

group from TCGA cohort (hazard ratio [HR] = 2.29, p < 0.001,

Figure 3A). Risk scores were significantly higher in patients who

died than in those who were alive (Figure 3B). The multivariate

FIGURE 4
Prognostic signature can be used as a marker of survival in pooled cohorts and subgroups. (A) Meta-analysis. (B) The risk score is higher for
patients who died than for those who were alive, particularly in the group with shorter survival. (C–J) Kaplan–Meier survival analysis of the signature
between the high- and low-risk groups in TCGA cohort stratified by different clinicopathological parameters.
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Cox regression analysis showed that the age, stage, and risk score

in TCGA dataset were independent predictors of survival

outcomes in patients with HNSCC (Figure 3C).In addition,

the tROC analysis showed strong performance of our

prognostic model, with mean AUC values above 0.7 (Figure 3D).

To demonstrate the robustness of the prognostic model, we

validated its performance using the GSE41613 dataset. The results

of the Kaplan–Meier analysis indicated that OS was lower in the

high-risk group than in the low-risk group (HR = 3.11, p < 0.001,

Figure 3E). The risk score was significantly higher in patients who

FIGURE 5
Genetic alterations of the 10 genes analyzed utilizing cBioPortal. (A) Genetic alterations in each of the 10 genes in the prognosis signature. (B)
Specific alteration frequency of the 10 genes with the study of clinical samples.
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died than in those who were alive (Figure 3F). Consistent with the

results of multivariate Cox regression in TCGA cohort, the risk

score was also an independent prognostic factor for patients with

HNSCC with OS (HR = 1.323, p = 0.02, Figure 3G). tROC results

in the validation dataset showed very high accuracy of the

prognostic model, particularly in predicting 1- and 2-year

survival, with AUC values close to 0.8 (Figure 3H).

Furthermore, a meta-analysis was conducted to analyze

the prognostic value of the prognostic models developed in the

combined cohort. It showed that the prognosis of patients in

the high-risk subgroup was worse than that of those in the

low-risk subgroup (pooled HR = 2.43; 95% confidence

interval: 1.85–3.19; Figure 4A). The association between

survival time and the risk score was further investigated in

FIGURE 6
Establishment of multigene diagnostic signature. A total of eight genes have been selected through LASSO (A) and SVM (B) analyses, with AUCs
of 0.953 (D): TCGA, 0.978 (E): GSE127165, and 0.950 (F): GSE37991.
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TCGA dataset, and patients who died had higher risk scores.

Particularly, those who survived for <1 year had the highest

risk scores (Figure 4B). In addition, to explore the prognostic

reliability and stability of the signature in different clinical

groups, Kaplan–Meier analyses were used to plot survival

curves and evaluate survival differences in the pooled

cohort to visualize prognostic values. The curves indicated

that patients in the high-risk group presented a drastically

increased risk of dying among some patients with HNSCC,

including age (<60 years, ≥ 60 years; Figures 4C,D), ex

(female, male; Figures 4E,F), grade (1–2, 3–4; Figures

4G,H), and stage (I–II, III–IV; Figures 4I,J),

demonstrating that the signature was a sturdy prognostic

biomarker.

FIGURE 7
Estimated drug sensitivity in patients with HNSCC in high- (n = 249), (A) and low-risk (n = 250), (B) groups.
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FIGURE 8
Detection of gene expression in tissue samples using qRT-PCR,WB and IHC.(A) qRT-PCR analysis of mRNA levels in tumor and adjacent normal
tissues.(B,C) Western blotting, immunohistochemistry analysis of DCLRE1C protein levels in tumor and adjacent normal tissues.
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Genetic alteration of 10 genes in HNSCC

By analyzing HNSCC samples from the cBioPortal database, we

assessed alterations in the 10 genes used to create the prognostic

signature. The total mutation frequency was 42.2%, and all genes in

the prognostic signature had amplified or missense mutations in

patients with HNSCC, suggesting that these 10 genes play an

important role in HNSCC (Figure 5A). Among the 496 patients

with HNSCC, 1.21% had mutations, 21.37% had amplifications, and

2.42% had multiple alterations in SHANK2; 4.84% had mutations,

0.2% had multiple alterations, and 0.4% had deep deletions in

PCDH9; 2.82% had mutations, 0.2% had deep deletions in

CELSR3, 0.2% had mutations, and 1.81% had amplifications in

NAT10; 1.01% had mutations, 0.2% had structural variants, 0.4%

had amplifications, and 0.4% had deep deletions inDCLRE1C; 1.01%

hadmutations, 0.2% had amplifications, and 0.6% had deep deletions

in PFKP; 1.01% had amplifications and 0.2% had structural variants

in SSB; 0.4% hadmutations and 0.2% had deep deletions inMAP2K7;

and 0.2% had mutations in ODF4 (Figure 5B).

Identification and validation of diagnostic
feature biomarkers

We executed two different algorithms, namely SVM and

LASSO, on the 10 genes used to construct the prognostic model

to improve the accuracy of the diagnostic model. Ten genes were

screened using the LASSO algorithm, and nine candidate genes

were obtained (Figure 6A). Screening was performed using the

SVM-RFE algorithm, and eight genes were identified (Figure 6B).

Subsequently, by taking the intersection of the genes obtained

using the two algorithms, we obtained eight genes to construct

diagnostic markers (Figure 6C). Finally, a multivariate logistic

regression analysis was used to construct a diagnostic model

based on these eight genes. The model formula is as follows:

-8.3049 + (−9.9087*ODF4) + (−2.3662*PCDH9) +

(0.8175*PFKP) + (1.2565*SSB) + (0.2716*MAP2K7) +

(0.5908*NAT10) + (−1.769*DCLRE1C) + (7.2511*CELSR3). In

TCGA dataset, ROC showed that our diagnostic model had a

high AUC value (0.953), indicating that the model could

accurately differentiate between HNSCC and normal tissues

(Figure 6D). In addition, we evaluated the performance of the

diagnostic model using two external datasets and found that the

model had a high diagnostic value (GSE127165: AUC = 0.914;

GSE37991: AUC = 0.950; Figures 6E,F).

Sensitivity of patients with HNSCC in high-
and low-risk groups to different
chemotherapeutic drugs

To investigate whether or not prognostic models can guide

the use of chemotherapeutic drugs in clinical practice, we

compared IC50 of the high- and low-risk groups with those of

various common chemotherapeutic drugs and found higher

sensitivity to cisplatin, imatinib, doxorubicin, cytarabine,

lapatinib, and docetaxel in the high-risk group (Figure 7A).

In addition, IC50 of vinblastine, methotrexate, rapamycin,

paclitaxel, vorinostat, and nilotinib was lower in patients with

lower risk scores, suggesting that patients with HNSCC in the

lower-risk group were sensitive to these drugs (Figure 7B).

Downregulated expression of DCLRE1C in
HNSCC

To detect differences in mRNA expression of the eight

signature genes, we conducted reverse transcription qRT-PCR

to detect 12 pairs of cancer and normal tissues (Figure 8A). The

mRNA expression levels of DCLRE1C, PCDH9, and ODF4 in

tumors were significantly lower than those in the normal tissues.

In contrast,MAP2K7, CELSR3, and PFKP were overexpressed in

tumor tissues. However, mRNA expression levels of SSB and

NAT10 did not differ between HNSCC and adjacent normal

tissues (Figure 8A). Furthermore, Western blotting and

immunohistochemistry analyses revealed that DCLRE1C was

expressed at substantially lower levels in HNSCC tissues than

in corresponding normal tissues (Figures 8B,C).

Discussion

HNSCC is a common cancer worldwide. Even after new

therapeutic methods and significant advances in clinical research,

the long-term life expectancy and survival rate of patients with

HNSCC remain unsatisfactory because of tumor recurrence or

metastasis. Although clinical patients have the same medical and

pathological levels, because of the complicated etiological

elements and high heterogeneity, predicting the survival rate

of patients with HNSCC is difficult.

Currently, effective biomarkers with high accuracy for the

diagnosis and prognosis of HNSCC are lacking (Zhao et al.,

2010). Therefore, establishing accurate prognostic models and

diagnostic markers is necessary. However, bioinformatics

research has often focused on a single database or only on the

prognostic value, which has some limitations (Cui et al., 2020). In

recent years, with the rapid development of bioinformatics,

numerous novel gene biomarkers have been discovered as

critical modulators for the diagnosis and survival prognosis

prediction of various diseases (Wang et al., 2009; Zhao and

Bai, 2020). Future research should identify clinically

significant genes, predict their functions, and explore their

prognostic value using bioinformatics.

Altered expression levels of tumor-driver genes may

promote malignant biological behavior of tumor cells

(Bossi et al., 2016; Zhao et al., 2019). Based on
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2,372 tumor-driver genes, new models that can predict the

prognosis of patients with HNSCC as well as accurate

diagnostic markers may be identified through the combined

use of bioinformatics approaches. In this study, we used

WGCNA to identify modules associated with HNSCC and

successively used univariate, LASSO, and multivariate Cox

regression models to filter genes to establish a tumor driver-

related gene signature. The performance of this signature was

verified using the GSE41613 cohort. In addition, although the

meta-analysis and subgroup analysis were based on TCGA

cohort, our prognostic model could discriminate between

high- and low-risk populations. These results demonstrated

the superior predictive performance of the proposed model. In

clinical practice, this is conducive to prolonging patient

survival if an accurate diagnosis can be made for patients

with HNSCC. The diagnostic model that we constructed

showed excellent performance in both the training and

independent validation sets. However, the constituent genes

of the two models are not identical. There may be the

following reasons. First, models were built on different

people. In more detail, prognostic model were constructed

for tumor patients, while diagnostic model were constructed

based on normal cohorts and tumor patients. Second, the

algorithms used in the construction of the two models were

different. The data types in the prognostic model were survival

data and in the diagnostic model were dichotomous variables,

which were analysed using LASSO “Cox” and “binomial”

regressions respectively using the glmnet R package. Third,

the diagnostic model use the SVM-RFE algorithm, which is

based on the SVM interval maximisation principle and uses

the support vector machine weight coefficients as a scoring

criterion to rank genes, eliminating one gene at a time with the

lowest ranking score, until the final set of ranked features is

obtained. After ten genes were screened by this step,

SHANK2 and PAX8 genes were filtered out and were not

involved in the construction of the diagnostic model. In

addition, SHANK2 and DCLRE1C of these ten genes were

not differentially expressed in normal and tumor tissues. A

number of previous studies have performed differential

expression analyses prior to constructing prognostic models

(Long et al., 2020; Yan et al., 2022). However, in this study we

were concerned that prognosis-related genes would be filtered

out during differential analysis, so we included all genes

directly in the analysis. This is similar to previous studies

(Cai et al., 2021). Regardless, our findings suggest that the

performance of these two models is very strong. If the model

can be applied to clinical work in the future, this will surely

reduce the public health burden.

To date, chemotherapy remains an effective treatment

option for patients with HNSCC, and selection of the exact

chemotherapeutic drug can reduce patient suffering and

prolong life expectancy. Therefore, we maximized the

benefit rate for patients by predicting the sensitivity of

chemotherapeutic drugs in different subgroups of the

population.

In this study, qRT-PCR showed that the expression levels

of two genes, DCLRE1C and ODF4, differed significantly

between normal and tumor tissues. In addition, ODF4 was

expressed at a lower level in the tumor group than in the

DCLRE1C group. Therefore, we selected DCLRE1C to

continue the subsequent Western blotting and

immunohistochemistry analyses, which were consistent

with the qRT-PCR results.

Some genes used to build prognostic models have been

studied in other cancers. For example, PFKP expression levels

are negatively correlated with the prognosis of lung cancer, and

the proliferation rate of cells with low PFKP expression is

significantly reduced (Shen et al., 2020). In addition, PFKP

can be used as a therapeutic target in patients with breast cancer

(Yeerken et al., 2020). In oral cancer, regulation of PFKP

expression promotes cell proliferation, migration, and

invasion (Chen et al., 2018). Recently, Zhang et al.

demonstrated through a series of in vivo and in vitro

experiments that reduced levels of NAT10 expression could

inhibit gastric cancer metastasis (Zhang et al., 2021). In a study

on hepatocellular carcinoma, NAT10 expression was

significantly upregulated in cancerous tissues, and its

expression level was negatively correlated with the OS of

patients, suggesting that it is an oncogene (Li et al., 2017).

However, in our study, reverse transcription qRT-PCR showed

that the difference in expression levels of NAT10 in cancer and

normal tissues was not significant. The reason for this result

may be the insufficient sample size and the fact that tumor

subtypes are not highly representative. Decreased PCDH9

expression is associated with the metastasis of gastric cancer

cells (Chen et al., 2015). High levels of miR-200a-3p promote

the proliferation of ovarian cancer cells by targeting PCDH9

(Shi et al., 2019). These results indicated that PCDH9 is a

tumor-suppressor gene with low expression in tumor tissues,

consistent with our reverse transcription qRT-PCR results.

PAX8 promotes the proliferation of gastric cancer cells (Bie

et al., 2019). Low expression of CELSR3 significantly reduces the

migration and invasion of lung adenocarcinoma cells (Li et al.,

2021). CELSR3 expression may serve as a prognostic biomarker

in patients with prostate cancer and may predict poor outcomes

(Chen et al., 2021). In addition, CELSR3 is highly expressed in

liver and oral cancers and associated with a poor prognosis (Gu

et al., 2019; Zheng et al., 2022). In another study, ODF4 was

significantly highly expressed in breast cancer tissue and could

be used in combination with other biomarkers to differentiate

between cancer and normal tissues (Kazemi-Oula et al., 2015).

This is in contrast with the results of our reverse transcription

qRT-PCR analyses, and it could play different biological roles in

different cancers. Taken together, the potential

mechanisms of these genes in HNSCC require further

detailed investigations.
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The present study has some limitations. First, the sample size

from our center was small, and more samples with detailed

clinicopathological and prognostic information are necessary to

further investigate the performance of the risk signature in

predicting HNSCC progression and prognosis. Second, we

require a longer follow-up period to further compare HNSCC

between low- and high-risk groups because of the relatively

limited follow-up period. In addition, functions of the eight genes

involved in the malignant progression of HNSCC were not

investigated. Further research is required to explore the

mechanisms of the eight genes involved in tumor progression.

Conclusion

We developed a new 10-gene model using a combination of

bioinformatics approaches, which could accurately predict the

prognosis of HNSCC and identify the chemotherapeutic drugs

from which patients benefit, thus facilitating personalized

management of patients with HNSCC. In addition, we

successfully constructed a biomarker capable of accurately

diagnosing HNSCC, which can be used in the molecular

diagnosis of HNSCC.
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