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Senescence is a double-edged sword in tumorigenesis and affects the immunotherapy
response through themodulation of the host’s immune system. However, there is currently
a lack of comprehensive analysis of the senescence-related genes (SRGs) in human
cancers, and the predictive role of senescence in cancer immunotherapy response has not
been explored. The multi-omics approaches were performed in this article to conduct a
systematic pan-cancer genomic analysis of SRGs in cancer. In addition, we calculated the
generic senescence score (SS) to quantify the senescence levels in cancers and explored
the correlations of SS with cancer prognosis, biological processes, and tumor
microenvironment (TME). The gene signatures were deregulated in multiple cancers
and indicated a context-dependent correlation with prognosis, tumor-immune evasion,
and response to therapy across various tumor types. Further analysis disclosed that SS
was positively associated with the infiltration levels of immune suppressive cells, including
induced Tregs (iTregs), central memory Ts (Tcms), and natural Tregs (nTregs), and
negatively associated with immune killer cells, including natural killers (NKs) and
mucosal-associated invariant Ts (MAITs). Moreover, the SS was significantly correlated
with tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs),
immune-related genes, and immune checkpoints and had a predictive value of
immunotherapy response. Thus, the expression of SRGs was involved in resistance to
several anticancer drugs. Our work illustrates the characterization of senescence across
various malignancies and highlights the potential of senescence as a biomarker of the
response to immunotherapy.
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INTRODUCTION

Despite considerable progress in understanding cancer’s genetic and immunological underpinnings,
cancer remains a major and ever-growing health burden globally (Siegel et al., 2021). Nevertheless,
increasing evidence has suggested that senescence and the tumor microenvironment (TME) exert
crucial roles in cancer initiation, progression, metastasis, recurrence, and response to therapy (Fane
and Weeraratna, 2020). Senescence exerts complex effects on the innate and adaptive immune
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systems, a process termed immunosenescence (Xu et al., 2017;
Pereira et al., 2019). Immune cell senescence occurs largely in
T cells. Other immune effector cell types crucial for tumor
immunity are associated with decreasing immune surveillance
and are a strong risk factor for cancer (Li et al., 2019; Pereira et al.,
2019; Fane and Weeraratna, 2020). While senescence can impact
many immune cell subsets, the mechanisms adopted are still
unknown.

Contrary to the preconceived notion that the processes of
decreased function and fitness of senescence oppose the processes
of hyperproliferation and increased cellular survival of cancer in the
context of a cell, studies highlight that several hallmarks of senescence
are shared with cancer (Aunan et al., 2017). Recent studies
demonstrate that senescent cells are characterized by the
acquisition of inflammatory phenotype, defined as senescence-
associated secretory phenotype, whereby cells produce and secrete
pro-inflammatory cytokines, chemokines, growth factors, and
proteases and, in turn, regulate the microenvironment and cell
growth (Krtolica et al., 2001; Lawrenson et al., 2010; Kim et al.,
2013). In addition, aberrant expression of the senescence-related gene
(SRG) has been widely reported in various cancers (Testoni et al.,
2015; Wang et al., 2016; Landa et al., 2019; Huang et al., 2020;
Toufektchan et al., 2020). Mutations of some SRGs have been
considered cancer drivers (Iacobucci et al., 2016; Giacomelli et al.,
2018; Connor et al., 2019). For example, the TP53 gene was the most
frequently mutated in human cancers, including colorectal and lung
cancer (Rudin et al., 2009; Alam et al., 2016). Missense mutations in
TP53 and deletion mutations in RB1 were the most frequent
mutations in small cell lung cancer (Augert et al., 2017). The
simultaneous deletion of CDKN2A and CDKN2B promotes
tumorigenesis in pancreatic cancer (Tu et al., 2018).

The TME comprises infiltrating immune cells, tumor-associated
fibroblasts, endothelial cells, and extracellular components (Balkwill
et al., 2012; Liu et al., 2017). Cancer-associated fibroblasts (CAFs),
tumor-associated macrophages (TAMs), regulatory T cells (Tregs),
and dendritic cells (DCs) are essential components of the inhibitory
cancer microenvironment that interact with tumor cells in the TME
to drive the therapeutic resistance andmalignant phenotype of tumor
cells, such as proliferation, invasion and metastasis, and therapeutic
resistance (Labidi-Galy et al., 2012; Albini et al., 2018; Munn et al.,
2018; Sun et al., 2018; Lawal et al., 2021). In addition, emerging
evidence has shown that the accumulation of senescent stromal cells
contributes strongly to generating a tumor-permissive, chronic
inflammatory microenvironment to shelter incipient tumor cells,
thus allowing them to grow and progress unaffected by the immune
system (Ruhland et al., 2016; Fane andWeeraratna, 2020). However,
investigating the role of senescence in TME is still in its infancy and
needs further exploration and validation.

Here, a systematic pan-cancer analysis to elucidate the
potential impact of comprehensive integrative multi-omics
analysis of SRGs in cancers was performed. Subsequently, the
correlations between senescence score (SS) and survival,
biological pathways, and immune features were explored. Our
findings highlight the importance of senescence across cancers
and offer a framework for new cancer therapeutics.

MATERIALS AND METHODS

Data Collection
The gene list of senescence was obtained from http://www.gsea-
msigdb.org/gsea/index.jsp, and the complete listing of 33 SRGs is
presented in Supplementary Table S1. Gene expression data and
clinical information on cancer and corresponding normal tissues
were derived from the Cancer Genome Atlas (TCGA) and the
Genotype-Tissue Expression (GTEx) through the tool University
of California Santa Cruz (UCSC) Xena (https://xena.ucsc.edu/).
The TCGA cancer types are listed in Supplementary Table S2.
The complete microarray and clinical datasets of bladder cancer
(BC) [GSE13507 (Lee et al., 2010)], urothelial cancer (UC)
[GSE32894 (Sjödahl et al., 2012)], and nonsmall cell lung
cancer (NSCLC) [GSE61676 (Baty et al., 2017)] were retrieved
from the Gene Expression Omnibus database of the National
Center for Biotechnology Information database (https://www.
ncbi.nlm.nih.gov/). The gene expression data of the UC dataset
were retrieved from http://research-pub.gene.com/
IMvigor210CoreBiologies (Mariathasan et al., 2018).

Evaluation of Senescence Score
To investigate the senescence level in a tumor, we calculated the
generic SS using the method of single-sample gene-set
enrichment analysis (ssGSEA) in the R gene-set variation
analysis (GSVA) package (Hänzelmann et al., 2013) and used
the senescence gene set to quantify the gene expression levels for
each tumor type. We evaluated the SS between cancerous and
normal samples in 33 tumors from TCGA.We defined a tumor as
SS-high if its SS was in the upper half of all SS in the same tumor
type, and as SS-low if its SS was in the lower half.

Differentially Expressed Gene Analysis
To determine the expression difference between tumor and
normal samples, we conducted the differential expression
analysis of SRGs from 31 cancers, utilizing the R “limma”
package (Ritchie et al., 2015). Genes with |Log2-fold change (FC)|
greater than one and p-values less than 0.05 were regarded as
significantly differentially expressed.

Construction of Protein-Protein Interaction
Network
The Search Tool for the Retrieval of Interacting Genes (STRING)
database (https://string-db.org/) was used to construct a protein-
protein interaction (PPI) network based on the SRGs. The
threshold value required confidence (combined score) >0.4.

Survival Analysis
We utilized the “survminer” and “survival” R packages to
examine cancer patients’ survival prognoses, including overall
survival (OS), disease-specific survival (DSS), progression-free
interval (PFI), disease-free interval (DFI), and progression-free
survival (PFS). The p-values were calculated using the log-
rank test.
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Genetic Alteration Analysis
The website cBio Cancer Genomics Portal (cBioPortal) was
utilized to investigate the genomic cancer alterations for a
specific gene (www.cbioportal.org) (Cerami et al., 2012). We
applied the R “ggplot2” package to visualize genomic
alterations of SRGs among 32 tumor types of TCGA.

Single Nucleotide Variation Analysis
We obtained the single nucleotide variation (SNV) data of
10,234 samples and evaluated the frequencies and clinical
effects of seven variant types of deleterious mutations of SRGs
across 33 different tumors from the TCGA database. We filtered
out the Silent, Intron, IGR, 3′UTR, 5′UTR, 3′ Flank, and 5′ Flank
to calculate the SNV percentage. Then, the SNV mutation
percentage of each gene’s coding region was calculated using
the number of mutated samples/number of cancer samples (Liu
et al., 2018). Thus, we employed maftools to visualize and
summarize the SNV data (Mayakonda et al., 2018).

Copy Number Variation Analysis
To identify regions with significantly altered amplification or deletion
across sets of patients, copy number variation (CNV) data (n =
11,495) of 33 cancer types were obtained from the TCGA database
and processed by Genomic Identification of Significant Targets in
Cancer Scores (GISTICS) 2.0.We employedGISTIC-processed CNV
data to perform the percentage statistics based on CNV subtypes and
calculated the relationship between CNV and mRNA expression
utilizing raw CNV data and RNA-seq by expected maximization
normalized mRNA expression data. Only genes presenting >5%
CNV in cancers were considered. The correlation between mRNA
expression and the CNV percentage of samples was computed using
a Person’s product-moment correlation coefficient, as described by
Schlattl et al. (2011).

Methylation Analysis
DNA methylation data of 10,129 samples were derived from the
TCGA database. Fourteen cancer types with more than 10 paired
tumor/adjacent nontumor samples were selected and processed for
differential methylation analysis. The student’s t-test was used to
assess the methylation difference between cancerous and normal
samples. In general, there is more than one methylation site in the
region of each gene. As a result, numerous tags store the methylation
level per site. We conducted the correlation analysis for methylation
and mRNA expression to filter the site most negatively correlated
with gene expression in this module.

Gene-Set Variation Analysis
We conducted GSVA (Hänzelmann et al., 2013) on all TCGA
samples utilizing the 50 Hallmark Pathways from the molecular
signature database (MSigDB) to gain further insights into
biological implications. First, the pathway activity score was
computed by ssGSEA (Macosko et al., 2015) for overall
tumors, and then Spearman correlations with SS were calculated.

Immune Feature Analysis
We adopted the Estimation of STromal and Immune cells in
MAlignant Tumor tissues using the Expression data

(ESTIMATE) algorithm (Yoshihara et al., 2013) to compute
the stromal score, immune score, estimate score, and tumor
purity. Besides, we used the method of Zeng et al. (2019) to
evaluate the immune-related and other biological processes in
TME. The relationship between SS and immune cell infiltration
was determined using two databases, namely Immune Cell
Abundance Identifier (ImmuCellAI) (http://bioinfo.life.hust.
edu.cn/ImmuCellAI) and Tumor Immune Estimation Resource
2.0 (TIMER2.0) (http://timer.cistrome.org) databases. The Cell-
type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) algorithm (Newman et al., 2015)
was utilized to assess the relative fractions of 22 infiltrating
immune cell types for each of the SRGs in each tumor.

Tumor Mutation Burden and Microsatellite
Instability
TMB, defined as the total number of mutations per coding area of
a tumor genome in specific cancer, has been reported to be closely
associated with the effectiveness of cancer immunotherapy. The
TCGA pan-cancer mutation data were obtained from the UCSC
Xena database, and the TMB score was calculated. MSI is a tumor
phenotype for strong responses to immunotherapy and is usually
caused by a deficiency of the DNA mismatch repair (MMR)
system that leads to genomic instability. The MSI data were
downloaded from a recent study (Bonneville et al., 2017). Thus,
the relationship of SS with TMB or MSI was examined using
Spearman’s correlation coefficient.

Drug Sensitivity Analysis
We collected the SRGs’ expression and drug sensitivity data from
the Genomics of Drug Sensitivity in Cancer (GDSC) and the
Cancer Therapeutics Response Portal (CTRP) projects. Pearson’s
correlation analysis was carried out to evaluate the correlation
between SRG expression and half maximal inhibitory
concentration 50 (IC50) values of drugs.

Statistical Analysis
Correlation analyses between two variables were conducted with
the Spearman correlation test unless otherwise specified. The
difference between groups was determined by utilizing a student’s
t-test. The data were presented as means ± standard error (SD). A
Cox proportional hazards model was used to calculate survival
risk and hazard ratio (HR). A p-value < 0.05 was considered
statistically significant. All statistical analyses were carried out
using R software (version 4.0.2).

RESULTS

Senescence-Related Genes are
Deregulated in Tumors, With Their
Expression Varying Substantially Across
33 Tumor Types
To further understand the underlying biological mechanisms of
senescence in cancers, we performed the ssGSEA to compute the
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FIGURE 1 | Expression landscape of senescence-related genes (SRGs) in human cancer. (A) Spectra of senescence score (SS) across 33 different cancer types;
33 tumor types were ordered according to increasing SS from left to right. (B–N) A significant difference of SS was observed in 13 tumor types. (O–R) The SS was
analyzed by the main pathological stages (stage I, stage II, stage III, and stage IV) in kidney renal papillary cell carcinoma, kidney chromophobe, uterine corpus
endometrial carcinoma, and pancreatic adenocarcinoma. (p < 0.05 was considered significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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SS of 33 tumors. The results demonstrated that the SS differed
widely in different tumor types (Figure 1A). To note, acute
myeloid leukemia (LAML) had the highest senescence level,
whereas kidney chromophobe (KICH) had the lowest
(Figure 1A). Furthermore, compared with paired normal
tissues, out of these 33 cancers, we observed that the SS was
significantly increased in 13 cancers, including urothelial bladder
carcinoma (BLCA), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), esophageal carcinoma (ESCA), head
and neck squamous cell carcinoma (HNSC), kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), stomach adenocarcinoma (STAD), thyroid carcinoma
(THCA), and uterine corpus endometrial carcinoma (UCEC),
while there was no significant difference for other cancers
(Figures 1B–N). Subsequently, we analyzed the relationship of
SS with the pathological tumor stages. We observed a significant

increase in SS with increasing tumor stage in KIRP, KICH, UCEC,
and pancreatic adenocarcinoma (PAAD) (Figures 1O–R), but
not in others.

Furthermore, we further evaluated the differential expression
of 33 SRGs among cancers from the GTEx and TCGA pan-cancer
databases. The distribution of the 33 SRGs’ expression levels in
these 33 cancers is shown in Figure 2. Our results suggested that
all SRGs were abnormally expressed in various cancers with
respect to normal tissues (Figure 2). In addition, several SRGs
showed consistent patterns for expression across different
cancers. For example, CDKN2A, E2F1, E2F2, and CDK4 were
significantly overexpressed in 28, 26, 24, and 15 cancers,
respectively (Figure 2). Interestingly, some SRGs exhibited
cancer-type-specific expression patterns. For example,
CDKN2A was highly upregulated for almost all cancer types
but apparently suppressed in testicular germ cell tumors (TGCT)
(log2FC = −2.74). Thus, the PPI network based on the 33 SRGs
was constructed in the STRING database (Supplementary Figure

FIGURE 2 | Aberrant expression of senescence-related genes in cancers. Heatmap showing the mRNA difference of senescence gene set between the Cancer
Genome Atlas (TCGA) tumor samples and normal tissue samples from TCGA and Genotype-Tissue Expression. Upregulated genes have logFC > 0, and downregulated
genes have logFC < 0. (p < 0.05 was considered to be significant. FC: fold change).
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FIGURE 3 | The prognosis value of senescence score (SS) in each cancer type. The association of SS with prognosis in pan-cancer was evaluated based on Cox
regression. (A) Correlations of SS with overall survival in each cancer. (B) Correlations of SS with disease-specific survival in each cancer. (C) Correlations of SS with
disease-free interval in each cancer. (D) Correlations of SS with progression-free interval in each cancer. Hazard ratio (HR) above 1 indicates an adverse prognosis, and
the HR value less than 1.0 indicates a good prognosis. Tumors with significant p-values were shown in red font, and X-axis represents log2(HR). (Spearman
correlation, p < 0.05 was considered significant).
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S1). These findings showed that the dysregulated expression of
the SRGs might have interesting, distinctive correlations with
different cancers in tumorigenesis.

Senescence-Related Gene Expression is
Significantly Associated With Patient
Prognosis in Many Tumor Types
Next, to further examine the relationship between the senescence
levels and survival outcomes of patients, survival analysis was
executed by univariate Cox regression. Generally, the associations
between SS and the cancer patients’ prognosis were consistent in
OS, DSS, DFI, and PFI. However, compared with the OS, DSS,
and PFI, SS in only a few tumors was associated with DFI. To
note, SS was clearly correlated with OS in nine types of cancer,
including lower grade glioma (LGG), adrenocortical carcinoma
(ACC), KIRP, PAAD, thymoma (THYM), HNSC, skin cutaneous
melanoma (SKCM), KICH, and sarcoma (SARC) (Figure 3A).
Specifically, SS seemed to be a significant risk factor in seven
cancer types: LGG (p < 0.001, HR = 8.567), ACC (p < 0.001, HR =
24.296), KIRP (p < 0.001, HR = 18.694), PAAD (p = 0.003, HR =
9.792), SKCM (p = 0.011, HR = 5.460), KICH (p = 0.014, HR =
34.530), and SARC (p = 0.044, HR = 5.801; Figure 3A). In
addition, SS was a protective factor in two other types of cancer:
THYM (p = 0.004, HR = −19.673) and HNSC (p = 0.004,
HR = −4.798; Figure 3A). Besides, SS affected patients’ DSS in
eight cancer types, including LGG, KICH, KIRP, ACC, PAAD,
Mesothelioma (MESO), SKCM, and HNSC (Figure 3B). In
particular, SS was more likely to have a harmful effect in LGG
(p < 0.001, HR = 9.026), KICH (p < 0.001, HR = 53.299), KIRP
(p = 0.001, HR = 21.761), ACC (p = 0.002, HR = 22.394), PAAD
(p = 0.004, HR = 10.287), MESO (p = 0.012, HR = 12.806), and
SKCM (p = 0.013, HR = 5.678) and conversely in HNSC (p =
0.033, HR = −4.612; Figure 3B). Subsequently, we assessed the
relationship between SS and DFI. We observed that the elevated
SS was correlated with poor prognosis in PAAD (p < 0.001, HR =
24.765), THCA (p = 0.002 HR = 28.226), LIHC (p = 0.005, HR =
7.661), Breast invasive carcinoma (BRCA) (p = 0.037, HR =
6.275), and KIRP (p = 0.042, HR = 15.790; Figure 3C). Moreover,
we examined the relationship between SS and PFI and found that
high SS impacted PFI unfavorably in PAAD (p < 0.001, HR =
13.891), LGG (p < 0.001, HR = 6.710), KICH (p = 0.003, HR =
40.374), LIHC (p = 0.005, HR = 6.823), ACC (p = 0.014, HR =
15.924), THCA (p = 0.028, HR = 14.757), and KIRP (p = 0.037,
HR = 10.280), but favorably in HNSC (p = 0.006, HR = −4.799)
and Glioblastoma multiforme (GBM) (p = 0.015, HR = −5.158;
Figure 3D). In conclusion, these results demonstrated that SS was
correlated significantly with the prognoses in cancer patients,
especially those with PAAD and KIRP.

We also assessed the prognostic effect of SRGs with clinical
relevance in 33 cancers. As a whole, the ETS1, TNRC6B, and
TNRC6C genes were thought to be preventive against tumors,
while the remaining SRGs appeared linked to cancer risk (Figures
4A,B). Some genes, however, showed discrepant risk patterns. Byway
of example, AGO3 could increase the risk of multiple types of cancer
while playing a protective role in only KIRC. Similar results were also
observed in AGO1, RPS27A, SP1, and ETS2 of several cancers. On

the contrary, ETS1 was a protective gene in KIRC and THYM but a
risk gene in MESO. The correlation analyses among the members of
SRGs revealed an overall positive correlation with each other, which
was meaningful for us to understand the SRGs’ mode of action
(Figure 4C). Also, according to the expression and prognosis of pan-
cancer for each of the SRGs (Figures 2, 4A), a summary table is given
in Supplementary Table S3, which reveals the potential biomarkers
of certain human cancers. Taken together, the SRGs exhibited
heterogeneous prognoses across different cancer types.

Genetic Alteration of Senescence-Related
Genes
To comprehensively understand the SRGs’molecular characteristics,
we analyzed the genetic variation data using the cBioPortal database.
Among all cancers, BRCAhad the highest alteration numbers and the
types of alteration, including amplification, mutation, homozygous
deletion, and fusion; the most frequently altered gene in BRCA was
TP53 (Figure 5). Among all SRGs, TP53 was the most commonly
altered gene, with “mutation” as the main alteration type, followed by
CDKNA and CDKN2B, with “multiple alterations” as the main
alteration type (Figure 5). Among these alterations, we observed that
the most common genetic alteration was amplification, whereas the
rarest was fusion (Figure 5).

Somatic Mutations of Senescence-Related
Genes
Subsequently, we investigated the SRGs’ single nucleotide
polymorphism (SNP) data to detect the frequencies and variant
types per tumor subtype. Our analysis of the variant classification
revealed that a missense mutation was the most prevalent SNV type
in the senescence gene set in TCGA cancer cohorts (Figure 6A).
Specifically, the majority of the gene signature mutations included
C > T and T > C transversions, followed by C > A transversions
(Figure 6A). TP53 was the most frequently mutated among the
33 tumor types among the gene signatures. According to the tumor
types, SNVs occurred most frequently by decreasing order in UCEC,
LUSC, HNSC, BRCA, LUAD, SKCM, BLCA, ovarian serous
cystadenocarcinoma (OV), STAD, and COAD (Figure 6B). Our
analysis of the SNV percentage in the gene signatures demonstrated
that the top 10mutated genes were TP53, RB1, CDKN2A, TNRC6A,
TNRC6B, TNRC6C, AGO1, MOV10, AGO3, and AGO4, with the
mutation frequencies of 78%, 9%, 8%, 6%, 5%, 4%, 3%, 3%, 3%, and
3%, respectively, across TCGA cancer types (Figure 6C). The SNV
percentage of SRGs was increased in LUSC, BRCA, HNSC, and OV
(Figure 6C). Furthermore, the TP53 mutations highly correlated to
the DSS, OS, and PFS of THYM patients. Other genes also
demonstrated significant correlations with survival prognosis
across various cancer types (Supplementary Table S4).

Copy-Number Variation Contributes to the
Dysregulation of the Senescence-Related
Genes
CNVs are widespread and pervasive in human cancers and have
been proposed to drive tumorigenesis. The distribution of the
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FIGURE 4 | Single nucleotide variation (Survival analysis of senescence-related genes (SRGs). (A) Heatmap showing univariate Cox regression analysis of SRGs
(p > 0.05: all gray; p < 0.05: hazard ratio (HR) > 1 indicates red and HR < 1 indicates blue). (B) The summary statistics for Cox regression analysis of all 33 senescence
genes across 33 tumors. Senescence genes were sorted by descending number of a risky score (for risk factor, +1; for protective factor, −1). (C) The correlation plot
determined with the Spearman correlation test results show the correlation of gene expression among SRGs across 33 cancer types. A positive correlation is
indicated in red, and a negative correlation is denoted in blue. A darker color indicates stronger correlations (Spearman correlation, p < 0.05 was considered significant).
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CNV pie chart indicated that the main mutation types were
heterozygous amplification and deletion (Figure 7A). Correlation
analyses revealed that the SRGs’ mRNA levels were significantly
positively associated with CNVs, especially MAPK1 in OV;
TFDP1 in CHOL; CDKN2A and CDKN2B in GBM; CDK4 in
SARC; and CDKN2A in BLCA andMESO (Figure 7B). However,
there was a weak negative correlation for TNRC6C in TGCT;
TFDP1 in LAML; CDKN2C in prostate adenocarcinoma
(PRAD); and CDKN2A in KIRC and THCA. Analysis of CNV
percentage showed that the main amplified genes of homozygous
were ID1 in UCS; TFDP2 in LUSC; MDM2 and CDK4 in SARC;
and E2F3 in BLCA (Figure 7C). The deleted CDKN2A and
CDKN2B genes in GBM, MESO ESCA, and BLCA were the most
obvious type (Figure 7C). Nearly every gene in each tumor
showed heterozygous variation (Figure 7D). Heterozygous
amplifications of ETS2 and CDK6 in TGCT; CDK6 in GBM;
E2F1 and ID1 in rectum adenocarcinoma (READ); and SP1,
CDK4, and MDM2 in ACC were all greater than 70%

(Figure 7D). Heterozygous deletions of UBB and TP53 in OV;
MOV10, AGO1, AGO3, AGO4, CDKN2C, E2F3, MDM4, TP53,
UBB, and E2F2 in KICH; TNRC6B in OV and MESO; E2F2 in
CHOL; RB1, ETS1, and TFDP1 in TGCT; TP53 and UBB in UCS;
TNRC6C in KICH; MOV10 and CDKN2C in
Pheochromocytoma and Paraganglioma (PCPG); and
MAPK1 in MESO were also all greater than 70% (Figure 7D).
These results implied that the CNVs of SRGs mediated their
aberrant expression, which suggested that they may play critical
roles in tumorigenesis and development.

Pan-Cancer Analysis of Methylation of
Senescence-Related Genes
Altered DNA methylation has been frequently observed in
cancers and is generally known to cause carcinogenesis
(Ehrlich, 2002; Rodríguez-Paredes and Esteller, 2011; Koch
et al., 2018). Thus, to obtain further insights into the

FIGURE 5 | The genetic alteration landscape of senescence-related genes (SRGs) in various cancers. In the pan-cancer, the genetic alterations of SRGs include
mutations, fusions, amplifications, deletions, and multiple variations. Numbers in the boxes represent sample sizes for genetic variants; the darker the color, the greater
the number. Quantified data were plotted in bar graphs (MUT: mutation; AMP: amplification; HOMDEL: homozygous deletion; and Multiple: multiple variations).
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mechanisms affected by the SRGs on tumorigenesis, we also
examined the methylation of the senescence gene set to identify
epigenetic regulations. We observed that the methylation of SRGs in
diverse cancers was found to be highly heterogeneous, and only E2F2
(n= 11) and E2F1 (n= 9) exhibited hypomethylation inmost cancers
(Figure 8A). Furthermore, we found that ETS2, TP53, TFDP2, UBB,
CDK6, and ETS1 were hypermethylated in 7, 7, 8, 6, 6, and 7 types of
cancer, while E2F2, UBC, CDKN2C, E2F3, E2F1, MAPK1,
CDKN2D, TFDP1, CDKN2A, and ERF were hypomethylated in
11, 10, 9, 8, 9, 6, 7, 8, 6 and 6 types of cancer (Figure 8A). In addition,
the methylation levels of SRGs differed obviously in 14 cancers
(Supplementary Table S5). The overall methylation levels and the
expression of SRGs were negatively correlated, but CDKN2A in
GBM, ESCA, MESO, ACC, PCPG, SARC, UCS, and HNSC;
CDKN2B in THYM; ID1 in Diffuse large B-cell lymphoma
(DLBC); RB1 in STAD and READ; TFDP2 in SKCM; and

MAPK1 in TGCT genes’ expression were significantly positively
associated with the levels of methylation (Figure 8B; Supplementary
Table S6). These observations indicated that DNAmethylation levels
might be one of the primarymechanisms regulating the expression of
SRGs in cancers.

Senescence-Associated Biological
Pathways
Senescence has been demonstrated to affect the regulation of key
signaling pathways across multiple levels, eventually giving rise to
cancer progression, relapse, and metastasis (Dou and Berger,
2018; Alimirah et al., 2020; Han et al., 2020; Yang et al., 2021). To
explore changes in senescence at the pathway/gene-set levels, we
implemented the GSVA enrichment score. As a result, cell
proliferation-associated signaling pathways, such as mitotic

FIGURE 6 | Single nucleotide variation (SNV) analysis in senescence genes. (A) The summaries plot of the SNV variants classification of SRGs from the TCGA
database. Upper left (variant classification): the count of each deleterious mutation type (Missense_Mutation, Nonsense_Mutation, Frame_Shift_Ins, Frame_Shift_Del,
In_Frame_ Del, In_Frame_Ins, and Splice_Site) of SRGs in 33 cancer types. Upper central (Variant Type): the count of single nucleotid polymorphism, INS, and DEL of
SRGs in 33 cancer types. Upper right (SNV class): the count of each SNV class of senescence genes in 33 cancer types. Lower left (Variants per sample): the count
of variants in each sample. A bar represents a sample, the color of the bar corresponding to the color of variant classification. Lower central (variant classification
summary): box plot represents the distribution of the count of each variant classification in the sample set of 33 cancer types. The color of the box corresponds to the
color of variant classification. Lower right (Top 10 mutated genes): the count and percentage of variants in top 10 mutated genes. (B) Heatmap demonstrating the SNV
frequencies of senescence genes across 33 cancer types. For a given cancer, the number of samples with the correspondingmutation gene is indicated by numbers. (C)
Oncoplot depicting the mutation distribution and the classification of SNV types of top 10 mutated genes from senescence genes in 33 cancer types.
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spindle, G2M checkpoint, E2F targets, and PI3K/AKT/mTOR
signaling, were found to be positively related to senescence in
more than 30 cancer types, confirming that senescence is essential
for regulating cell-cycle and tumor growth (Figure 9). Besides,
numerous common cancer-related pathways, such as the TGF-
beta signaling pathway, Wnt/β-catenin signaling pathway,
mTORC1 signaling pathway, Hedgehog signaling pathway,
and Notch signaling pathway, were also enriched in multiple
cancers with high senescence levels. Various metabolism-related
pathways, such as xenobiotic metabolism, adipogenesis, oxidative
phosphorylation, bile acid metabolism, peroxisome function, and
fatty acid metabolism, were most negatively associated with
senescence levels in over 18 (more than half of the total
number) tumor types (Figure 9).

Senescence Score Significantly Correlates
With Immune Signatures Among Various
Cancers
TME, including cellular and noncellular components, plays a vital
role in cancer progression, metastasis, and drug resistance.

Therefore, to investigate whether SRGs are involved in the
process of immune infiltration in pan-cancer, we first
employed the ESTIMATE algorithm to calculate the stromal
score, ESTIMATE score, immune score, and tumor purity.
The results indicated that, compared with the low-SS group,
the high-SS group had a significantly higher ESTIMATE score,
immune score, or stromal score in KIRC, PRAD, KICH, THCA,
OV, LGG, BRCA, and COAD. However, tumor purity was
negatively associated with SS. That is, compared with the low-
SS group, the high-SS group had higher immune components but
lower tumor purity in the above tumor types (Figure 10A). In
contrast, quite the opposite situation was present in SKCM and
GBM (Figure 10A). It suggested that senescence was highly
involved in immune infiltration and the formation of
pluralistic components in multiple cancers. Those findings are
consistent with previous observations (Gubin et al., 2014; Alspach
et al., 2019; Ruhland and Alspach, 2021). Since accumulating
evidence revealed that senescence regulated tumor immunity
(Ruhland et al., 2016; He and Sharpless, 2017), we also paid
more attention to immune-related and other biological processes
(Zeng et al., 2019). In a similar manner, the observations

FIGURE 7 | Copy number variation (CNV) analysis of senescence genes. (A) Distribution of CNV in 33 cancers. The pie chart summarizes the heterozygous and
homozygous CNV of senescence-related genes (SRGs) in 33 cancer types. Each pie chart shows the relative proportion of different mutation types of CNV and different
colors indicate different types of CNV. (B)CNV relationship with mRNA expression. Bubble plot illustrates the profile between senescence genes’mRNA expression and
CNV level. (C,D) Homozygous/Heterozygous CNV profile shows the percentage of homozygous/heterozygous CNVs, including the percentage of deletion and
amplification of homozygous/heterozygous CNVs of senescence genes in each cancer type. Only those genes with CNV >5% in the given cancer type are displayed as a
point on the graph (Spearman correlation, the p-value of the FDR <0.05 was considered significant. FDR: false discovery rate).
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indicated that SS was closely related to immune-related pathways
(immune_checkpoint, CD_8_T effector, and antigen_processing
_machinery), matrix/metastasis-related pathways (EMTI, EMT2,
and EMT3), and DNA damage repair-related pathways (DNA
damage response, DNA replication, mismatch repair, base
excision repair, and nucleotide excision repair; Figure 10B).

To better understand the regulatory role of senescence, we
obtained the immune cell infiltration data from different
databases to conduct the correlation analyses of immune cell
infiltration and SS. We acquired data on 24 immune cells based
on the ImmuCellAI database. Overall, the analysis results
suggested that the SS was positively associated with multiple
infiltrating immune cell populations, such as induced Tregs
(iTregs), central memory Ts (Tcms), and natural Tregs
(nTregs). In contrast, it was negatively associated with natural
killers (NKs) and mucosal-associated invariant Ts (MAITs) in
most cancers (Figure 11A). Importantly, we also observed the
correlation of SS with TAMs (Figure 11A). Data from the
TIMER2 database also supported the above conclusions
(Figure 11B). Furthermore, we found a strong positive
association of SS with CAFs in some tumors, such as TGCT,
MESO, and KICH, from the TIMER2 database (Figure 11B).
Besides, CIBERSORT algorithm was applied to analyse the
relationships between SRGs and immune cell infiltrates in the
tumor microenvironment of each tumor (Supplementary Figure
S2). The above data coincide with the suppression of immune
surveillance against tumor cells that senescence exerted (Castro
et al., 2020).

In addition, we also investigated the associations of SS with
immune-associated genes. The study showed that SS was closely
linked to immunosuppressive genes (Figure 12A), immune-

activated genes (Figure 12B), chemokines (Figure 12C), and
chemokine receptors (Figure 12D) in most cancers. It is well
known that TMB (Goodman et al., 2017) and MSI (Chalmers
et al., 2017) have emerged as predictive biomarkers of improved
immunotherapy response across diverse cancers. Therefore, we
further investigated their respective associations with senescence
levels. We observed that the correlations of SS with TMB achieved
significance in six cancers (Figure 13A). Altogether, SS was
negatively associated with TMB in UCEC, cervical squamous
cell carcinoma, and endocervical adenocarcinoma, while it was
positively associated with KICH, LUAD, THCA, and SKCM
(Figure 13A). For MSI, the SS exhibited a negative correlation
in DLBC, HNSC, UCEC, and THCA but a positive association in
CHOL, READ, COAD, GBM, and TGCT (Figure 13B).

Senescence Score has Prognostic and
Predictive Values for Immunotherapy
Response
Immune-checkpoint blockade (ICB) with monoclonal antibodies
has emerged as an important anticancer treatment with
unprecedented survival benefits (Curran et al., 2010). Because
of these observed associations between SS and tumor immunity,
we next evaluated the prognostic value of the SS for
immunotherapy response by assigning patients in the high- or
low-SS cohorts utilizing four associated datasets, including three
nonimmune checkpoint therapy datasets (GSE13507, GSE32894,
and GSE61676) and one immune-checkpoint therapy dataset
from Mariathasan et al. (2018). Compared with the low-SS
group, a better prognosis for patients with higher SS had
already been described in immune-checkpoint therapy of the

FIGURE 8 | DNA Methylation analysis of senescence-related genes (SRGs). (A)Methylation differences of SRGs in tumors. The p-value of the false discovery rate
(FDR) and themethylation differences are indicated by the bubble color and bubble size. The bubble color from blue to red represents the methylation difference between
tumor and normal. The size dot is positively correlated with FDR significance. (B)Correlations of methylation with SRGs’ expression. The blue bubbles represent negative
correlations. The red bubbles represent positive correlations; the deeper the color, the higher the correlation. The bubble size is positively correlated with the
significance of FDR. The black outline border indicates FDR ≤ 0.05 (Spearman correlation, the dot was filtered by FDR ≤0.05).
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IMvigor210CoreBiologies dataset (Figures 14J–L), whereas for
other cancer treatment modalities, compared with the low-SS
group, patients with higher SS tended to have a poorer prognosis
(Figures 14A–I). Together, these results demonstrated that

senescence could be a predictive biomarker for response to
immunotherapy. Of course, the correlation between senescence
and immunotherapy response revealed in this research must be
validated clinically.

FIGURE 9 | Senescence score correlates hallmark pathways in cancer. Heatmap showing the enrichment of significant hallmarks sets. Each column indicates a
tumor type, and each row indicates a hallmark set. Red indicates a positive correlation, and blue indicates a negative correlation. Darker color indicates stronger
correlations (Spearman correlation, p < 0.05 was considered significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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Identification of Potential Drugs Targeting
Senescence-Related Genes
Finally, we examined the correlation between the SRG expression
and the sensitivity of patients to chemotherapy treatment.
Interestingly, in accordance with the results of Pearson’s
correlation analysis, the high expression of most SRGs (e.g.,
AGO1, E2F1, CDKN2D, CDKN2A, E2F2, CDKN2C, AGO3,
TFDP1, UBA52, TNRC6C, TNRC6B, TNRC6A, E2F3, TP53,
TFDP2, and MDM4) was resistant to several GDSC small
molecules (positive correlation with IC50) (Supplementary
Figure S3A), while it was sensitive to the CTRP small
molecules (negative correlation with IC50) (Supplementary
Figure S3B). Additional results of the two datasets are
presented in Supplementary Tables S7 and S8. These results
showed that senescence might mediate resistance to
chemotherapy treatment and targeted drug therapy.

DISCUSSION

Although cellular senescence is traditionally considered a
permanent form of cell-cycle arrest that restrains
tumorigenesis, a recent study in Nature (Milanovic et al.,
2018) pointed out that senescence can counterintuitively
promote tumor aggressiveness and cancer sternness.
Furthermore, many studies have convincingly demonstrated
the paradoxical role of senescence; that is, senescence may be
involved in both cancer prevention and cancer aggressiveness
(Ruhland et al., 2016; Yang et al., 2021). Thus, we can recognize
senescence as a double-edged sword within cancer,
demonstrating that it can prevent the occurrence of tumors or,
conversely, promote the development of cancer in certain types of
malignant tumors. Therefore, given the role of senescence in
tumorigenesis and cancer evolution, it is extremely important to
investigate senescence in diverse cancer types. Nevertheless,

FIGURE 10 | Tumor microenvironment (TME) analysis of senescence score (SS). (A)Heatmap indicates the association between SS and TME score in pan-cancer.
(B) The correlation between SS and biological processes in pan-cancer. Red depicts a positive correlation and blue a depicts negative correlation. Darker color depicts
stronger correlations (Spearman correlation, p < 0.05 was considered significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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systematic pan-cancer analysis of the role of senescence in diverse
cancers is still lacking. Therefore, we conducted a comprehensive
characterization of the SRGs across 33 cancers from multiple
cancer datasets. We also analyzed the senescence levels in cancers
utilizing GSVA and determined the associations between the SS
and survival of patients, immune infiltrations, immunotherapy,
and drug resistance.

Differential expression analyses showed the tumor context and
stage-dependent heterogeneity of SS and the significant
differential expression of SRGs across different cancers.
Compared with paired normal tissues, increased SS in cancer
tissues was observed in 13 cancers, namely BLCA, CHOL, COAD,
ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, STAD, THCA,
and UCEC. In addition, there was a significantly increasing SS
with increasing tumor stage in KIRP, KICH, UCEC, and PAAD.
The literature supported the above results demonstrating the
counter-intuitive tumor-promoting effects on cancer sternness
and tumor aggressiveness (Krtolica et al., 2001; Acosta et al., 2008;
Dou and Berger, 2018; Milanovic et al., 2018; Yang et al., 2021).

Previous studies reported that senescence plays multifaceted
roles (suppressive or progressive effects) in tumorigenesis,
depending on the context (Campisi, 2003; Collado et al.,

2007). Our univariate Cox regression analysis showed that
high SS exhibited a cancer-promoting effect in LGG, ACC,
KIRP, PAAD, SKCM, KICH, SARC, MESO, THCA, LIHC,
and BRCA patients. In contrast, the opposite effect was found
in HNSC, THYM, and GBM patients. Our prognostic analysis
suggested that E2F1 was the greatest risk factor among SRGs
(Figures 4A,B). This is consistent with the previously reported
role of E2F1 in cancers (Chen et al., 2016; Wang et al., 2016;
Gnanasundram et al., 2020). Our results confirmed the
paradoxical and intricate roles of senescence in tumors.

There is evidence that alterations of genes encoding
senescence components often confer susceptibilities to tumors
(Rudin et al., 2009; Alam et al., 2016; Augert et al., 2017). In our
genetic analysis, BRCA showed the highest alteration numbers
compared with other cancers, with “amplification and mutation”
as the primary types. Besides, TP53 was the most frequently
altered gene, with “mutation” (mainly nonsense mutations) as the
primary alteration type, followed by CDKNA and CDKN2B, with
“multiple alterations” as the primary alteration type.
Interestingly, the patterns of co-occurrences of gene alterations
among SRGs were frequently observed across different cancers,
which conjoined with the primary genetic driver to promote

FIGURE 11 | The correlation of senescence score (SS) with the immune cells infiltration. (A) Correlation of SS with immune cells infiltration in cancers based on the
ImmuCellAI database. (B) Correlation of SS with immune cells infiltration in cancers based on the TIMER2 database. Red represents positive correlations and blue
represents negative correlations. Darker color represents stronger correlations (Spearman correlation, p < 0.05 was considered significant, *p < 0.05, **p < 0.01, ***p <
0.001, and ****p < 0.0001).
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cancer progression. The above findings might provide new
insights into molecular genetic alteration analysis of the SRGs
in cancers. Furthermore, the CNV analysis unveiled the high
frequencies of copy-number alterations of SRGs, which were
positively associated with most of the SRGs’ expression in
most tumors, denoting those copy-number alterations could
affect SRG expression and, in turn, trigger tumorigenesis.

DNA methylation plays a crucial role in gene expression
regulation. Therefore, it has great promise as a noninvasive

diagnostic and prognostic biomarker in human cancer
(Robertson, 2005; Lawal et al., 2021). Since DNA methylation
causes transcriptional silencing (Razin and Cedar, 1991), we
predicted that the disrupted growth would be due to
hypomethylation in promoter regions leading to several SRGs’
over-expression. Gene methylation regulates gene expression by
recruiting repressor proteins or inhibiting the binding of
transcription factors to DNA (Moore et al., 2013). However,
the positive association between DNA methylation and the

FIGURE 12 | The association between senescence score (SS) and immune-associated genes. (A) Correlations between SS and immunosuppressive genes
encoding immune suppression. (B) Correlations between SS and immune-activated genes encoding immune activation. (C) Correlations between SS and chemokines.
(D) Correlations between SS and chemokine receptors. Red represents a positive correlation and blue represents a negative correlation. Darker color represents
stronger correlations (Spearman correlation, p < 0.05 was considered significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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expression of SRGs in some cancers indicates the interplay of
other regulatory processes other than DNA methylation
regulation (Lim et al., 2013; Khan et al., 2015).

In addition, increased senescence was associated with
immune-related pathways, DNA damage repair-related
pathways, and the activation of several oncogenic processes,
such as mitotic spindle, G2M checkpoint, E2F targets PI3K/
AKT/mTOR, TGF-beta, and Wnt/beta-catenin signaling
pathways. The above results suggested that senescence could
mediate the various oncogenic biological processes and serve
as an attractive target for cancer therapy. Emerging experimental
evidence has also revealed that damaged DNA can accelerate cell
senescence and apoptosis and cause cancers (Lv et al., 2019). In
addition, numerous studies have reported that senescent cells can
acquire characteristics of sternness by activating the Wnt
pathway, which can generate tumor-initiating cells (e.g., cancer
stem cells) and ultimately cause cancer progression (Milanovic
et al., 2018; Muñoz-Galván et al., 2019). Although the senescence-
related pathway enrichment analysis uncovered a similar pattern
of activating these senescence-related pathways, the pathways,
senescence, and cancer interaction networks reflect the high
heterogeneity in the susceptibility of diverse tumor types to
diverse types of pathway activation.

Cancer immunotherapies by ICB can help the immune system
recognize and kill cancer cells. Although immunotherapy offers
new hope for treating cancer, disappointingly, only a minority of
cancer patients benefit from this immunotherapy (Mahoney
et al., 2015; Riley et al., 2019), emphasizing the serious unmet
clinical need for identifying the genomic and molecular
determinants underpinning immune evasion and the
biomarker signature for predicting response to therapy (Jiang
et al., 2018). Thus, a better understanding of the

immunomodulatory role that senescence plays might help
understand the underlying mechanisms of immunoregulation
in the TME. It is the entirety of the TME that determines tumor
fate. According to the results from the ESTIMATE algorithm,
senescence was widely involved in immune infiltration and
formation of pluralistic components in KIRC, PRAD, KICH,
THCA, OV, LGG, BRCA, and COAD. The further immune
infiltration analysis of senescence suggested that SS was
positively associated with the infiltration levels of immune
suppressive cells, including iTregs, Tcms, and nTregs, and
negatively correlated with immune killer cells, such as NKs
and MAITs. Previous studies also validated that the senescent
environments significantly enhanced the frequency of
immunosuppressive regulatory T cells [28] and impacted the
innate immune system (Mogilenko et al., 2021). Moreover, we
also observed that, in some tumors, senescence was significantly
correlated with TAMs and CAFs, which are well known to
mediate metastasis (Gaggioli et al., 2007; Gaggioli, 2008;
Harney et al., 2015). Furthermore, we further found that
senescence was closely linked to immunosuppressive genes,
immune-activated genes, chemokines, and chemokine
receptors in pan-cancer. These investigations confirm that
senescence is closely associated with tumor-immune
microenvironments and influences patient prognosis.

Previous research has suggested that patients with a high TMB
had better clinical outcomes from immune-checkpoint inhibitors
in melanoma (Snyder et al., 2014; Riaz et al., 2017) and urothelial
carcinoma (Balar et al., 2017; Snyder et al., 2017). Furthermore,
TMB and MSI may serve as useful predictive and prognostic
biomarkers for immunotherapy response in human cancers (Li
et al., 2020). In the present study, we demonstrated that SS was
associated with TMB in six cancer types and with MSI in nine

FIGURE 13 | The correlation between senescence score (SS) and immunotherapeutic markers. (A) Correlations of SS with TMB. (B) Correlations of SS with MSI.
The red lines indicate correlation coefficients, and blue values indicate ranges. Red fonts indicate being statistically significant (Spearman correlation, p < 0.05 was
considered significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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FIGURE 14 | The application of senescence score (SS) in cancer nonimmune/immune-checkpoint therapy. (A,D,G,J) The distribution of the SS among samples
was stratified by response to nonimmune/immune-checkpoint therapy in each dataset. (B,E,H,K) Kaplan–Meier analysis of overall survival/PFS between high- and low-
SS groups in each dataset. (C,F,I,L) The proportion of response to nonimmune/immune-checkpoint therapy between high- and low-SS groups in each dataset. (A–I)
Nonimmune-checkpoint therapy; (J–L) immune-checkpoint therapy. PFS, progression-free survival; CR, complete response; PR, partial response; SD, stable
disease; and PD, progressive disease (p < 0.05 was considered significant, *p < 0.05; **p < 0.01).
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cancer types. Furthermore, compared with the low-SS group,
patients with higher SS had a better prognosis in immunotherapy
in the IMvigor210CoreBiologies dataset. Our results also
suggested the involvement of SRGs in the resistance of
human cancer cell lines to small molecule drugs. The role
of senescence as a predictor of the prognosis and response to
immunotherapy could potentially offer great advancement to
cancer treatment.

In conclusion, our systematic pan-cancer analysis indicated
that SS exhibited a context-dependent association with cancer
prognosis, immune evasion, and therapy response to
chemotherapy or immunotherapy. Therefore, senescence may
serve as an attractive target for cancer therapy. However, further
work will be required to assess the potential of senescence and
delineate its precise role in tumorigenesis and the response to
therapy.
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Supplementary Figure S1 | PPI network of SRGs. The PPI network was
constructed using STRING website.

Supplementary Figure S2 | Correlation between the 33 SRGs’ expression and
immune infiltrating subtypes of 33 cancer types. Blue represents positive
correlations and red represents negative correlations (Spearman correlation, p <
0.05 was considered significant, *p < 0.05; **p < 0.01; ***p < 0.001).

Supplementary Figure S3 | Correlation of 33 SRGs’ expression with drug
sensitivity in cancers. (A) Correlation between drug sensitivity of GDSC and
SRGs’ expression. (B) Correlation between drug sensitivity of CTRP and SRGs’
expression. The negative correlation indicates that the gene’s high expression is
sensitive to the drug and vice versa. Blue bubbles represent negative correlations;
red bubbles represent positive correlations. The deeper the color, the higher the
correlation. Bubble size is positively correlated with the FDR significance. The black
outline border indicates FDR ≤0.05.
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