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Deep learning has massive potential in predicting phenotype from different

omics profiles. However, deep neural networks are viewed as black boxes,

providing predictions without explanation. Therefore, the requirements for

these models to become interpretable are increasing, especially in the

medical field. Here we propose a computational framework that takes the

gene expression profile of any primary cancer sample and predicts whether

patients’ samples are primary (localized) or metastasized to the brain, bone,

lung, or liver based on deep learning architecture. Specifically, we first

constructed an AutoEncoder framework to learn the non-linear relationship

between genes, and then DeepLIFT was applied to calculate genes’ importance

scores. Next, to mine the top essential genes that can distinguish the primary

and metastasized tumors, we iteratively added ten top-ranked genes based

upon their importance score to train a DNN model. Then we trained a final

multi-class DNN that uses the output from the previous part as an input and

predicts whether samples are primary or metastasized to the brain, bone, lung,

or liver. The prediction performances ranged from AUC of 0.93–0.82. We

further designed the model’s workflow to provide a second functionality

beyond metastasis site prediction, i.e., to identify the biological functions

that the DL model uses to perform the prediction. To our knowledge, this is

the first multi-class DNN model developed for the generic prediction of

metastasis to various sites.
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1 Introduction

Precision medicine is a path that could profoundly change

and improve medical practices. This idea proposes using genetic

data of individual patients to enhance clinical decision-making,

and “omics” technologies now provide a means to acquire such

patient data, making precision medicine feasible. Clinical

decision-making includes diagnosis, prognosis, choosing the

most appropriate treatment, etc. One avenue pursued to

support clinical decision-making is building classifiers using

gene expression profiles that can function as forms of artificial

intelligence (AI).

Many machine learning methods, including support vector

machines, random forest, and boosting, are among the primary

tools currently being used to make biological discoveries from the

vast amount of available gene expression data (Libbrecht and

Noble, 2015). However, deep learning (DL) is emerging as a more

powerful machine learning method (Goodfellow et al., 2016),

although the primary DL application domain is image

recognition and speech recognition. Nonetheless, DL is

showing promise in many other fields of science, especially in

precision medicine and genomics data analysis (Grapov et al.,

2018; Martorell-Marugán et al., 2019), as DL can extract intricate

structures in high-dimensional data (Najafabadi et al., 2015).

However, DL is still new in the bioinformatics community; thus,

only a few published works show its application to gene

expression-based models (Daoud and Mayo, 2019).

Furthermore, unlike images or text data, gene expression data

has no clear structure that we can exploit in a neural network

architecture. Thus, many new architectures are surfacing for

metastasis prediction from gene expression data, such as

multilayer perceptron architecture (Albaradei et al., 2019;

Albaradei et al., 2021a; Albaradei et al., 2021b) , autoencoder

architectures (Sharifi-Noghabi et al., et al.; Albaradei et al., 2021c;

Fakoor et al., 2013) and Graph deep learning (Xu et al., 2021).

Most of these proposed models try to solve a binary classification

problem that classifies samples as metastatic or non-metastatic

(Albaradei et al., 2021a). However no generic computational

framework based on DL that accepts raw gene expression data to

predict whether cancer is primary or has spread to various

metastasis sites exists.

The main concern of DL used in medical applications is the lack

of interpretability. The reason being, DL networks can be viewed as

black boxes that form an input layer (wherein we place the gene

expression profile of patients) and an output layer (offering

predictions without interpretability). Suppose we do not meet this

interpretability criterion at a good standard. In that case, physicians

will not be able to trust the decision of the neural network, as they

need interpretable data to ensure patients’ safety. Specifically, they

need data about neurons, genes, and related biological processes

involved in the prediction and the decision-making process to make

informed decisions. Thus, researchers are now attempting to make

the DL networks more interpretable.

In this work, we attempted to develop an AImethod that could

translate into a tool that supports clinical decision-making with

regard to identifying metastasis and pinpointing the metastasis site

(Figure 1). In this process, we also show the biological functions

that the model uses to perform the prediction. That is, current

work that interprets DLmodels identifies the genes that impact the

prediction. Here, we propose interpreting the hidden neurons by

linking the neurons to the enriched biological functions. In this

work, we developed such a DL model. The DL framework takes as

input raw gene expression data for a sample and predicts whether

it is primary ormetastasized to the brain, bone, lung, or liver. In the

first phase, we used AutoEncoder (AE) to reduce the dimension of

the expression data. Then, we applied DeepLIFT to compute an

importance score (i.e., the impact of each input layer neuron on the

latent layer neurons) used to rank the genes. Finally, to mine the

genes that can distinguish the primary and tumor samples

metastasized to different sites, we iteratively fed ten top-ranked

genes (based upon the importance score) to the DNN model for

training. In the second phase, we trained and evaluated a final

multi-class DNN model to make the metastasis site predictions.

Here, we also used the DeepLIFT approach to identify the essential

neurons that lead to the prediction and the set of genes that activate

these critical neurons. Then, we linked these critical genes to Gene

Ontology (GO). We also provided analyses using Molecular

Signatures Database (MSigDB) and the Disease Gene Network

(DisGeNet) to support and increase the biology extracted from the

essential neurons’ list of genes.

2 Method and materials

2.1 Gene expression datasets

We searched for gene expression datasets in Gene Expression

Omnibus (GEO) (Edgar et al., 2002) using the following query:

“metastas* AND (bone OR brain OR lung OR liver) AND Homo

sapiens” filtered by “Expression profiling by array” in September

2021. We retrieved 837 entries which we sifted through and found

microarray gene expression data for primary tumors (breast,

colorectal, kidney, liver, lung, pancreatic, and prostate cancer

samples), and tumors metastasized from these primary tumors

to the bone, brain, lung, or liver. Table 1 provides the GEO

accession numbers of the samples used in this study, along

with the sample statistics. Similar to the approach used in

(Chereda et al., 2019), we used the RMA probe-summary

algorithm (Irizarry et al., 2003) to process each dataset, after

which they were combined based on the HG-U133A array

probe names, and quantile normalization was applied across all

datasets. In cases where multiple probes were mapped to one gene,

the probe with the highest average value was taken. Finally, we

used the integrated datasets for each of the four sites as input for

the DL models. However, before we fed the data to the DL model,

we used the synthetic minority oversampling technique (SMOTE)
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to oversample the minority class using the imbalanced-learn

python library (Chawla et al., 2002), as the number of samples

is imbalanced between the primary and metastasized group.

2.2 Deep learning framework

The first part of our model’s framework comprises three key

components, namely the AE (Hinton and Salakhutdinov, 2006),

DeepLIFT (Shrikumar et al., 2017), and the deep neural network

(DNN) (Svozil et al., 1997) (Figure 2).

First, the AE-based component is an unsupervised deep neural

network with multiple stacked hidden layers composed of two parts,

an encoder, and a decoder. The encoder maps the original (high-

dimensional) data X to a reduced representation (100 dimensions)

through the bottleneck layer. The purpose of the decoder is to

reconstruct the original data X̂ from the low-dimensional

representation by minimizing the difference between X and X̂.

In this manner, the AE extracts features that differ from the original

features and functions as a feature extraction method. We used the

Python Keras library (https://github.com/fchollet/keras) to

implement an AE consisting of three fully connected hidden

FIGURE 1
General overview of the proposed computational framework that takes the gene expression profile of any primary cancer sample and predicts
whether patients’ samples are primary (localized) or had been metastasized to brain, bone, lung, or liver based on deep learning architecture.

TABLE 1 The gene expression datasets from GEO with the number of primary and metastasized samples for each site.

Bone Brain Lung Liver

Breast 220 Primary, 27 Primary, 47 Primary, 28 Primary,

72 Metastasized [GSE 2034,
GSE137842]

65 Metastasized [GSE12276, GSE125989,
GSE46928, GSE18549]

18 Metastasized [GSE16554,
GSE5327]

16 Metastasized
[GSE18549]

Colorectal 0 10 Primary, 186 Primary, 219 Primary,

23 Metastasized [GSE14108] 47 Metastasized [GSE18549,
GSE41258]

86 Metastasized
[GSE41258, GSE18549,
GSE6605]

Kidney 0 0 10 Primary, 0

10 Metastasized [GSE22541]

Liver 0 0 31 Primary, 0

31 Metastasized [GSE141016]

Lung 14 Primary, 15 Primary, 0 0

19 Metastasized [GSE10096] 23 Metastasized [GSE18549]

Pancreas 0 0 0 15 Primary,

14 Metastasized
[GSE19279]

Prostate 16 Primary, 0 0 0

17 Metastasized [GSE18549,
GSE43332]
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layers containing 500, 100, and 500 neurons. For each layer, we used

“relu” as the activation function. Given m samples, each has a gene

expression profile containing n genes; the input vector is

reconstructed through a series of matrix transformations of

multiple network layers. Training an AE involves finding

parameters that minimize a specific loss function; we used mean

absolute error (MAE) as the loss function. In addition, we added an

L2 regularization penalty to control overfitting and used the early

stopping technique. Finally, we trained the AE using the Adam

(Kingma and Ba, 2014) optimization algorithmwith 500 epochs and

a 10% dropout.

Second, the DeepLIFT-based component is a feature scoring

algorithm to calculate the contribution scores of each neuron. In

our computing framework, we used DeepLIFT to calculate a

contribution score for every gene of each input sample. The

obtained contribution scores express the importance of the

corresponding genes for the compression features of the low-

dimensional representation (bottleneck) layer. Then, we ranked

the genes based on their importance scores.

Third, the DNN-based component is a neural network with

three hidden layers with 64, 32, and 8 neurons, respectively, and

uses “relu” as the activation function. We used the Python Keras

library to design the DNNmodel to predict if a sample is primary

or metastasized. Finally, we iteratively added ten top-ranked

genes (based on the importance scores) to train the DNN model.

The second part of our model uses the output from the first part,

i.e., themost important genes for all sites, as an input to the finalmulti-

class DNN model (Figure 3). This multi-class DNN consists of three

hidden layers, eachwith 100 neurons, anduses a “relu” activation layer

followed by an output layer with five output neurons (one for each

class: primary, andmetastasized to bone, brain, lung, or liver) that use

the soft-max function to do the prediction. We then used the

DeepLIFT to identify the most relevant neurons in each hidden

layer for each of the five predictions (see 2.3 for details). Finally, the

FIGURE 2
The workflow represents the first part of our model’s framework. (A) The architecture of AutoEncoder, (B) Applying DeepLIFT to compute the
importance scores in the Encoder network, (C) Using DNN as a baseline method to perform the metastasis prediction.
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model was implemented in Python v.3.6 scripting language (https://

www.python.org/), using the Keras deep learning and DeepLIFT

frameworks (Figures 2B,C). Concerning time complexity, the time

needed to train the model was 20.4 min for around 100 epochs for all

samples using a workstation with Linux Ubuntu 18.04.5 LTS Intel

Xeon Platinum 8,176, 64-bit OS and two GPUs: Quadro and Titan,

with CUDA version 11.0.

2.3 Identifying the biological functions
that the DL model uses to perform the
prediction

We interpreted the prediction for each class by first computing

the relevance scores through the DL network and identifying the

most essential neurons that allow predicting the class. Then, we

connected each important neuron with the list of the input genes

affecting the neuron activation. In this manner, we associated

biological functions with each layer based on its essential neurons.

The first step is to identify the neurons that most influence the

predictions for each class (Bach et al., 2015; Hanczar et al., 2020).

For this, we computed the relevance scores R of all neurons using

the Deep-LIFT approach for each predicted class at each layer.

Next, we used the mean of these relevance scores to obtain the

average relevance of neuron i in layer L, representing this neuron’s

influence on the DL network to predict the class. The relevance

score for neuron i in layer L is defined as the sum of incoming

scores from each neuron j in layer L+1.

Finally, we ranked the neurons according to their average

relevance scores and chose the most essential ones. Similar to

(Hanczar et al., 2020), assuming that the average relevance scores

follow a Gaussian distribution, we used the two-side t-test (p-value at

0.05 ) to determine each class’s most essential neurons in each layer.

For a given important neuron in layer L, its activation is back

propagated using the Deep-LIFT approach to compute the

relevance score of each input gene. We then identified the

most critical inputs that have an impact on the activation of

the neuron. Similar to identifying the essential neurons, we used a

two-sided t-test to select the essential input genes.

The second step is to connect each essential neuron to

biological functions from GO, signature gene-set from

MSigDB, and diseases from DisGeNET. Finally, we used an R

interface to the Enrichr database EnricherR (Kuleshov et al.,

2016) to identify the over-represented functions in the list of

genes connected with each important neuron.

3 Results and discussion

3.1 Determining the gene set that provides
optimal prediction performance

In the first part of our model’s framework, we used GEO samples

to train an AE and applied DeepLIFT to calculate importance scores

for each gene for ranking. Then, ten top-ranked genes (based on the

importance scores) were iteratively fed to the DNNmodel to identify

FIGURE 3
The workflow represents the second part of our model’s framework, which determines the significant neurons in the network to predict
metastasis status.
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the gene set that provides maximum performance when determining

if a sample is primary or metastasized. The DNN reaches its

maximum performance when including 60, 80, 20, and 30 top-

ranked genes in metastasis to bone, brain, lung, and liver data,

respectively (Figure 4). For the metastasis to bone, lung, and liver

samples, the DNN achieved anAUCof 1.0. However, the DNN could

only achieve an AUC of 0.9597 for the metastasis to brain samples.

This might result from the brain samples having less than 50 primary

samples, while the metastasis to bone, lung, and liver samples were

analyzed usingmore than 200 primary samples. Addingweight to this

suggestion is the number of metastasized samples used for each site

being relatively the same (about 100 samples each).

3.2 Cross-site generalization analysis

After removing the duplicates, the 190 essential genes for all sites

identified in the part of the model’s framework were reduced to

184 genes. The 184 genes were used as an input to the final multi-

class DNN model. This model takes these 184 genes and predicts if

the input samples are primary or metastasized to the bone, brain,

lung, or liver site. Figure 5 provides the prediction performance for

the final multi-class DNN model. The best prediction performance

was achieved for the primary samples (AUCof 0.93), followed by the

metastasis to bone and lung samples (AUC of 0.88). The metastasis

to liver and brain samples achieved lower prediction performances

with an AUC of 0.84 and 0.82, respectively. Here, we expected the

prediction performance for metastasis to the brain to be the lowest,

based on themaximum performance the DNN achieved in Figure 3.

However, the final multi-class DNN model achieved a more than

acceptable prediction performance in all categories.

3.2.1 Testing the robustness of the final DNN
model

The final multi-class DNNmodel achieved a good prediction

performance; however, the prediction performance does not

FIGURE 4
AUC is based on different numbers of featured genes using DNN for bone, brain, lung, and liver sites. AUC is indicated in blue, while error rate is
shown in red.
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indicate the robustness of the final DNN model. Thus, we

further evaluated the model’s performance using external

testing data from the TCGA datasets (Figure 6) and using a

population-based cohort (Figure 7). Also, by using external

datasets as a validation technique to show how accurately our

predictive model will perform in practice, we eliminate any

concerns about over/under -fitting. First, the external set was

extracted from the human cancer metastasis database

(HCMDB) (Zheng et al., 2018), where we found

378 samples, 250 primary, and 21,2, 44, and 61 were

FIGURE 5
The prediction performance of the final multi-class DNN model.

FIGURE 6
The prediction performance of the finalmulti-class DNNmodel using external testing data from the TCGA datasets. Note, for the brain there are
only 2 samples in the test set).
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metastasized to bone, brain, lung, and liver (see the complete

list of TCGA IDs in Supplementary Table S1), respectively. In

addition, we used the gene expression profiles of fresh breast

cancer tissue of 45 (21 primary and 24 metastasized) Saudi-

Arabian subjects deposited on GSE36295 to test the

performance of our model on a population-based cohort

(real data).

Figure 6 provides the prediction performance using the

external set in terms of the area under the ROC curve and

shows several other metrics, including accuracy, sensitivity,

specificity, precision, and F1 score, ranging between 74%–80%.

The prediction performance using the external data followed the

same trend with the highest prediction performance achieved for

the primary (AUC of 0.85) samples followed by the metastasis to

lung (AUC of 0.78), bone (AUC of 0.72), liver (AUC of 0.61) and

brain (AUC of 0.50) samples, respectively. This result shows that

the multi-class model exhibits robustness concerning the three

categories: the primary and metastasis to lung and bone samples.

However, the prediction performance for the metastasis to the

brain and liver samples dropped by 32% and 23 %, respectively.

This suggests that we may have to re-establish the gene set that

provides maximum performance using a larger cohort of samples

(when the samples become available). Beyond that, here it should

also be taken into consideration that for the brain we only had two

samples in the test set.

Nonetheless, the prediction performance using samples from

a population-based cohort shows that the multi-class DNN

model achieved good prediction performance based on area

under the ROC curve (AUC of 0.72), when distinguishing

between the primary and metastatic samples (Figure 6), and

shows several other metrics, including accuracy, sensitivity,

specificity, precision, and F1 score, ranging between 73%–

85%. This result gives an indication of the potential of our

model to accurately predict metastasis sites.

3.2.2 The biological functions associated with
the genes used by the DL model to perform the
prediction

We further designed the model’s workflow to provide a

second functionality beyond metastasis site prediction, i.e., to

identify the biological functions that the DL model uses to

perform the prediction (Figure 8).

We achieved this through the biological interpretation of the

neural network predicting the metastasis. That is, for each class,

the essential neurons of each layer are selected based on the mean

of the relevance scores by using the method described in Section

2.3. We identified 89, 56, 41, 16, and 53 essential neurons in

hidden layer one for primary, metastasized to bone, brain, lung,

and liver, respectively. We also identified 36, 40, 99, 11, and

18 essential neurons in hidden layer two for primary,

metastasized to bone, brain, lung, and liver, respectively.

Finally, we identified 54, 48, 22, 84, and 35 essential neurons

in hidden layer three for primary, metastasized to bone, brain,

lung, and liver, respectively.

For each essential neuron’s list of genes, we determined GO

biological functions based on a p-value < 0.05. Figure 9 provides

the GO biological functions associated with the list of genes used

to differentiate the primary samples from the metastasized ones.

The critical neurons in each layer can be grouped depending on

the functions enriched among the significant genes they contain.

Overall, the enriched functions in layer one belonged to five main

categories: “Metabolic process,” “Cellular process,” “Immune

response,” “Transport”, and “Cell cycle.” The enriched

functions from the essential neurons of layer two included

FIGURE 7
The prediction performance of the final multi-class DNN model using a specific population-based cohort.
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“Adaptive thermogenesis,” “Extracellular matrix disassembly,”

“Regulation of transport,” and “Regulation of cell motility.” The

enriched functions from the essential neurons of layer three

belonged to “Cell-cell adhesion,” “Ion transport,” “Apoptotic

process.” The first layer exhibits more general function categories

but more specific functions are appearing in subsequent neural

network layers.

To support and increase the biological insights extracted

from the essential neurons’ list of genes, we also performed

MSigDB enrichment. In this analysis, we only considered

MSigDB enrichments significant to at least three metastasis

sites. Only three enriched categories were significant to all

four sites, namely “Epithelial Mesenchymal Transition,”

“Apoptosis,” and “IL-2/STAT5 Signaling” (Table 2). The

apoptosis category is enriched based on the interpretation

of the neural network (Figure 9) and the MSigDB enrichment.

This is interesting as metastasis cells are subjected to various

apoptotic stimuli and epithelial-mesenchymal transition

(EMT) (which also features in the MSigDB enrichment)

allows a polarized epithelial cell to undergo several

biochemical changes to become a mesenchymal cell

phenotype with enhanced resistance to apoptosis and

increased migratory capacity and invasiveness and

production of ECM components (Jason et al., 2003; Kalluri

and Weinberg, 2009). Specifically, extracellular matrix

disassembly (a GO biological function highlighted by the

neural network) enzymes facilitates the remodeling of the

extracellular matrix to create a microenvironment in the

distant organ that promotes metastasis (Scheau et al., 2019;

Winkler et al., 2020). Cell-cell adhesion, another GO

FIGURE 8
The biological interpretation of our deep neural network approach.

FIGURE 9
A simplified network showing each layer’s enriched pathways based only on the metastasis sites.
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biological function highlighted by the neural network, is also a

key element of metastasis. For example, it has been shown that

S100A8/A9 from tumor cells bind to RAGE on myeloid-

derived suppressor cells (MDSCs) and promotes the

migration and accumulation of MDSC, while periostin

from MDSCs participates in pre-metastatic niche (PMN)

formation through promoting extracellular matrix

remodeling to facilitate the metastatic colonization of

disseminated tumor cells (Cheng et al., 2008; Sinha et al.,

2008; Wang et al., 2016). Overall, these biological functions

suggest the gene lists used in the DL model to perform the

prediction are to a large extent metastasis-specific and can be

used to retrieve metastasis-specific biological functions

beyond its metastasis site prediction capabilities (Sinha

et al., 2008).

We also performed DisGenNET enrichment. In this analysis,

we only considered DisGenNET disease enrichments significant

to at least two metastasis sites. Only eight enriched disease

categories were significantly associated with at least two

metastasis sites, namely Autoimmune Diseases, Carcinoma

breast stage IV, Cirrhosis, Dermatomyositis, Giant Cell

Tumors, Leukemia, Metastatic malignant neoplasm to brain,

and Rheumatoid Arthritis (Table 3). Four disease categories

are associated with cancer, and noteworthy is the late-stage

and metastasized cancer that is being picked up. Beyond this,

Dermatomyositis (Luu et al., 2015), Rheumatoid Arthritis

(Racanelli et al., 2008), and Autoimmune Diseases (Milkiewicz

et al., 1999) are recognized paraneoplastic syndromes, which are

symptoms that occur at sites distant from a tumor or its

metastasis site (Pelosof and Gerber, 2010). In addition, several

of our differentially expressed genes, including HLA-DMA,

SOCS1, HLA-C, CTNNB1, KRAS, MET, and CD244, are

associated with Liver Cirrhosis (Knouse et al., 2019), CD79A,

HLA-DMA, SOCS1, HLA-B, HLA-C, IFI35, CD68, MET,

PTHLH, CD244, and C2 with Rheumatoid Arthritis (Roy

et al., 2011), HLA-B, HPRT1, and C2 with dermatomyositis

(Bonnetblanc et al., 1990), and RB1, HLA-DMA, CXCR4, and

CTGF with Cirrhosis (Shah and Casciola-Rosen, 2015). We also

have several genes, including FTO, HLA-DMA, GAP43, SCN8A,

HLA-C, CD68, and CDR2, associated with Multiple Sclerosis

(Plantone et al., 2015), which suggest Multiple Sclerosis and

Cirrhosis may possibly be a paraneoplastic syndrome that arises

with metastasis.

We further determined the overlapping genes between the

primary and metastasis samples for the four sites. This analysis

includes only the genes used by the DL to perform the

classification. If we only considered genes common to at least

three sites, we found the products of two genes, HIP1 and

LARP4, with expression levels downregulated in the primary

samples but upregulated in the metastasis samples. HIP1 was

used by the DL to predict metastasis to the bone, brain, and lung,

while LARP4 was used to predict metastasis to the brain, lung,

and liver. This is interesting as HIP1 is one of the essential

proteins involved in clathrin-mediated endocytosis (CME)

(Chang et al., 2015), and crosstalk between CLCb/Dyn1-

mediated adaptive CME and epidermal growth factor receptor

(EGFR) signaling increases metastasis (Chen et al., 2017). Also,

LARP4, a known RNA-binding protein (RBP) (Yang et al., 2011;

Chothani et al., 2019) that repress or activate the translation of

target genes, change the cell shape (which has been correlated

with metastatic potential) and LARP4 depletion increases cell

migration and invasion (Lyons et al., 2016; Seetharaman et al.,

2016). Other proteins also upregulated and common to at least

three sites (but do not appear in the primary samples gene list)

include CC2D1A (Kumar et al., 2019), CD68 (Huang et al.,

2018), EFCAB1 (Fagone et al., 2017), HLA-DMA (Li et al.,

2020a), PRAME (Huang et al., 2016; Al-Khadairi et al., 2019),

and ULBP2 (Paschen et al., 2009), all of which was linked to

TABLE 2 MSigDB enrichment analysis.

p-value

MSigDB Bone Brain Lung Liver

Allograft rejection 2.60E-02 5.27E-03 Na 3.60E-03

Apoptosis 2.15E-02 2.00E-03 2.09E-02 2.15E-02

Coagulation 1.41E-02 na 1.82E-02 1.88E-02

DNA repair 1.53E-02 na 1.27E-02 2.02E-02

Epithelial mesenchymal transition 2.60E-02 1.98E-02 1.66E-02 2.60E-02

Glycolysis 2.60E-02 na 2.53E-02 3.11E-02

IL-2/STAT5 signaling 2.59E-02 2.02E-03 2.52E-02 2.59E-02

Interferon alpha response na 1.39E-03 8.68E-04 1.39E-03

mTORC1 signaling 2.60E-02 na 1.66E-02 2.60E-02

Oxidative phosphorylation 3.60E-03 na 1.37E-03 3.28E-04

UV response up 2.12E-02 1.63E-02 2.06E-02 Na

aEnrichment associations that are significant to at least three sites
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metastasis in previous studies. In fact, 87 % of the essential genes

are associated with metastasis-related functions based on the

current literature (Table 4).

4 Concluding remarks

Metastasis remains the leading cause of cancer-related deaths

worldwide, and our inability to identify the tumor cells colonizing

distant sites means that the physician cannot treat the metastasized

tumors. Here, we developed a DL model that can be fed raw gene

expression data to predict whether a sample is primary or

metastasized to the brain, bone, lung, or liver. The final multi-

class DNN model achieved more than acceptable prediction

performance in all categories. We achieved the best prediction

performance for the primary samples (AUC of 0.93), followed by

themetastasis to bone and lung samples (AUCof 0.88). On the other

hand, the metastasis to liver and brain samples achieved lower

prediction performance with an AUC of 0.84 and 0.82, respectively.

We observed the same trend when evaluating the prediction

performance using external data, i.e., the highest prediction

performance for the primary (AUC of 0.85) samples followed by

the metastasis to lung (AUC of 0.78), bone (AUC of 0.72), liver

(AUC of 0.61) and brain (AUC of 0.50) samples, respectively.

However, the prediction performance for the metastasis to the

brain and liver samples dropped by 32% and 23 %, respectively.

Many factors may contribute to the result we obtained for the

brain samples, as this data had the highest number of DEGs and

required the highest amount of top-ranked genes to be included

in the model, indicating biological complexity associated with the

metastasis to the brain. Additionally, the brain samples had less

than 50 primary samples. In contrast, we analyzed the metastasis

to bone, lung, and liver samples using more than 200 primary

samples (the number of metastasized samples used for each site

was similar, about 100 samples each). Beyond that, the brain only

had two samples in the test set for the external data that exhibited

the massive drop in prediction performance. Having this lower

number of brain samples may also be contributing to the much

lower prediction performance achieved with it. Thus, in the

future, we will re-establish the gene set that provides

maximum performance using a larger cohort of samples

(when the data become available). Nonetheless, we further

evaluated the prediction performance using samples from a

population-based cohort to show that the multi-class DNN

model achieved good prediction performance (AUC of 0.72)

when distinguishing between the primary and metastatic

samples, which shows the potential of our model.

We further designed the model’s workflow to provide a second

functionality beyond metastasis site prediction, i.e., to identify the

biological functions that the DL model uses to perform the

prediction. We achieved this by associating GO biological

functions (p-value < 0.05) with the neuron’s list of genes that

differentiate the primary samples from the metastasized ones in

the DL model. The critical neurons in each layer are grouped

depending on the functions enriched. Thus, the first layer exhibits

more general function categories, but more specific functions

appear in subsequent neural network layers. Finally, we

compared the enrichments retrieved through the DL model

neuron interpretations with the MSigDB enrichment analysis.

We found only a few functional categories common to both

analyses but several inter-related categories. For example, the

literature shows “Epithelial Mesenchymal Transition’ involves

‘Ion transport,” and “Extracellular matrix disassembly,” and it is

linked to “Cell-cell adhesion,” “regulation of cell motility” and

“apoptosis process” (Jason et al., 2003; Cheng et al., 2008; Sinha

et al., 2008; Kalluri andWeinberg, 2009; Wang et al., 2016; Scheau

et al., 2019;Winkler et al., 2020). Overall, these biological functions

suggest that the gene lists used in the DL model to perform the

prediction are to a large extent metastasis-specific, which is further

supported by literature showing 87% of the genes used by the DL

have already been linked tometastasis. These results clearly suggest

that our DL model can be used to retrieve metastasis-specific

biological functions beyond its metastasis site prediction

capabilities.

TABLE 3 DisGeNET enrichment analysis.

p-value

DisGeNET Bone Brain Lung Liver

Autoimmune Diseases 5.12E-04 na 6.43E-05 Na

Carcinoma breast stage IV 2.68E-05 na 4.90E-04 Na

Cirrhosis 3.80E-04 na 0.00E+00 1.37E-02

Dermatomyositis 2.57E-05 2.57E-05 Na Na

Giant Cell Tumors 5.69E-06 na 7.84E-08 Na

leukemia 7.13E-05 7.13E-05 Na Na

Metastatic malignant neoplasm to brain 1.84E-04 na 3.43E-07 Na

Rheumatoid Arthritis 4.84E-05 na 2.71E-06 Na

aDisease associations that are significant to at least two sites
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5 Availability

We also developed a web server that the scientific

community can access. The web-based tool, MetastaSite

https://www.cbrc.kaust.edu.sa/metastasite/, provides a

means to implement the final multi-class DNN model

developed in the current study. It allows the users to

predict the metastasis site (primary, metastasized to bone,

brain, lung, or liver). The user needs to provide the raw gene

expression for every sample.

TABLE 4 Literature linking the genes used by the DL to metastasis.

Gene Link Gene Link Gene Link Gene Link

ACTC1 Ohtaki et al. (2017) FTO Ding et al. (2020) NDUFC2-
KCTD14

NA RUBCN Marsh and Debnath,
(2020)

ADAM10 Xu et al. (2010) GABARAP Liu et al. (2021a) NF1 Kitamura et al. (2010) SCIN NA

ANO1 Zhang et al. (2021a) GAP43 Zhang et al. (2018a) NOL3 Medina-Ramirez et al.
(2011)

SCLY Hartung et al. (2017)

ATP5PD Song et al. (2016) GAPDHS Liu et al. (2017) OCLN Wang et al. (2018a) SCN8A (Hartung et al. (2017);
Lopez-Charcas et al.
(2018))

ATP5PO McLaren and University
of Western Australia,
(2009)

GINS3 Li et al. (2021) PACS2 Madreiter-Sokolowski et al.
(2021)

SIGLEC1 Strömvall et al. (2017)

C2 NA GNL3L Kannathasan et al.
(2020)

PCNX2 Yamaguchi et al. (2016) SLC6A16 Nałęcz, (2020)

C5orf22 Schulten et al. (2017) HIP1 Sun et al. (2021) PFAS Lv et al. (2020) SNORD107 Xu et al. (2016)

C7orf25 NA HIP2 Wu et al. (2020) PIAS1 Wang et al. (2018b) SNORD19B Xu et al. (2016)

CC2D1A Kumar et al. (2019) HIP3 NA PRAME Huang et al. (2016) SNORD42A NA

CD244 Johnson et al. (2003) HLA-B (Cordon-Cardo et al.
(1991); Jiang et al.
(2014))

PRKACA Honeyman et al. (2014) SOCS1 David et al. (2014)

CD68 Huang et al. (2018) HLA-C Cordon-Cardo et al.
(1991)

PRR14 Li et al. (2019a) SSH3 Hu et al. (2019a)

CD79A Luger et al. (2013) HLA-
DMA

Li et al. (2020a) PTHLH (Li et al. (2019a); Pitarresi
et al. (2021))

SSX1 NA

CD82 Di Giacomo et al. (2017) HPRT1 J Sedano et al. (2020) RAB15 Iacobas et al. (2018) ST20-
MTHFS

NA

CD83 Giorello et al. (2021) HPS4 Liu et al. (2018) RAB26 Liu et al. (2021b) SUOX Yano et al. (2021)

CDR1 Harrison et al. (2020) HSPA9 Yi et al. (2008) RAD51B Seguin et al. (2018) TEP1 (Hwang et al. (2001);
Yano et al. (2021))

CDR2 Balamurugan et al.
(2009)

IFI35 Hu et al. (2021) RB1 Ku et al. (2017) TMSB4Y Wong et al. (2015)

CHD1L He et al. (2012) IFITM2 Xu et al. (2017) RHOB Ju et al. (2020) TPT1P8 NA

CHRNA1 Chang et al. (2013) JAM3 (Xu et al. (2017); Zhou
et al. (2019a))

RHOBTB2 Ling et al. (2010) TREX1 Feng et al. (2016)

CTGF Okusha et al. (2020) KRAS Boutin et al. (2017) RPL13 Ebright et al. (2020) TUBA3C Zhou et al. (2019b)

CTNNB1 Wen et al. (2019) KRT1 Han et al. (2021) RPL21 Li et al. (2020b) TUBGCP3 NA

CXCR4 Zhang et al. (2021b) LARP4 Egiz et al. (2019) RPL9 Baik et al. (2016) UBA6 Cheng et al. (2021)

EFCAB1 Fagone et al. (2017) LCP1 Ge et al. (2020) RPP30 NA UBD Cheng et al. (2021)

ERCC3 Zhang et al. (2020) LDHAL6B (Ge et al., 2020; Liu et al.,
2020)

RPS24 Wang et al. (2020) ULBP2 Cheon et al. (2011)

ESR2 Song et al. (2018) MET Zhang et al. (2018b) RPS6KA2 NA USP6 Zeng et al. (2018)

FAM153A NA MME Li et al. (2019b) RPS8 Mao-De and Jing, (2007) ZNF236 NA

FAXDC2 NA MMP Gonzalez-Avila et al.
(2019)

RRP12 Hu et al. (2019b) ZNF764 NA

FGF23 Ewendt et al. (2020) NBEAL2 Rae et al. (2015)
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