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Post-transcriptional regulation in multicellular organisms is mediated by

microRNAs. However, the principles that determine if a gene is regulated by

miRNAs are poorly understood. Previous works focused mostly on miRNA seed

matches and other features of the 3′-UTR of transcripts. These common

approaches rely on knowledge of the miRNA families, and computational

approaches still yield poor, inconsistent results, with many false positives. In

this work, we present a different paradigm for predicting miRNA-regulated

genes based on the encoded proteins. In a novel, automated machine learning

framework, we use sequence as well as diverse functional annotations to train

models on multiple organisms using experimentally validated data. We present

insights from tens of millions of features extracted and ranked from different

modalities. We show high predictive performance per organism and in

generalization across species. We provide a list of novel predictions

including Danio rerio (zebrafish) and Arabidopsis thaliana (mouse-ear cress).

We compare genomic models and observe that our protein model

outperforms, whereas a unified model improves on both. While most

membranous and disease related proteins are regulated by miRNAs, the

G-protein coupled receptor (GPCR) family is an exception, being mostly

unregulated by miRNAs. We further show that the evolutionary conservation

among paralogs does not imply any coherence in miRNA regulation. We

conclude that duplicated paralogous genes that often changed their

function, also diverse in their tendency to be miRNA regulated. We conclude

that protein function is informative across species in predicting post-

transcriptional miRNA regulation in living cells.
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Introduction

MicroRNAs (miRNAs) post-transcriptionally regulate genes

across all animals and plants. miRNAs are a class of short

(~22 nucleotide) noncoding RNAs (ncRNAs). Mature

miRNAs act via complementarity with their target mRNAs.

This pairing takes place mostly at the 3′-UTR of the

transcripts (Romero-Cordoba et al., 2014). In mammals, such

binding leads to translational repression of the target and direct

or indirect degradation of the miRNA-targeted transcript via

deadenylation and decapping of its target (Valencia-Sanchez

et al., 2006; O’Brien et al., 2018). miRNAs play key roles in a

broad range of cellular processes and the response to changes in

the environment (Leung and Sharp, 2010). The miRNA profile is

tissue-specific and an indicator of cell identity (Mahlab-Aviv

et al., 2021). Their ability to maintain cell and tissue homeostasis

is critical, with many miRNA genes implicated in human diseases

such as metabolic, inflammatory, and neurodegenerative diseases

(Vishnoi and Rani, 2017). In cancer samples, the miRNA

composition changes along with the tumorigenic process.

Therefore, the miRNA profile carries useful diagnostic and

prognostic potential for tumor typing and patient survival.

With the maturation of deep sequencing methodologies for

small RNA identification, the number of reported mature

miRNAs has drastically increased. The exhaustive catalog of

miRNAs (miRBase v. 22) (Kozomara et al., 2019) reports on

1917 genes that account for 2625 mature miRNAs from humans,

and 1,234 and 1978 genes and mature miRNAs from mice,

respectively (Quillet et al., 2019). With a set of strict criteria

imposed by miRBase, only a quarter of the listed miRNAs from

humans are labeled with high confidence. Many of the rest have

yet to be experimentally confirmed (Alles et al., 2019). From the

standpoint of miRNA targets, it has been demonstrated that

many human genes are under selective pressure to maintain

miRNA pairings (Friedman et al., 2009). Despite an increase in

the number of validated miRNAs, the estimated number of

regulated genes remained between 60 and 80% of all human

protein-coding genes (Sayed and Abdellatif, 2011; Huang et al.,

2019).

In the last 15 years, computational miRNA-target prediction

algorithms and tools have been developed (Sethupathy et al.,

2006; Yue et al., 2009; Riffo-Campos et al., 2016). Almost all of

these predicting tools are based on features derived solely from

the genomic sequence. Major features include seed

complementary, evolution conservation, free energy, CG

content, the relative position of miRNA binding sites (MBS)

at the 3′-UTR, and more (Ritchie et al., 2009). Most tools suffer

from a large number of false positives, poor accuracy and

sensitivity, and show a great degree of inconsistency among

them (Min and Yoon, 2010).

High throughput methodologies (e.g., CLIP-seq, CLASH,

CLEAR-seq) were used to conduct hundreds of experiments

to infer miRNA-mRNA interactions (Li et al., 2014;

Karagkouni et al., 2018). These experimental methods allowed

us to assess the reliability of the different miRNA-mRNA

prediction models. In general, the match between the

experimental results and the computational predicting

methods is poor. Experimental observations (e.g., CLIP data)

and sequence-derived information about miRNAs and mRNAs

are used to determine whether a specific transcript is a genuine

target of miRNAs.

In this study, we address the question of whether a gene is a

target of direct regulation by any miRNA based on their protein

products, using a supervised machine learning approach. The

goal is to predict if a protein is subject to direct regulation by

“any” miRNA at a central probability. The underlying notion is

that the coding regions of most genes are under strong negative

selection forces and potentially include information that

determines the essentiality of a gene under miRNA regulation,

irrespectively of a specific combination of miRNAs. We use

miRTarBase 2020 (Huang et al., 2020) as an experimentally

validated ground truth dataset. We trained the system using

experimentally validated resources for human, mouse, and other

model organisms and reached high performance on the task of

predicting gene-miRNA interaction, using primarily protein and

minimal sequence level attributes. We included multimodal

inputs from proteins and generalized across different species.

We also evaluated genomic information and compared it to the

proteomic model. We present an in-depth analysis of both novel

and established features, extracted automatically using an AI-

assisted machine learning framework (SparkBeyond). We

present a list of candidate miRNA gene predictions from less

studied organisms. Our model highlights the value of

information embedded in the functional proteome in

revealing the complexity of regulation by miRNAs.

Methods

Database: miRNA-target interactions

We used miRTarBase 2020 (V9) as a gold standard for

miRNA-Target interactions (MTIs) (Huang et al., 2020).

miRTarBase compiled experimentally validated MTIs, mostly

from mice and humans. The entire database collected 4.5 M data

points, based on CLIP-seq experiments, as evidence for human

MTIs (covers ~3000 miRNAs and 17,400 genes), and 0.7 M

mouse MTIs (covers 2250 miRNAs and 14,300 genes). It is

used as a ground truth for training. The dataset was

downloaded from miRTarBase 2000 (Huang et al., 2020). The

experimental results in miRTarBase 2020 (V9) have been

associated “weak” or “strong” evidence. Weak support refers

to data collected from high-throughput experiments (e.g., CLIP-

based NGS experiments, pSILAC proteomics), while strong

evidence is compiled from targeted experiments such as

quantitative RT-PCR (qRT-PCR), Western blots, and reporter
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assays. We defined a target as positive (i.e., miRNA regulated) by

having “strong” experimental evidence or at least two unique

“weak evidence” experiments. The remaining genes from

miRTarBase with a single “weak” experimental evidence were

labeled as “likely positives” (0). These were treated as positives for

the purposes of downstream analyses, unless otherwise stated.

We note that excluding these “weakly labeled” samples improved

modeling performance across all organisms (not shown). All

other genes were marked as “negatives”, i.e., not targeted by the

specific miRNAs (“-1”).

Database: Proteome

Proteins were downloaded fromUniProtKB for all organisms

analyzed in this study. We used curated and manually reviewed

SwissProt proteins (Breuza et al., 2016), except for organisms that

are limited in the protein annotations where all full-length

proteins were used (excluding fragmented sequences). Proteins

annotated with no experimental evidence for their existence by

UniProtKB-SwissProt were excluded, as by definition there could

be no experimental evidence for their miRNA regulation.

Altogether 45,846 proteins were analyzed. We also analyzed

the proteomes of Danio rerio (zebrafish) and Arabidopsis

thaliana (mouse-ear cress).

We identify genes with their matched proteins. Proteins from

UniProtKB were mapped to the genes listed in miRTarBase,

TargetScan and TreeFam according to their primary gene name.

To connect genomics with protein identifiers, we mapped human

genes by their primary gene names. To avoid inaccuracies, we

applied a strict rather than fuzzy mapping, and uniquely mapped

76% of the human proteins across these different resources. A

negligible number of proteins with no primary gene name were

removed.

Extracted features

A wide range of metadata about each protein from UniProtKB

was used as proteins’ features. These included the proteins’ amino

acid sequence (e.g., amino acid composition, counts, n-grams),

molecular weight, protein length, functional keywords (e.g.,

secreted, membranous), gene ontology (GO) annotations for all

three branches: molecular function, cellular component, and

biological process), pharmaceutical uses, tissue specificity, protein

family, post-translational modification, involvement in disease,

compositional bias, non-terminal residues, and more. In addition

to the information associated with the proteins by UniProtKB, we

also derived engineered features based on the primary features.

These quantitative features include amino acid composition and

k-mers, n-grams (e.g., combinations of keywords), and counts of

known annotations (Ofer and Linial, 2015).

As a separated set, we extracted limited genomic data for the

human proteome using the Biomart querying system of Ensembl

(Yates et al., 2016). The derived features included: The length of

the UTR (5′ and 3′), the counts of alternative splicing,

chromosomal position, nucleotide counts, k-mers and their

frequency, k-mer features extracted from the 3′-UTR genomic

sequence, and transcript length.

AutoML and feature extraction

Feature extraction, engineering, selection (Ofer et al.,

2021), and ML model selection, parameter tuning, and

training were performed using the SparkBeyond autoML

framework (See patent/US20170017900A1). Previous work

has shown the benefit autoML models, in order to

comprehensively and automatically find possible predictive

signals in complex data, including in biology and healthcare

(Cohen et al., 2021). The system automatically extracts and

ranks a wide range of compositional features from training

data. The system applies hyperparameter tuning and

evaluation of machine learning models. In this study, the

SparkBeyond framework was applied to genomic,

proteomic, and annotation data. Across the different

problem formulations, the system generated on average

~22 million candidate features per organism, prior to

selection. A maximum of 300 features are selected and used

for the ML models, based on the training data. The models are

then evaluated on a held-out test-set, or a new test data-set (As

in Table 2). Features include textual features (n-grams,

k-mers, tokenization), counts, aggregations (e.g., max, min,

average, decile), interactions (e.g., length of a sequence

divided by weight), missing value imputations, similarities

and more.

We use RIG (Relative Information Gain) as a measure of

feature importance. RIG refers to the information gain

measured as a reduction in entropy produced from

partitioning a set with attributes a and finding the optimal

candidate that produces the highest value.

IG(T, a) � H(T) −H(T|a), IG(T, a) � H(T) −H(T|a)
Where T is a random variable, and H (T|a) is the entropy of T

given the value of attribute a. It encapsulates both the uplift of a

feature (the increase in a class’s likelihood, given a binary

partition induced by the feature), and the support (the

number of samples covered by the feature). A feature with a

high RIG is expected to be relevant for any model, given that it

will have good support and lift.

We report as final evaluation on a held-out test set,

comprising 20% of the data. Note that the feature

extraction, selection and model evaluation and tuning is

performed only against a subset of the training data, to
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avoid the risk of overfitting and model leakage. To improve

interpretability, we limited the system to prefer “simple”

features, at a slight cost to performance. Features are

ranked by their marginalized, non-redundant mutual

information score, as well as a custom regularization

scheme to favor semantically simpler features (i.e., less

composite functions). Performance in human only data was

based on 20% held out stratified collection of 3810 test

samples. The protein sequence only model uses just the

statistics from the primary sequence [e.g., length, n-grams,

amino acid composition (Ofer et al., 2021)], without any of the

additional annotations or metadata.

We used standard definitions for the model’s performance,

including precision and recall. In addition we report accuracy =

(TP + TN)/(P + N), and the F1-score = 2 TP/(2 TP + FP + FN)

using routine notations of T (true) and F (false), P (positive) and

N (negative).

Software

Data processing and analysis used the Python Pandas

(McKinney, 2010), and Scikit-learn software packages

(Raschka and Mirjalili, 2019).

Code, figures, processes and data are available at: https://

github.com/LinialLab/microRNA-Protein-Regulation.

Supplementary Table S1 provides links to a collection of analyses

for each of the ML steps including pre-processing, features,

predictions, model. The analyses allow an in-depth assessment

of feature clustering, summary tables, and plots for

visualizations). See reports in https://github.com/LinialLab/

microRNA-Protein-Regulation/tree/main/reports/.

Results

Problem definition

In the context of cells and tissues, genes that respond to

miRNA regulation comprise direct targets (i.e., miRNA binds to

the 3′-UTR of a gene’s mRNA, affecting transcript stability and

inhibiting translation) and indirect effects (e.g., miRNA that

downregulates a transcription factor (TF), leading to

attenuation of transcription of a set of TF-responsible genes).

Another layer that is critical for assessing the regulation by

miRNA concerns the combinatorial nature of the mapping

(Balaga et al., 2012). In addition, quantitative competition on

miRNA binding sites (MBS) results from a competition on the

accessibility of the targets (Mahlab-Aviv et al., 2019). Such

competition is governed by alterations in miRNA quantities

and composition (Mahlab-Aviv et al., 2021), and the presence

of circular RNAs (circRNAs), pseudogenes and long ncRNAs

(lncRNAs) with MBS. This paradigm is referred to as competing

endogenous RNAs (ceRNAs) (Denzler et al., 2014; Lai et al.,

2016).

In this study, we question whether a coding gene is subject to

direct regulation by any miRNA. Answering this question can

lead to the design of in-depth experiments and computational

screening. It can also lead to an accurate estimate of the outcome

following cellular manipulation (e.g., by applying drugs).

Moreover, generalization from miRNA-regulated genes across

species contributes to the study of complex diseases in humans

(e.g., Parkinson’s disease) in simpler organisms (e.g., zebrafish).

This may lead to unveil disease mechanisms in a controlled

setting. Manipulation of combinations of miRNAs is a valuable

methodology for dysregulating biological pathways. To activate

such an approach, one needs to know the genes that are likely to

be subjected to miRNA regulation (Naamati et al., 2012). To

answer whether a coding gene is subject to direct regulation by

any miRNA, we considered features from a complete set of

validated proteins within each of the studied organisms

(coined “reviewed proteome” by UniProtKB-SwissProt). Our

problem setting was defined as binary classification using

supervised machine learning models. Scikit-learn’s linear

logistic regression or random forest models were selected as

the best models across the different runs by the SparkBeyond

autoML framework (see Methods), outperforming other model

architectures. Importantly, functional annotation provided by

UniProtKB-SwissProt does not include miRNA-related

knowledge, and potential target “leaks” were carefully

excluded or filtered for (e.g., requiring direct evidence for a

gene’s transcript).

We trained models on data and miRNA regulation

annotations from different organisms. Supplementary Table

S1 summarizes the data used for the studied organisms’

proteomes. We combine diverse protein functional

annotations along with traditional sequence and biophysical

features, as well as quantifying the relative contribution of

universal genomic sequence-based features (i.e., not miRNA

family specific). We identified key features that contribute to

the models and suggest shared principles in miRNA regulation

across species.

Inconsistency in existing miRNA target
predictions

Existing tools for predicting miRNA-gene interactions

demonstrate poor consistency between tools and major

resources. It is anticipated that it is mostly due to the very

large number of false positives (Ding et al., 2010; Mackowiak,

2011). The question of what makes transcripts in any

organism a good target could not be answered based on

current tools (Min and Yoon, 2010). In an effort to reduce

the flood of false positives, statistical framework across

different predicting algorithms was developed, with the
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notion that miRNAs work together in a commutative fashion

(Balaga et al., 2012; Friedman et al., 2014).

Experimentally validated targets (as derived from

miRTarBase 2020) are expected to be of higher quality and

consistency, and thus are used as the “ground truth”

annotations. However, such annotations suffer from inherent

biases. For example, it is likely that highly expressed transcripts

will be detected more often than lowly expressed ones. Similarly,

miRNAs that are expressed under defined conditions might be

underrepresented experimentally. Obviously, some organisms

are studied more than others (e.g., human and mouse),

resulting in a biased view of how many miRNA targets there

are in most organisms. Including data from experiments and

evolutionary considerations were applied to overcome such

limitations [e.g., (Gerlach et al., 2009)]. Nevertheless, the

Rattus norvegicus, which is a commonly used model organism

for researching human diseases and drugs, has twelve times fewer

(validated) miRNA targeted genes relative to the mouse (3.1 vs.

37%). Figure 1A illustrates the disparity in the fraction of genes

predicted to be regulated by miRNAs (as predicted by

TargetScan) and those experimentally validated (by

miRTarBase). We illustrate the TargetScan (release 8.0)

(McGeary et al., 2019) as a reference point. It provides a score

for each pair based on genomic and biochemical models of

miRNA binding specificity. However, the algorithm was

mostly tuned as a miRNA-mRNA predicting tool for

mammals. The discrepancy in the proteomes of D. rerio

(zebrafish) and C. elegans (worm) emphasizes the

unproportionate number of predictions by TargetScan in view

of the shortage of experimentally validated observations.

Figure 1B shows that inconsistency is also detected in the

number of confirmed miRNA genes. The proportion of

confident miRNAs reported by miRBase reaches 70% of the

entire miRNA gene list. In D. melanogaster, however, it is only

57% (out of a total of 258 genes reported in miRBase)

(Supplementary Table S2). In humans, the fraction of

confident miRNAs is only 26% (505 out of 1917 miRNA

genes) and poor confidence miRNAs are those with minimal

expression level or non-canonical stem-loop structure.

Prediction of miRNA regulation across
organisms

For each organism, we trained a model on 80% of its curated

proteins (proteome filtered collection, see Methods) and

presented results on the disjointed remaining 20% test set.

Labels (miRNA regulation/non-regulation) were derived from

experimentally validated miRNA regulation data (miRTarBase

2020). A few proteins in humans that lacked primary gene names

were excluded in advance (a total of 66 out of the 18,874 proteins,

leaving 18,808 valid proteins for the analyses). We identified 76%

of human genes and only 37% of mice as regulated (validated)

genes, with lower rates for other organisms.

Table 1 shows the performance of the proteinmodels for different

model organisms. Models were based on annotated protein data

(coined “reviewed”). Model results are shown for the test set (which

was not used in model training). We consider total instances as the

number of genes afterfiltering and assigning a uniquemapping across

the different resources. The percentage of validated miRNA

regulation refers to experimentally validated targets. The

performance is presented according to the area under the receiver

operating characteristic curve (rocAUC), precision, and recall (of the

minority class) on the test set. We concluded that, despite the low

coverage of annotated proteins in the fly and worm proteomes, the

machine learning-based model successfully characterized genes that

FIGURE 1
miRNAs and regulated genes by species. (A)Number of proteins fromUniProtKB/SwissProt reported as “reviewed proteome” (seeMethods) and
the number of reported targets from mirTarBase as high confidence (by evolutionary conservation) reported by TargetScan, for five model
organisms. (B). The number of miRNA stem-loop genes (miRBase) and mature miRNAs (miRTarBase) for the model organisms as in (A).
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are apparently regulated by miRNAs. It also emphasized the

commonalities and differences in miRNA regulation across model

organisms.

In mammals, it has been shown that most genes are

directly regulated (based on CLIP experiments). However,

the extent of miRNA regulation in invertebrate organisms

remains unknown. Table 1 also tests whether a strict

selection of the trained set of curated and well-annotated

proteins (Reviewed, R) impacted the performance of the

miRNA-regulatory predictor. We observed that for some

of the tested organisms, the fraction of validated miRNA

targets among the reviewed proteins is very small (e.g., 1%

for D. rerio), which limits the ability to learn from this small

intersection. In contrast, the performance of the model for A.

thaliana which has a negligible number of experimentally

validated miRNA-regulated genes is higher for the curated

set relative to the full proteome (Table 1). We reran the

models for C. elegans, and D. rario with the full-length

proteome (marked All) and report on a substantial

improvement in the rocAUC for models trained on the

larger set.

Generalizing between species

In addition to developing a species-centric model, we

evaluated the ability of the models and features to generalize

between species. We trained a model on all human proteins

and evaluated it using all mouse proteins as a test set, and

vice versa (mouse to human; Table 2). We observed an

excellent stability of the results, with performance

dropping only slightly compared to a dedicated model

trained on the species’ own data. This supports our use of

protein-based models to predict between different species,

arguing that functional attributes generalize well between

species. We show that the model trained on the reviewed

proteomes or mouse led to improved performance for the

zebrafish, fly and worm (Table 2). We concluded that

TABLE 1 miRNA predictions per organisms.

Species proteinsa Precision (%)b Recall (%)b Total proteins Validation as miRNA regulated (%) rocAUC

H. sapiens (R) 63.4 27.8 18,808 76.0 76.9

M. musculus (R) 57.1 37 16,355 37.0 67.6

R. norvegicus (R) 33.3 4.3 7,519 3.1 87.4

D. melanogaster (R) 33.3 10 3,140 1.5 67.5

D. rerio (R) 0 0 2,799 1.0 79.0

C. elegans (R) 50 18.1 2,412 2.4 65.5

A. thaliana (R) 85.7 46.1 11,876 0.3 97.0

D. rerio (All) 72.7 40 24,730 0.7 93.6

C. elegans (All) 90.4 34.5 8,577 2.7 85.5

A. thaliana (All) 80 47.0 19,260 0.3 90.1

aProteins extracted from UniProtKB-SwissProt. R indicates the reviewed and annotated protein set. The unified set including UniProt-TrEMBL, is marked as All.
bPrecision, Recall values are for the predicted minority class, at default model threshold cutoff.

TABLE 2 miRNA predictions between organisms.

rocAUC scorea Trained on human Trained on mouse

Evaluated on H. sapiens (R) 76.9 64.6

Evaluated on M. musculus (R) 75.0 67.6

Evaluated on R. norvegicus (R) 78 79.6

Evaluated on D. melanogaster (R) 73.4 77.9

Evaluated on D. rerio (R) 63.6 70.3

Evaluated on D. rerio (All) 76.2 68.5

Evaluated on C. elegans (R) 57.7 59.6

Evaluated on C. elegans (All) 51.0 60.4

aProteins extracted from UniProtKB-SwissProt marked as reviewed and annotated protein set (R). In bold face are the higher performance for each species protein set, according to the

training model.
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training on high quality species allows reliable model

generalization.

Protein features predict miRNA regulation

We observed a number of predictive attributes that were

consistent across different iterations and even different

organisms. We identified global attributes that are clearly in

favour (or disfavour) of miRNA regulation. Features were ranked

according to the calculated RIG (relative information gain)

values, with higher RIG implying lower uncertainty for the

target under the feature’s induced partition, i.e., greater

information about it (see Methods). A full ranked list of

features and their statistical properties is in Supplementary

Table S1.

A high RIG value encapsulates a high degree of confidence

with strong statistical significance for the discrimination power

(chi2 p-value <1.0E-04 on the test set). Figure 2 shows the

partition of the top 15 features with high uplift in

discriminating for miRNA regulation (Figure 2A) and not

being miRNA regulated (Figure 2B). For example, long

protein length, identified with an optimal threshold of under

349 amino acids, with sequences shorter than this being 1.38 fold

more likely to be associated with a gene that is not regulated by

miRNAs (marked as prediction = 0). In the case of protein length,

there are no missing values (i.e., all have a transcript sequence

from which protein length is derived). However, the support for

other features is often very limited. For example, there are only

232 proteins in the training set with the “sensory” keyword,

which accounts for 2.4% of all proteins. For this selected set, the

tendency to not be miRNA regulated is substantial (2.57 fold).

Among the top features is membership in GPCR family 1

(associated with the olfactory receptors), which is 2.41 times

less likely to be regulated (Figures 2, 3). Features directly

associated with protein signaling, localization, and stability,

FIGURE 2
Selection of impactful features from the human proteinmodel. (A)miRNA regulated, (B) not regulated bymiRNA. The x-axis is the lift of selected
features relative to the class prior baseline (76% regulated, 24% not regulated). All above features have an uncorrected p-value at least under 0.0001,
using a Chi2 test on the test data. Full list of features and statistics in Supplementary Table S3, along with ranking by information gain (RIG). Note the
different scale of the effect in (A,B). CC: Cellular component branch of GO annotations.
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such as post translational modification (PTM) and alternative

splicing, are significant for predicting miRNA regulation. For

example, proteins involved in the ubiquitination process (labelled

“ubl”) are in favour of miRNA regulation by 1.26 fold, suggesting

that gene regulation may involve multiple regulatory

mechanisms, including dynamic tagging for degradation.

Other annotations (from Gene Ontology, GO), such as

subcellular components (e.g., cytosol, nucleoplasm) and

interactions with RNAs (e.g., RNA binding or

ribonucleoproteins), also contributed to the models’ success.

Across the different organisms, membership in various

protein families was selected as a major feature, with most

(but not all) members of some families sharing similar

regulatory trend. Features related to amino acid sequence

composition were also informative, e.g., having more than a

single methionine or an especially high percentage of lysine (K).

However, these characteristics are most likely a result of the

underlying codon frequency (Supplementary Table S1) or

indirectly a reflection of specific structural/functional families.

The selection of top features is based on a combination of the Lift

and RIG values to ensure maximal information gain. For

example, in the model developed for H. sapiens, “feature

contains modified residue” which specifies a modified residue

for any PTM, provides the same information as the feature

labelled “nonEmpty (PTM)”. This is evident when comparing

all parameters, such as the enrichment for being a miRNA target

relative to the prior baseline (Lift, x1.14), the number of genes in

the category (support, 50%), and the RIG value (0.058). For this

example, the two features are identical in their contribution to the

model. Thus, only one is selected to listed among the top features.

A list of selected features and statistics is available in

Supplementary Table S3. A detailed technical report that

includes all features and their contributions is provided in the

research GitHub. We included the model and SHAP based values

(Mangalathu et al., 2020). We tested whether combined model

for human and mouse is beneficial, we applied the decision tree

model of XGBoost (Chen and Guestrin, 2016) trained on the

combined datasets of human and mouse. Supplementary Table

S3 provides the top 110 features along with their statistical

analysis. The list of features according to their SHAP values is

available (Supplementary Table S1, test_SHAP_features). We

expect that some of these features may be confounded by the

aforementioned higher-level functional properties.

Another notable set of features relates to tissue specificity.

Table 3 shows the contributions of the different tissues and

organs. This set of features aligns with the accepted notion that

miRNA expression profiles are tissue-specific and effective at

distinguishing between tissues (Ludwig et al., 2016; Rasnic et al.,

2017). However, it is unknown whether some tissues are more

amenable to regulation than others. Most tissue specificity

features were in favor of miRNA regulation (prediction = 1),

contributing to the discriminative power by ~1.2 fold lift and a

FIGURE 3
Protein families by mean percentage of miRNA regulation predictions of their members. Families defined by UniProtKB. Examples from human
families are partitioned by the prior rate for miRNA regulation of 75% (dashed line). The p-value for each family member is marked by the two-sided
binomial test. The most significant families (p-value <1E-6 are indicated) are listed, colored green and orange by their predicted values of 0 and 1,
respectively. Supplementary Table S4 lists protein families along with their prediction statistics.

Frontiers in Molecular Biosciences frontiersin.org08

Ofer and Linial 10.3389/fmolb.2022.916639

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.916639


RIG of ~0.01. Interestingly, the testis was an exception, with a

2.6 fold effect against miRNA regulation. The statistical results

(Table 3) were also validated by a Chi2-based hypothesis test,

complying with p-values <0.001. In this test, we measure the

probability of observing a Chi2 deviation between the expected

and observed labels of this extreme or greater (p-value), on the

test set.

Coherence among functional groups in
miRNA regulation

We tested functional groups according to the UniProtKB

family relations. The most significant family groups,

characterized by their average regulated fraction, are shown

(Figure 3). Examples with statistically significant statistics (p <
0.001) are listed. There are 475 protein kinases, of which 85%

have been shown to be under miRNA regulation. The key

signaling proteins of small GTPases (e.g., Ras, Rho) are also

shown to be regulated (160 proteins, 92% are miRNA regulated).

In other protein families, such as Histone H2A and H2B, none of

the 17 proteins are miRNA regulated. Supplementary Table S4

lists protein families along with their prediction statistics.

miRNA predictions in novel organisms

We examined putative predictions for less annotated model

organisms such as D. rario (zebrafish) and A. thaliana (mouse-

ear cress). 355 miRNA genes in D. rario (216 high confidence by

miRBase) and 326 miRNAs in A. thaliana (177 high confidence

by miRBase) were identified from genome and RNA-seq

experiments (Zhan and Lukens, 2010). However, these

organisms have a low number of experimentally validated

miRNA targets, with just 187 and 70 for D. rario and A.

thaliana, respectively. This is despite a comparable fraction of

their genes being regulated according to computational

predictions (e.g., Figure 1A). We focused our analysis on the

D. rario with its 25,919 known proteins as retrieved from

TargetScanFish. We included in the prediction scheme all

non-fragmented proteins, irrespective of their annotation

status. Our model, trained exclusively on annotated human

genes, predicted miRNA regulation in 87% of the

22,759 genes of D. rario and 83% of the 30,502 genes of A.

thaliana.

Compared to the validated shortlist of known miRNA

targets, our “positive” predictions match the quantities

observed in the well-studied humans and mice (~82%). Our

predicted labels also have a better concordance with TargetScan

labels (Pearson correlation = 0.11) than with the small, non-

represented experimentally validated sample labels (Pearson

correlation = 0.027), further hinting that to a large degree,

genes that are likely miRNA candidates have not yet been

validated. Filtering the putative TargetScanFish to include only

candidates from conserved miRNA families yields similar,

improved results with a correlation of 0.12, supporting the

above hypothesis. For all predictions for D. rario and A.

thaliana (see Supplementary Table S1, in S2 ‘reports’ for

zebrafish and thale predictions).

Shared miRNA regulation by protein
function

Our predictions suggest that miRNA regulation is prominent

also in organisms lacking extensive experimental studies. The

information provided to the predictor was restricted to

proteomic and global functional information (see Methods).

We list genes from D. rario that were strongly predicted to be

under the miRNA regulation scheme but lack experimental

evidence. Supplementary Figure S1 shows a few homologous

genes of D. rario genes that share function with human and

mouse and were also among the top predictions of miRNA

regulation, with no known experimental evidence. For

example, the PARK7 gene (also called DJ-1) shares 91.5%

identity at the protein level between humans and mice. These

are close homologs of park7 in zebrafish (with 83.1 and 81%

sequence identity in human and mouse, respectively). However,

applying TargetScan applied in a stringent mode for including

only reliably conserved miRNAs shows that while there is no

TABLE 3 Tissue specificity features.

Feature - tissue specificity Dominant prediction RIGa Support (%) Lift 1b Lift 0b

Contains “muscle” 1 0.012 13.22 1.19 0.55

Contains “heart” 1 0.011 13.96 1.18 0.57

Contains “brain” 1 0.008 17.48 1.14 0.67

Contains “testis” 0 0.007 0.92 0.33 2.57

aRelative information gain.
bLift indicates the effect fold for the feature on the prediction of being (Lift 1) and not being (Lift 0) miRNA, regulated.

They emphasize which class (1 - regulated, 0 - not regulated by miRNA) the feature is strongest forthe lift values refer to how much more likely the class is, given that feature. e.g., 1.2× for

class 0 = class 0 is 20% more likely when that feature is true.
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miRNA binding site in mouse transcript

(ENSMUST00000030805.8), and only a single miRNA binding

site in human ENST00000493678.1 transcript, TargetScan

predicts 13 different miRNAs (total of 18 binding sites) in the

regulation of Park7 homolog (Maillard deglycase) from zebrafish.

Additional examples include the important cancer driver genes

PKD2 and APC (Supplementary Figure S1).

Table 4 lists gene candidates with a high probability of being

miRNA regulated in zebrafish but were not identified as such by

TargetScanFish. Note that these highly predicted genes act in the

nuclei during development, and are subjected to post translational

modifications (PTMs). For full list of UniProtKB keynote see

Supplementary Table S5. As noted, this specific model did not

use any genomic or 3′-UTR length information. For most of the

listed genes, zebrafish-human orthologs are associated with human

disease (marked D, Table 4).

Integrating genomic information into a
unified model

Most computational prediction tools and algorithms for

miRNA-mRNA interactions are based on sequence pairing of

miRNAs to the sequence at the 3′-UTRs. We tested whether the

information that is captures by the seed (6-mer) can be used to

replace the information gained from the protein-based model. To

this end, we added an additional set of genomic features extracted

from the gene’s summary statistics (length, CDS length, nucleotide

composition), the 5′-UTR and 3′-UTR length, and the number of

splicing variants. We repeated the model development by adding

to the training binary character n-grams of size two to four and five

to six from the 3′-UTR, did not improve the model performance

and was not used in the final models. Despite the observation that

minimal seed (6-mer) is used as the most informative feature in

determining the MBS, the performance of a model using only the

genomic features was inferior to that of the protein-informed

model (Figure 4). Note that our model does not consider the

number of miRNA binding sites, rather it includes the 3′-UTR
length (which is obviously associated with an increased probability

of miRNA binding sites). The model outperforms a naive Boolean

heuristic based on the existence of a 3′-UTR. The most important

information at the genomic level is that a gene has a long sequence

(e.g., total transcript length >540 nt) and/or a long 3′-UTR.
Another highly informative feature of a gene is its chromosome

position (i.e., start and end). Another unexpected observation was

related to the relative location of genes on the chromosomes.

Specifically, genes located towards the “start” of the chromosome

were less likely to bemiRNA targets. Notably, none of the extracted

genomic features relate to any information on specific miRNA

sequences, the presence of amatch with a seed, or folding energy or

other energetic stability data on pairing (e.g., n-grams

complementary to a list of seeds were not included).

Combining the modalities into a single, unified model

outperformed any of the individual ones (Figure 4). This model

reached rocAUC of 78%.

Evolutionary related genes display
regulation coherence

We further tested whether genes that share evolutionary

ancestry (i.e., orthologs) share miRNA regulation coherence.

From a sequence perspective, the 3′-UTR is not under strong

purifying selection across species, and in general, conservation in

the 3′-UTR are minimal among orthologs. To test the cases in

which miRNA regulation has been specialized, we used TreeFam

as a source for family relationship groups (Schreiber et al., 2014).

There are 8,819 unique TreeFam families and 5,377 protein

families in this data. The question we asked is whether genes

that belong to the same protein family share the same tendency

towards miRNA regulation. We matched the TreeFam groups

and UniProtKB-SwissProt defined protein families according to

TABLE 4 Zebrafish miRNA predictions.

Gene
name

Protein name (description) miRNA
regulation score

39 UTR
length (bp)

aHuman disease (D) UniProtKB keywords (K)

hnrnpub Nuclear ribonucleoprotein U-like protein 91.8 1789 (D) Developmental and epileptic encephalopathy 54. (K)
Phosphoprotein. Ribonucleoprotein

utp25 U3 small nucleolar RNA-associated protein
25 homolog

90.8 367 (K) Developmental protein. Nucleus. Phosphoprotein

tbxta T-box transcription factor T-A (Brachyury
protein homolog-A) (Zf-T-A)

89.8 863 (D) Sacral agenesis with vertebral anomalies. (K) Developmental
protein. Transcription regulation. Wnt signaling pathway

ttn.1 Titin, tandem duplicate 1 89.6 1,001 (D) Muscular dystrophy; Dilated cardiomyopathy 1G;
Hypertrophic cardiomyopathy 9. (K) ATP-binding.
Immunoglobulin domain. Kinase

mib1 RING-type E3 ubiquitin transferase (EC
2.3.2.27)

89.5 1,556 (D) Left ventricular noncompaction 7 (K) Cytoskeleton.
Developmental protein. Zinc-finger

aBased on ZFIN (Zebrafish Information Network) (Bradford et al., 2022).
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the primary gene names from the reviewed human proteome.

About 90% (16,995) of the genes had a matching TreeFam gene

family, and 72% had a matching protein family. We note that the

remaining 10% of genes that lacked a matching TreeFam family

were twice as likely to be unregulated (49% unregulated vs only

24% overall). The distribution of protein family sizes in humans

is shown in Figure 5A. Note that the majority of families had only

one member and thus lacked the notion of paralogs. A small

number of proteins belong to multiple families. Figure 5B

schematically describes the notion of paralogs.

Within TreeFam families that consisted of at least two-

member genes (11,356 genes), we tested the null hypothesis,

for which there is no coherence in miRNA regulation in

proteins belonging to the same paralogous groups. We

found that 61% of the TreeFam families, and 56% of

protein families were coherent and split between the

families that are all regulated (or not) by miRNAs. We

further validated our hypothesis that genes belonging to the

same family tend to share the same regulatory trend. The

statistical test checked the greater success of assigning miRNA

regulation according to the mode of each TreeFam family, for

all proteins belonging to groups with at least two members. A

one-sided (“greater than”) binomial test yielded a p-value of

1e-61. We conclude that despite poor conservation in the 3′-
UTR among paralogs, families share their miRNA regulation

trend, which supports our notion of functional coherence that

does not necessarily rely on sequence similarity among the

paralogous transcripts.

GPCRs are rarely regulated by miRNAs

Most GPCRs are not regulated by miRNAs. We investigated

whether this pattern holds true for all of the major GPCR families

(470 proteins, six classes). In addition, we tested whether close paralogs

of the GPCRwithin each class are coherent in their regulationmode of

miRNA. Figure 5C shows the dendrogram of the Secretin subfamily

with functional partition to receptor types (coloured coded). We

confirmed that there is no direct relation between the functional

relationships and the regulation mode (e.g., CRFR1/2, VIPR1/2). The

same phenomenon applied to Class T (Taste 2), where seven out of 25

(28%) are known to be regulated (Figure 5D). We conclude that the

selective pressure to maintain the same regulation is weakened in

duplicated genes, allowing for innovation and accelerated evolution

that ultimately leads to a divergence in regulation.

Discussion

In this study, we address the question of miRNA regulation

as a binary problem of prediction without considering the

binding capacity, sequence specificity of each of the miRNA

FIGURE 4
Comparing the rocAUC (Area Under the Receiver Operating Characteristic Curve) of different models on human data. Results are shown for the
test set (3810 samples, 75.8% miRNA regulated). The “Protein” model includes functional annotations, keywords, primary sequences, and protein
families. The “Protein sequence”model uses only protein sequence and derived features. A unified model includes all protein and genomic features.
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individually or the nature of the regulation. The information we

use is mainly derived from the protein sequence and its

associated annotations. For example, we showed that proteins

located in the membrane or the nucleus have a higher tendency

to be regulated by miRNAs (Supplementary Table S1).

Experimental evidence on miRNA regulation is scarce and

fragmented. Rats and mice are rodent that are often used

interchangeably as model organisms. Even in rats the number

of stem-loop miRNA genes is only 40% of the number reported

in mice, with only 323 miRNAs marked as high confidence. In

this study, we provided a machine learning model that accurately

predicts validated miRNA regulation in novel (to the model)

organisms with minimal experimental results, without requiring

known miRNA genes seeds (Table 4). We propose to use

sequenced genomes to determine the proteome and

elementary genomics properties for poorly studied organisms.

The capacity of a trained model to transfer successfully across

organisms is a key feature in building universal models, capable

of covering all domains of life, as demonstrated in proteins

language models (Ofer and Linial, 2015; Ofer et al., 2021). In

addition, we anticipate that training on proteins from multiple

proteomes will improve not only prediction of miRNA regulation

but also related tasks (Brandes et al., 2022).

Machine learning approaches were applied in the field of

miRNAs for the prediction of miRNAs from genomic

information, miRNA targets of both (Singh et al., 2017; Parveen

et al., 2019). All these methods are based on the properties of the

molecular complementarity of miRNA and miRNA binding sites

(MBS). In contrast, the strength of the automated machine learning

AI model is the extensive exploration of extremely high number of

features (each of our models explored millions of features) from

diverse sources, both validating previous discoveries and yielding

FIGURE 5
miRNA regulation of human paralogs. (A) The count of protein family members (log2 scale) with the number of proteins belonging to a family
(x-axis). The largest family with 470 members of G-protein coupled receptor (GPCR) is marked. (B) Schematic view of homologs and paralog of
ancestor gene (A). The duplication event prior to specialization defines paralogs. (C) Phylograms of the GPCR Class B1 (Secretin) with 15 gene
paralogs with nine regulated bymiRNAs. The receptor groups are color coded (e.g., Glucagon receptor). (D)Members of GPCR of Class T (Taste
2) with 25 proteins, among them only seven proteins were predicted as miRNA regulated (marked in green symbol) the rest of the proteins were
predicted as not under miRNA regulation. The source of proteins in C and D and their annotation is according to GPCRdb (Pandy-Szekeres et al.,
2022). The trees are generated from whole sequence phylogenetic trees within each GPCR class using unweighted pair group method with
arithmetic mean (UPGMA, 10 replicates).
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potential novel insights. We tested the predictive model on unseen

data (rather than on repeated sampling of the training set). The use of

an entropy-based criterion (RIG, see Methods) highlighted

informative features with high discriminatory power, stability and

coverage (Supplementary Figure S3). Discovery of novel sets of

features that are not necessarily explainable by current knowledge,

we expect to extract understanding on the biology. For example, we

observed that the length of 5′-UTR, alongwith the length of the gene’s
CDS were quite informative. Several examples confirmed that gene

activation by miRNAs include binding to the 5′-UTR as shown for

ribosomal proteins translation during amino acid starvation (Da

Sacco and Masotti, 2012).

Another feature that contributed to the performance of the

model concerns the number of alternative variants at the tail of a

gene (Müller et al., 2014). In our model, the combined features of

alternative polyadenylation (APA) and tissue specificity (Table 3)

reflect the importance of post transcriptional regulation of the 3′-
UTR as over 50% of conserved miRNAs target sites reside

downstream of the proximal polyadenylation site in

mammalian genes (Ren et al., 2020). It was shown that many

3′-UTR APA variants are associated with genes expressed in

specific tissues and (Yang et al., 2022).

We showed that a unified model, combining proteomic and

genomic modalities outperformed other models (Figure 4). In

future work, we hope to experiment with models using data from

multiple species simultaneously. In-depth analysis that included

training on data from human and mouse indicated that the top

features and the model performance remain stable and slightly

improves for the species-combined model, reaching rocAUC of

80.3% (Supplementary Table S1, “reports, S2-human and

mouse”). An additional benefit of proteome-based prediction

in predicting miRNA in organisms lacking experimental data is

with disease related orthologs. Among the top predictions in

zebrafish are genes associated with human diseases including

Parkinson’s disease (PARK7), cancer (APC, a known tumor

suppresion gene) and kidney failure (PKD2). The shared

regulation among protein families allows investigating human

diseases through miRNA regulation orthologs in simpler model

organisms (Chang and Mendell, 2007).

In humans, GPCRs are the largest membranous family and

represent ancient duplications and further diversification. The

composition of GPCR in the plasma membrane of cells are

tightly regulated in health and disease. Over 400 human GPCRs

(excluding hundreds that are involved in olfaction) are divided into

six functional classes that are responsible for sensing smell, taste,

pain, mechanical stress, vision, but also aspects of adhesion and

differentiation (Pándy-Szekeres et al., 2018). We showed that

GPCRs are underregulated by miRNA. Protein families such as

histones are not regulated bymiRNAs and their 3′-UTR is extremely

short. Members of the GPCR proteins have 3′-UTR with an average

length of 400-800 nucleotides, but still are mostly non-regulated by

miRNAs. GPCRs act in almost every aspect of signal transduction

and there are many levels of regulation that tune their activity

including quantity, localization in the plasma membrane, recycling

and endocytosis. We propose that translation regulation and

attenuation of GPCR transcript stability by miRNAs do not

contribute to the regulation of the GPCR superfamily.

We further tested the sensitivity of our proteome-based models

in alternative problem formulations. About 5% of the human coding

genes are marked as protein receptors, including many of the GPCR

family members. We therefore trained a model only on human

receptor proteins (a total of 998 proteins). Only 59% of these genes

are known to be miRNA regulated (compared to 76% for the entire

human proteome) Themodel reached a rocAUCof 84%, supporting

the ability of the model to generalize, rather than merely predicting

GPCRs as being unregulated. A top feature in this subpopulation

was being involved in “olfaction”, covering 23% of the proteins

marked as receptors.

Previous studies that sought shared properties among the

miRNA regulated targets proposed that such targets are enriched

in protein-protein interactions. However, large protein complexes are

mostly excluded from miRNA regulation (Das et al., 2013).

Inspecting the top features from the results of our unified model

show thatmany of themiRNA regulated proteins participate in signal

transduction, post translated modification, nucleic acid binding

proteins (e.g., transcription factors) and cellular trafficking (e.g.,

small GTPase) (Figure 3). We also found that nucleosomes,

ribosomes, and other stable complexes are not likely to be

regulated by miRNAs. Our results argue for a design principle for

miRNA regulation in which genes that participate in cell dynamics

are subject to miRNA regulation, while for the function of protein

complexes and structural elements (e.g. histones, ribosomes,

cytoskeletal elements), the regulation by miRNA may conflict

with the tight stoichiometry needed for their function.

While protein functions are under purifying selection,

miRNA binding sites at the 3′-UTR are fast evolving. It has

been estimated that duplicated genes in humans are twice as

likely to be miRNA targets. Moreover, paralogs on average

have longer 3′-UTR relative to singletons (Li et al., 2008) and

the breath of regulation is greater among paralogs. Moreover,

among duplicated genes that are within the same 3D

topological associated domain (TAD), the coordinated

expression is lower than the average non-related genes

within TADs (Ibn-Salem et al., 2017). We show that

protein families tend to display coherent behaviour with

respect to miRNA regulation, but this coherence is not

visible at the level of pairs of paralogs (Figure 5).

A number of works have proposed miRNA regulation as

recent evolutionary innovation of the animal kingdom. While

this could explain the differences in amount of miRNA

regulated genes species, it fails at explaining the disparity

between experimental and computational predictions. A more

parsimonious explanation is that experimental validation is

lacking, and that additional, more stable computational

methods, that can also generalize across taxa, are needed to

prioritize targets. We expect that a similar AI-based approach
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will be useful for creating a generalized model for post

transcriptional regulation in living cells by ncRNAs (e.g.,

lncRNA, circRNA etc).
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