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Background: In recent years, immunotherapy has changed the therapeutic landscape of
hepatocellular carcinoma (HCC). Since the efficacy of immunotherapy is closely related to
the tumor microenvironment (TME), in this study, we constructed a prognostic model
based on TME to predict the prognosis and immunotherapy effect of HCC patients.

Methods: Transcriptome and follow-up data of 374 HCC patients were acquired from the
TCGA Cancer Genome Atlas (TCGA) database. The immune/stromal/estimate scores
(TME scores) and tumor purity were calculated using the ESTIMATE algorithm and the
module most associated with TME scores were screened by the weighted gene co-
expression network analysis (WGCNA). A TME score-related prognostic model was
constructed and patients were divided into a high-risk group and a low-risk group.
Kaplan-Meier survival curves and receiver operator characteristic curve (ROC) were
used to evaluate the performance of the TME risk prognostic model and validated with
the external database International Cancer Genome Consortium (ICGC) cohort. Combined
with clinicopathologic factors, a prognostic nomogram was established. The nomogram’s
ability to predict prognosis was assessed by ROC, calibration curve, and the decision
curve analysis (DCA). Gene Set Enrichment Analyses (GSEA) were conducted to explore
the underlying biological functions and pathways of this risk signature. Moreover, the
possible correlation of risk signature with TME immune cell infiltration, immune checkpoint
inhibitor (ICI) treatment response, single-nucleotide polymorphisms (SNPs), and drug
sensitivity were assessed. Finally, real-time PCR was used to verify the gene expression
levels in normal liver cells and cancer cells.

Results: KM survival analysis results indicated that high immune/stromal/estimate score
groups were closely associated with a better prognosis, while the tumor purity showed a
reverse trend (p < 0.01). WGCNA demonstrated that the yellow module was significantly
correlated with the TME score. The 5-genes TME risk signature was built to predict the
prognosis of patients with HCC including DAB2, IL18RAP, RAMP3, FCER1G, and
LHFPL2. Patients with a low-risk score have higher levels of tumor-infiltrating immune
cells and higher expression of immune checkpoints, which may be more sensitive to
immunotherapy.
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Conclusion: It provided a theoretical basis for predicting the prognosis and personalized
treatment of patients with HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is ranked the sixth most
common malignant tumor and is one of the causes of cancer-
related deaths (Bray et al., 2018). Therefore, it is a major public
health challenge. The recognized risk factors include chronic
infection with hepatitis virus, excessive alcohol intake, smoking,
and metabolic syndrome such as nonalcoholic fatty liver disease
(NAFLD), type II diabetes, and abdominal obesity (Llovet et al.,
2021; McGlynn et al., 2021). Early-stage patients can be treated
with radical surgery or liver transplantation (Gunasekaran et al.,
2021), but due to the complex internal tissue structure and
insidious onset of HCC, most patients are already advanced at
the time of diagnosis, resulting in a poor prognosis with an overall
5-year survival (OS) rate of less than 10% (Forner et al., 2018).
Systemic chemotherapy and targeted therapy have limited
efficacy in advanced HCC (Chen et al., 2019). For example, as
the first-line treatment of choice for patients with advanced HCC,
sorafenib markedly extended median survival but long-term use
resulted in additional toxic side effects and progression of drug
resistance in subsequent treatment (Abou-Alfa et al., 2006; Cheng
et al., 2020). Therefore, there is still a need for a breakthrough in
treatment. In recent years, immunotherapy (mainly in the form of
immune checkpoint inhibitors—ICIs) has changed the landscape
of cancer treatment, particularly in melanoma (Brower, 2015;
Buchbinder and Hodi, 2016), and is currently being conducted on
a broad range of neoplasms, including HCC (Llovet et al., 2018;
Sangro et al., 2021). The available immune checkpoint inhibitors
are antibodies that activate T-cell-mediated antitumor responses
by selectively blocking checkpoint receptors PD-1, PD-L1, and
CTLA-4. Among them, nivolumab, pembrolizumab (PD-1
inhibitor), and tremelimumab (CTLA-4 inhibitor) have been
shown to be safe and effective in clinical trials; therefore,
pembrolizumab (Zhu et al., 2018; Finn et al., 2020) and
nivolumab (El-Khoueiry et al., 2017; Yau et al., 2019) have
been approved by the U.S. Food and Drug Administration as
the second-line treatment for HCC. However, ICI therapy has a
lasting effect in only a subset of patients, and most of the patients
do not respond to ICI monotherapy (Qin et al., 2019). Emerging
evidence indicates that tumor microenvironment (TME) is not
only related to tumorigenesis, progression, and prognosis but also
closely involved in the efficacy of immunotherapy (Hinshaw and
Shevde, 2019; Bader et al., 2020).

TME consists of a heterogeneous population of cancer cells
themselves, infiltrating immune cells, stromal cells, endothelial
cells, cancer-associated fibroblasts, extracellular matrix
molecules, and inflammatory mediators (cytokines,
chemokines) (Anderson and Simon, 2020). Among them,
immune cells and stromal cells are the main components of
the tumor microenvironment that perform various biological
functions (Yin et al., 2018; Hao et al., 2021). For example, in

yupei Chen’s study (Chen et al., 2020), the single-cell
sequencing analysis showed that macrophages, CLEC9A+

DCs, natural killer cells (NK), and plasma cells were
significantly correlated with better survival outcomes in
patients with nasopharyngeal carcinoma. In multiple tumors,
high infiltration of monocyte-derived macrophages (Mφ) is
associated with poor prognosis, and Mφ can release factors
such as EGF to promote cancer cell motility and invasion.
Except for immune cells, stromal cells—endothelial cells can
promote tumor tolerance by regulating antigen presentation
and homing activity of immune cells (Savinov et al., 2003).
Therefore, exploring the signature of immune and stromal cell-
related genes in the tumor microenvironment could offer new
insights into HCC and forecast prognosis and ICI treatment
response. In 2013, the ESTIMATE algorithm was developed by
Yoshihara et al. (2013) to deduce the proportion of stromal cells
and immune cells in malignant tumors through gene expression
profiles. In the last few years, the ESTIMATE algorithm has
been introduced to lung cancer (Wu et al., 2021), esophageal
cancer (Qu et al., 2021), breast cancer (Xu et al., 2021a), cervical
cancer (Yu et al., 2021), and so on. This bioinformatics analysis
provides a powerful tool for evaluating the TME status in
malignant tumors. In this study, based on the gene
expression data from TCGA and ICGC databases, we applied
the estimate algorithm and WGCNA (Langfelder et al., 2008)
methods to construct a TME score-related prognostic model to
predict the prognosis of HCC patients and the efficacy of
immunotherapy.

MATERIALS AND METHODS

Data Sources
RNAseq mRNA and clinical data of patients with HCC were
achieved from the TCGA (https://portal.gdc.cancer.gov/) and
ICGC (https://dcc.icgc.org/) databases. To ensure the different
databases were comparable, we applied the scale method to
normalize the gene expression data. Patients with
pathologically confirmed HCC and survival time greater than
30 days should be considered. Finally, a total of 602 HCC cases
were included in TCGA and ICGA databases (TCGA: 342, ICGA:
260) for further analysis.

TME Score and Correlation of Clinical
Parameters
Based on gene expression profiles, the ESTIMATE algorithm was
utilized to calculate the infiltration levels of stromal/immune
cells. The relationship between immune/stromal/estimate score
(TME score) and tumor purity was evaluated by the spearman
correlation test. According to clinical parameters, the Wilcox test
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was applied to compare the relationship between TME score and
subgroups. Then, we determined the optimal cut-off value of the
TME score based on the log-rank test and the surv cutpoint ()

function and divided the patients into high and low scoring
groups according to the cut-off value, and finally plotted the K-M
survival curves.

FIGURE 1 | The brief flowchart of this study.
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Gene Co-Expression Network Analysis and
Identification of TME-Related Modules
WGCNA is a systematic biological approach developed by
Langfelder et al. (2008), aiming at finding co-expressed gene
modules and exploring the relationship between gene networks
and the phenotypes of interest as well as the core genes in the
networks. The WGCNA package in R was used for gene module
clustering and visualization.

Screen the Differentially Expressed Genes
Differential genes in the TME score and tumor purity in high/low
groups were screened by limma package (FDR <0.05, |logFC| >1),
and ggplot2 was used to map the volcano plot. The Venn diagram
package intersects the screened differential genes with the yellow
modules in WGCNA. The intersected genes of immune/stromal
score and WGCNA were obtained for subsequent analysis.

Development and Validation of the
TME-Related Prognostic Signature for HCC
Lasso regression analysis was performed for dimensionality
reduction of the intersected genes. Univariate cox regression

analysis identified 9 genes associated with HCC prognosis.
Then, the TME score-related prognostic risk signature was
optimized by forward and backward inclusion and the
minimum AIC value was obtained according to different
fitting results. Finally, five gene construction models were
obtained: DAB2, IL18RAP, RAMP3, FCER1G, and LHFPL2.
Risk score = (0.257 × DAB2) + (−0.607 × IL18RAP) + (−0.314
× RAMP3) + (0.168 × FCER1G) + (0.327 × LHFPL2). The risk
score for each patient was calculated according to this formula.
The OS predictive performance of the prognostic risk model was
evaluated between the training (TCGA) and validation cohorts
(ICGC) by dividing patients into low- and high-risk groups based
on the median and optimal cut-off point. In addition, the AUC
values further confirm the predictive sensitivity and specificity of
the TME risk signature. A nomogram combining risk scores and
clinicopathological parameters predicting prognosis in HCC was
constructed with the “rms” R package. The discernment of our
nomogram was assessed by ROC curves. The calibration curve
was plotted to investigate the conformity between the actual OS
and the OS predicted by the nomogram. Decision curve analysis
(DCA) was plotted to estimate the clinical application value.

Gene Set Enrichment Analyses
To better access the biological functions and pathways of the
TME score risk signature, we performed Gene Set Enrichment
Analyses (GSEA) through R packages “clusterProfiler,”
“enrichplot,” and “ggplot2.” The gene sets “c5.go.v7.4.
symbols.gmt,” “c2.cp.kegg.v7.4. symbols.gmt,” and
“h.all.v7.4.symbols.gmt” were chosen as the reference gene set.
The normalized enrichment score (|NES| >1), nominal p value <
0.05 (NOM p value), and FDR adjusted q-value < 0.25 were
considered as significant pathway enrichment.

Risk Scores Correlated With Tumor
Microenvironment, ICI Treatment
Response, Single-Nucleotide
Polymorphisms, and Drug Sensitivity
To explore the immune cell infiltration in HCC patients with
high- and low-risk groups, based on the R package
“immunedeconv,” we adopted seven common suitable
methods, including MCPCOUNTER, XCELL, TIMER,
QUANTISEQ, CIBERSORT-ABS, EPIC, and CIBERSORT.
CIBERSORT was also applied to calculate the proportion of
22 types of immune cells in each HCC patient. Tumor
immune dysfunction and exclusion (TIDE) score integrates the
characteristics of T-cell dysfunction and removal and simulates
tumor immune escape with different levels of tumor-infiltrating
cytotoxic T cells. Compared with other biomarkers, the TIDE
score has prominent advantages. Therefore, we calculated the
scores of TIDE, Dysfunction, Exclusion, and MSI in each patient
(http://tide.dfci.harvard.edu/). Single-nucleotide polymorphism
(SNP) analysis was conducted by the R package maftools to
explore the gene mutation profile of the risk signature. IC50 was
calculated utilizing the R package pRRophetic, and the Wilcoxon
test was used to assess the IC50 for the high- and low-risk groups.
The spearman correlation analysis was used to analyze the

TABLE 1 | Summary of HCC patient clinical parameters in the TCGA and LIRI-JP
cohort.

TCGA-cohort LIRI-JP cohort

Number of patients 342 260
Age
≤65 216 (63.2%) 98 (37.7%)
>65 126 (36.8%) 162 (62.3%)

Gender
Female 109 (31.9%) 68 (26.2%)
Male 233 (68.1%) 192 (73.8%)

Grade
G1 53 (15.5%) NA
G2 161 (47.1%) NA
G3 111 (32.5%) NA
G4 12 (3.5%) NA
Unknown 5 (1.5%) NA

Stage
Stage I 161 (47.1%) 40 (15.4%)
Stage II 77 (22.5%) 117 (45.0%)
Stage III 80 (23.4%) 80 (30.8%)
Stage IV 3 (0.9%) 23 (8.8%)
Unknown 21 (6.1%) NA

T-stage
T1 168 (49.1%) NA
T2 84 (24.6%) NA
T3 74 (21.6%) NA
T4 13 (3.8%) NA
TX 1 (0.3%) NA
Unknown 2 (0.6%) NA

N-stage
N0 239 (69.9%) NA
N1 3 (0.9%) NA
NX 99 (28.9%) NA
Unknown 1 (0.3%) NA

M-stage
M0 244 (71.3%) NA
M1 3 (0.9%) NA
MX 95 (27.8%) NA

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 9178394

Li et al. Tumor Microenvironment-Related Prognostic Signature

http://tide.dfci.harvard.edu/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


correlation between risk score and immune cells, immune
checkpoints, and drug sensitivity.

Statistical Analysis
R (version 4.0.3) and the associated packages were used for all
computational and statistical studies. Two-tailed p values < 0.05
were considered statistically significant.

RESULTS

Association Between TME-Related Risk
Score and Clinicopathological Features of
HCC Patients
This study was carried out following the flowchart shown in
Figure 1. The RNAseq data of 374 cancer tissues and 50 para-
cancer tissues were obtained from the TCGA database. After
eliminating patients with a survival of 30 days or less, 342
patients remained (TCGA cohort). Meanwhile, gene expression
and clinical data of 260 HCC patients were downloaded from the
ICGC database (LIRI-JP cohort). The clinical baseline of patients

with HCC was shown in Table 1. First, we calculated each patient’s
immune/stromal/estimate score (TME score) and tumor purity
based on gene expression profile by the ESTIMATE algorithm. It
was observed that tumor purity was higher in tumor tissues, while
the TME score were higher in normal tissues (Figures 2A–D). In
addition, the TME score was negatively related to the tumor purity
(Supplementary Figure S1). Then, the correlation between the
TME score and clinicopathological features was explored (Figures
2E–L). Patients with high immune scores had a better clinical stage
(p = 0.04, Figure 2H). In the stromal score group, grade G3/G4
(poorly differentiated) had a significantly lower stromal score than
G1/G2 (p < 0.0053, Figure 2K). Finally, the optimal cut-off value of
the TME score was determined and visualized (Figures 3A,C,E,G).
The K-M survival analysis showed that the higher the TME score
group had a good prognosis and the lower the purity of the tumor,
the better the prognosis (Figures 3B,D,F,H).

Weighted Gene Co-Expression Network
Analysis
Based on the aforementioned analysis, the weighted gene co-
expression network analysis (WGCNA) was performed to

FIGURE 2 | Relationship between the TME score and clinical features. (A–D) Differential expression of the TME score and tumor purity in the HCC patients’ normal
and cancer tissue. (E–L) Immune/stromal score distribution differences in age, sex, grade and stage subgroups.
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FIGURE 3 | K–M survival analysis based on the optimal cut-off value of the TME score. (A,C,E,G) The optimal cut-off value of the TME score and tumor purity were
determined and visualized. (B,D,F,H) The Kaplan–Meier survival analysis in the high- and low-risk groups.
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evaluate the gene expression matrix of 374 HCC samples. First, all
the samples are hierarchically clustered by using the group-average
method, and according to the clustering results, 45,000 is selected
as the truncation value of the height of the clustering tree of the
sample to exclude the samples that are obviously outliers

(Supplementary Figure S2A). To construct a scale-free
network, the soft threshold is calculated according to the
pickSoftThreshold functions, and the minimum integer whose
scale-free fitting coefficient R2 is above 0.8 is taken as the soft
threshold. We choose the soft threshold power six to construct the

FIGURE 4 |WGCNA and identification of the TME score-related module. (A) Analyses of the appropriate soft threshold power and minimum mean connectivity to
construct topological overlap matrix (TOM). (B) Clustering dendrograms of the co-expression network modules. (C): The correlation analysis between the TME score
and module, correlation coefficient, and p-values are shown.
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adjacency matrix, where the scale-free topological fitting index is
greater than 0.8 and the mean connectivity tends to the minimum
(Figure 4A). Then, the adjacency matrix was converted into the
topological overlap matrix (TOM) to minimize the impact of noise
and false positives as much as possible.With topological isomerism

matrix (TOM), we need to perform average-linkage hierarchical
clustering and module identifications through a dynamic tree cut
with a deepSplit parameter set as 2 and the minimum number of
genes was set at 350 per module (Supplementary Figure S2B).
Similar modules were merged following a height cutoff of 0.3

FIGURE 5 | Screening for intersected DEGs. (A,C) The volcano plot of DEGs in high and low immune/stromal score groups. (B,D): The intersected genes of
immune/stromal score-related DEGs and WGCNA.
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(Supplementary Figure S2C) and clustering dendrograms were
presented (Figure 4B). To identify the TME-related modules, the
module−trait relationships plot was presented by the Pearson

correlation test (Figure 4C). Results suggested that the yellow
module was most associated with the tumor microenvironment,
with 4,030 genes in total.

FIGURE 6 | Prediction performances of risk signature in the training (TCGA, left) and validation cohorts (ICGC, right). (A–D) Distribution of risk scores and survival
status in patients with HCC. (E,F) Heat maps of five-gene expression profiles in the high- and low-risk groups. (G,H) The K–M survival curves analysis in high- and low-
risk groups. (I,J) The time-dependent ROC curve analysis of TME risk signature for predicting 1-, 3-, and 5-year survival sensitivity.
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Identification of TME Score Related DEGs
According to the optimal cut-off value, the TME score and tumor
purity could be divided into high- and low-groups, and the
differential genes between the two groups were screened (FDR

<0.05, log |FC| < 1) (Supplementary Informations S1–S4).
These TME-related DEGs were visualized via the volcano
plots, in which red dots represent upregulated genes and blue
dots represent downregulated genes (Figures 5A,C). Then, the

FIGURE 7 | Nomogram of TME risk signature to predict HCC patients’ survival. (A,B) Forest maps of the univariate and multivariate Cox regression analysis,
including risk score, age, gender, grade, and stage. (C) A nomogram, consisting of risk score and stage for predicting 1-, 3-, and 5-year survival for HCC patients. (D)
The time-dependent ROC curve analysis indicated that the nomogram was a reliable and stable predictor for OS at 1-, 3-, and 5-years. (E) The calibration curve showed
the nomogram’s predicted (x-axis) and actual survival probabilities (y-axis). (F) The DCA analysis evaluating the clinical utility of the nomogram.
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intersected genes of immune/stromal score-related DEGs and
WGCNA were obtained for subsequent analysis (Figures 5B,D).

Development and Validation of the
TME-Related Prognostic Signature for HCC
The Lasso regression analysis was performed for DEGs associated
with immune score and stromal score, respectively
(Supplementary Figures S3A–D). For the immunity score,
DAB2, IL18RAP, KLRB1, P2RY6, RAMP3, FCER1G, and
LHFPL2 were screened out, and LINC001150, KLRB1, RAMP3,
and LINC01094 were filtered out for the stromal score. To further
explore the independent prognostic value of these nine genes, the
univariate regression analysis was performed and 95% confidence
intervals were calculated. The forest plot results showed that six of
the genes were risk factors (HR > 1) and three were protective
factors for HCC patients (HR < 1) (Supplementary Figure S3E).
Then the model optimization was performed by incorporating
forward to backward and getting the least AIC value according to
different fitting results, and finally, the prognostic risk model

related to tumor microenvironment constructed by 5 genes was
obtained. Risk score = (0.257 × DAB2) + (−0.607 × IL18RAP) +
(−0.314 × RAMP3) + (0.168 × FCER1G) + (0.327 × LHFPL2). The
risk score of each HCC patient was calculated according to this
formula. Figures 6A–D described the risk scores and survival
status of HCC patients in the training (TCGA) and validation
cohorts (ICGC), respectively. The heatmap findings in Figures
6E,F show that as risk factors, the expression of DAB2, FCER1G,
and LHFPL2 gains with a rising risk score, whereas IL18RAP and
RAMP3 decreased with the increase of risk score as a protective
factor. Based on the optimal cut-off point, the Kaplan–Meier
survival analysis illustrated that patients with low risk showed a
higher survival possibility than those with high risk (TCGA
training cohorts: p < 0.001; ICGC validation cohorts: p < 0.001,
Figures 6G,H), suggesting that the TME risk signature had
prognostic significance. According to the median value, the
K–M survival analysis showed the same trend (Supplementary
Figures 3F,G). Furthermore, we assessed the TME-risk signature’s
prediction sensitivity and specificity using a time-based receiver
operating characteristic (ROC) curve. For the training and

FIGURE 8 | Gene set enrichment analyses of immune-related pathways based on high and low risk. (A–E) The GO enrichment analysis using the gene set
“c5.go.v7.4. symbols.” (F–J) The KEGG pathway enrichment analysis using the gene set “c2.cp.kegg.v7.4. symbols.”
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FIGURE 9 | Risk score with immune infiltration, immunotherapy, SNP, and drug sensitivity. (A–D) Relationship between risk score and TME immune cell infiltration.
(E–H) TIDE score distribution in the high- and low-risk groups. (I) The expression level of possible immune checkpoints in high- and low-risk groups. (J–K) Waterfall
maps of twenty mutated genes in high-(left)/low-risk (right) groups. (L–O) Sensitivity of chemotherapy and targeted therapy in high- and low-risk groups.
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validation sets, the AUC values for risk signatures at 1, 3, and
5 years were 0.803, 0.764, and 0.756 and 0.706, 0.680, and 0.698,
respectively (Figures 6I,J). As a result, the potential of the TME
risk signatures to forecast the prognosis of HCCwas demonstrated.

Generation of the Prognostic Nomogram
Taking into account the prognostic significance of the TME-risk
signature, we managed to combine risk scores with common
clinical data to better predict the survival of HCC patients. We
first performed univariate and multifactorial Cox regression
analyses to analyze the effect of risk score and four clinical
factors: age, gender, grade, and stage on prognosis (Figures
7A,B). Then, we constructed a nomogram based on risk score
and stage to investigate the survival probability of 1-, 3-, and 5-year
survivors. When the total points were 0.259, the corresponding 1-
year, 3-year, and 5-year survival probabilities were 0.456, 0.303,
and 0.112, respectively, as shown in Figure 7C. The area values of
1, 3, and 5-year survival rates under the ROC curve were 0.794,
0.781, and 0.727, respectively, indicating the accurate discernment
(Figure 7D). Meanwhile, a calibration curve was drawn to evaluate
the consistency of the OS predicted value and true value
(Figure 7E). The DCA curve we plotted showed clinical
benefits for patients with HCC (Figure 7F).

Gene Set Enrichment Analyses
We performed GSEA based on the TME score risk signature to
better understand the possible mechanism in patients with HCC.
The GO terms were enriched mainly in the immunomodulatory-
related pathways such as the CD4+/CD8+ αβT cell lineage
commitment pathway (NES = −2.193, NOM p-val = 0),
leukocyte-mediated immunity pathway (NES = −2.129, NOM
p-val = 0), humoral immune response pathway (NES = −4.603,
NOM p-val = 0), natural killer cell-mediated immunity signaling
pathway (NES = −2.997, NOM p-val = 0), and B-cell receptor
signaling pathway (NES = −2.870, NOM p-val = 0) (Figures
8A–E). The KEGG pathway enrichment analysis revealed that the
prognostic signature was significantly involved in the cell cycle-
(NES = 2.261, NOM p-val = 0), DNA replication- (NES = 2.240,
NOM p-val = 0), mismatch repair- (NES = 2.132, NOM p-val =
0), intestinal immune- (NES = −2.731, NOM p-val = 0), primary
immunodefiency (NES = −2.414, NOM p-val = 0)-related
signaling pathways (Figures 8F–J). These results our signature
play an essential role in the tumor immune microenvironment
(Supplementary Information S5, S6).

Risk Scores Correlated With Tumor
Microenvironment, ICI Treatment
Response, Single-Nucleotide
Polymorphisms, and Drug Sensitivity
To explore the relationship between risk score and tumor
microenvironment, we first used the R package “immunedeconv”
and “ggplot2” to draw the heatmap of immune infiltration of patients
in the high- and low-risk groups (Supplementary Figure S4A). At the
same time, CIBERSORTwas utilized to calculate the proportion of 22
types of immune cells in each HCC patient (Supplementary Figure
S4B). In Figures 9A–D, Macrophages M0 was positively correlated
with risk score, while B-cell naïve, T-cell CD4 memory resting, and
T-cell CD8 were on the contrary (|R| ≥ 0.02, p < 0.001), which was
consistent with the boxplot in Supplementary Figure S4C. The ICI
treatment response was assessed by the tumor immune dysfunction
and exclusion (TIDE) score between the high- and low-risk groups.
Results indicated that TIDE and Dysfunction were exceedingly
expressed in the group with low risk, whereas Exclusion was
highly expressed in the group with high risk (p < 0.05, Figures
9E–H). Then, we explored the differential expression of immune
checkpoints between high- and low-risk groups. In the low-risk group,
PDCD1 (PD-1), CD274 (PD-L1), PDCD1LG2 (PD-L2), and CTLA4
were highly expressed, suggesting that low-risk patients may respond
better to immunotherapy (Figure 9I). These findings suggest that
patients at low riskmay respond better to immunotherapy.Moreover,
the condition of SNPs was also investigated (Figures 9J,K). Among
the 165 patients with high risk, 147 (89.09%) had the gene mutation,
and the mutation frequency of TP53 (42%) was significantly higher
than that of the low-risk group (14%). Finally, the relationship
between risk score and clinical drug sensitivity was analyzed. As
shown in Figures 9L–O, Docetaxel, Lapatinib, and Vinblastine
sensitivity were positively associated with the risk score, whereas
Gemcitabine was highly sensitive in the low-risk cluster.

Gene Expression in TME Risk Signature
We explored the expression of five genes in the constitutive risk
model in high and low-risk groups. As shown in Figures 10A–E,
IL18RAP, FCER1G, and RAMP3 were upregulated in the low-risk
group, whereas DAB2 and LHFPL2 were highly expressed in the
high-risk group. We also verified the expression levels of these
genes in normal liver cells (LO2) and liver cancer cells (MHCC-
97h, HLF, and Huh7) (Supplementary Figures S5A–E). Primer
sequences of these genes are shown in Supplementary Table S1.

FIGURE 10 | Gene expression in risk models in TCGA database. (A–E) Expression levels of DAB2, IL18RAP, LHFPL2, FCER1G and RAM3 in tumor tissues and
normal tissues in TCGA database.
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DISCUSSION

Hepatocellular carcinoma is a highly heterogeneous disease whose
pathophysiologicalmechanism is still largely unknown (Llovet et al.,
2016; Forner et al., 2018; Llovet et al., 2021). In the past decades,
breakthroughs have been made in targeted therapy and
immunotherapy, but the prognosis of HCC patients is still poor
and varies greatly (Zhang et al., 2020; Zongyi and Xiaowu, 2020).
Therefore, in addition to TNM classification, the development of
diverse risk models to forecast the prognosis of HCC patients is of
great importance for personalized treatment and follow-up. More
and more evidence suggests that the tumor microenvironment is
associated with proliferation, angiogenesis, invasiveness, metastasis,
drug resistance, and immune escape. TME consists of immune cells,
stromal cells, endothelial cells, blood vessels, soluble molecules, etc.
Among them, immune cells and stromal cells play an important
role in the occurrence and development of HCC patients
(Whiteside, 2018; Lu et al., 2019; Song et al., 2021). The
ESTIMATE algorithm was established using gene expression
data to estimate immune and stromal cells and generates
immune and stromal scores to predict immune and stromal cell
infiltration in the TME. In recent years, studies have used the
ESTIMATE algorithm to probe the tumor microenvironment in
breast, gastric, and colorectal cancers; however, immune/stromal
infiltration assessment in HCC is far from adequate. In this study,
we first downloaded the TCGA RNAseq and clinical data,
calculated the score of each patient through the ESTIMATE
algorithm, and explored its correlation with clinical
characteristics. Second, WGCNA was used to find the modules
most relevant to TME score. The intersected genes of immune/
stromal score and WGCNA were obtained for subsequent analysis.
The Lasso regression analysis was performed on the intersection
genes, and finally, a prognostic risk model of TME score related was
obtained. We evaluated the sensitivity and specificity of prognostic
model predictions and validated those using external data ICGC. In
our signature, five genes were identified, including IL18RAP,
FCER1G, RAMP3, DAB2, and LHFPL2. Related studies have
shown that interleukin 18 receptor accessory protein (IL18RAP)
encodes an accessory subunit of the interleukin-18 (IL18) receptor,
which can enhance the IL18 binding activity of IL18 receptor and
play a role in IL18 signal transduction (Lin et al., 2020). Receptor
activity modifying protein 3 (RAMP3) is a type I transmembrane
protein that can transport calcitonin receptor-like receptor (CRLR)
to the plasma membrane. The regulatory role of RAMP3 is
significantly different in different cancers. In Aiping Fang’s
research, RAMP3 was associated with the overall survival (OS)
and relapse-free survival (RFS) of HCC patients (Fang et al., 2018).
LHFPL tetraspan subfamily member 2 (LHFPL2) is a member of
the lipoma HMGIC fusion partner (LHFP) gene family. It is
associated with macrophages in triple-negative breast cancer and
chronic proliferation in acute myeloid leukemia (Hatfield et al.,
2014). DAB adaptor protein 2 (DAB2, DOC2, and DOC-2) encodes
a phosphorylated protein of themitogenic response and participates
in many signaling pathways (Ogbu et al., 2021). Numerous studies
have shown that DAB2 acts as an oncogenic factor to inhibit tumor
cell proliferation in the early tumor stage, but in the late tumor stage,
DAB2 promotes tumor cell EMT and invasion leading tometastasis.

In HCC, DAB2, as a tumor suppressor gene, is associated with the
activation of the Ras signaling pathway, and mir-106b can promote
the proliferation and migration of HCC cells by targeting DAB2
(Calvisi et al., 2007). Fc epsilon receptor Ig (FCER1G and FCRG) is a
key molecule involved in the progression and immune response of
various tumors (Xu et al., 2021b). Dong et al. (2022) reported that
FCER1G is positively associated with macrophage infiltration and
contributes to poor prognosis by modulating tumor immunity in
clear cell renal cell carcinoma. Through our PCR verification results,
it can be seen that the expressions of DAB2 and FCER1G are not
completely consistent with the TCGA database, which may be
related to cell heterogeneity.

More efforts are needed to explore themechanismof these genes
in the immune microenvironment of HCC patients. Furthermore,
we explored the possible mechanisms of risk score and its
correlation with immune cells, immune efficacy, SNP, and drug
sensitivity. In conclusion, we constructed a hepatocellular
carcinoma TME score-related prognostic model. It may provide
potential therapeutic targets and prediction of immune efficacy.
Although an excellent prognostic model has been established, there
are still some limitations in our study. First, we are only based on
data from the TCGA and ICGA databases, lacking multi-center
verification. Second, we only verified the expression of genes in the
model at the mRNA level and did not explore the mechanism in
depth. In the future, we will expand the sample size to verify and
optimize our model, and further, explore the mechanism of its
occurrence and development. Despite these limitations, our study
provides important clues to clarify the relevant molecular
mechanisms inHCC and helps to develop new treatment strategies.
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