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Machine learning has become a powerful tool for systems biologists, from

diagnosing cancer to optimizing kineticmodels and predicting the state, growth

dynamics, or type of a cell. Potential predictions from complex biological data

sets obtained by “omics” experiments seem endless, but are often not the main

objective of biological research. Often we want to understand the molecular

mechanisms of a disease to develop new therapies, or we need to justify a

crucial decision that is derived from a prediction. In order to gain such

knowledge from data, machine learning models need to be extended. A

recent trend to achieve this is to design “interpretable” models. However,

the notions around interpretability are sometimes ambiguous, and a

universal recipe for building well-interpretable models is missing. With this

work, we want to familiarize systems biologists with the concept of model

interpretability in machine learning. We consider data sets, data preparation,

machine learning methods, and software tools relevant to omics research in

systems biology. Finally, we try to answer the question: “What is interpretability?”

We introduce views from the interpretable machine learning community and

propose a scheme for categorizing studies on omics data. We then apply these

tools to review and categorize recent studies where predictive machine

learning models have been constructed from non-sequential omics data.
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1 Introduction

Machine learning (ML) is advancing rapidly, with new methods introduced almost

daily. As the field progresses, also its methods become better accessible to researchers

from other disciplines due to the development and release of new software tools. Many

fundamental ML methods can be applied to almost any data set. Nonetheless, the real-

world goals of researchers that apply these methods to their own data sets may diverge

from the objectives of the ML model itself (Lipton, 2016). While a researcher may want to
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understand the molecular mechanisms of a disease or may want

to know why a ML model classifies a patient as having a disease,

the ML model may aim to minimize the number of wrong

predictions. Understanding predictions is especially important

in a clinical context, where medical professionals need to justify

healthcare decisions (Barredo Arrieta et al., 2020). Bringing real-

world and ML objectives into harmony asks for methods that

make ML models more interpretable (Lipton, 2016). The

research field behind this goal is interpretable machine

learning (Murdoch et al., 2019), which falls under the

umbrella of explainable artificial intelligence (XAI) (Barredo

Arrieta et al., 2020). Advances in this domain are becoming

even more important as MLmodels are increasing in complexity.

Further, using data-driven approaches like machine learning to

not just predict from data but also to learn about the biological

mechanisms that generate the data in the first place is an

attractive concept. Mechanistic approaches like kinetic models

take long to develop and require a detailed prior understanding

of a system, while machine learning models can make better

predictions and sometimes answer the same biological questions

with less effort (Costello and Martin, 2018).

Consequently, interpretable ML has received more and more

attention in biology in recent years. Various studies that apply

machine learning to biological data sets have been published,

many claiming to implement “interpretable” (Wang et al., 2020;

Oh et al., 2021; Sha et al., 2021), “explainable” (Manica et al.,

2019), “gray-box” (Nguyen et al., 2021), “white-box” (Yang et al.,

2019) or “visible” (Ma et al., 2018) machine learning frameworks.

All these terms refer to the urge to gain valuable biological

knowledge from data with the help of machine learning,

which falls under the keyword “interpretability” (Lipton, 2016;

Murdoch et al., 2019). Now, the question arises, what is

interpretability?, or, more specifically, what makes a machine

learning model interpretable? The answer to this fundamental

question is under debate in the machine learning community for

some time now. Many answers have been proposed (Lipton,

2016; Murdoch et al., 2019; Barredo Arrieta et al., 2020), but a

clear consensus is still missing. Generally, “interpretability [itself]

is a broad, poorly defined concept (Murdoch et al., 2019),” which

is probably the main reason why definitions in a machine

learning context are complicated to fix. Clearly, there are

different perspectives to view interpretability in machine

learning: e.g., it can mean how much we can learn from data

by using a ML model (Murdoch et al., 2019), how well we

understand the ML model itself (i.e., comprehend how it

makes a prediction), or how much extra information the

model can provide that supports predictions (Lipton, 2016).

Interpretation methods, the techniques by which we gain

biological insight from data with machine learning besides

predictions, may divide into “model-based” and “post hoc”

methods (Murdoch et al., 2019). While model-based methods

rely on adapting the model before training it, post-hoc methods

operate on already trained models (Murdoch et al., 2019).

In machine learning, there are three main ways to train

models, namely reinforcement learning, unsupervised learning,

and supervised learning. Throughout this review, we want to

focus on supervised learning because of its prevalence in general

(LeCun et al., 2015) and in the context of predictive systems

biology. Supervised learning presents models with a set of

training samples (e.g., omics profiles from multiple patients)

for which the outcome of a prediction (e.g., health conditions)

is already known (Presnell and Alper, 2019). Based on this

training data set, supervised learning tries to produce a model

that accurately predicts the target for samples without a known

solution (Angermueller et al., 2016). Supervised machine

learning techniques have been applied to high-throughput

omics data to predict a broad range of clinical, phenotypical,

and physiological observations.

While diagnosing various diseases (Leitner et al., 2017;

Trainor et al., 2017; Hu et al., 2018; Pai et al., 2019; Stamate

et al., 2019; Nguyen et al., 2021; Sha et al., 2021; van Dooijeweert

et al., 2021) or predicting clinical outcomes (Bahado-Singh et al.,

2019; Pai et al., 2019; Zhang et al., 2021) seem common, possible

applications reach up to inference of the fluxome (Alghamdi

et al., 2021) or growth rate (Culley et al., 2020) of a cell from

transcript levels. Besides using machine learning for predictions,

many studies attempt to gain additional biological knowledge by

implementing post-hoc or model-based interpretation methods

(Alakwaa et al., 2018; Date and Kikuchi, 2018; Hu et al., 2018;

Bahado-Singh et al., 2019; Wang et al., 2020; Nguyen et al., 2021;

Wang et al., 2021). Further, interpretability can improve by

incorporating prior biological knowledge into a research

project (Nguyen et al., 2021; Wang et al., 2021).

This review was written from an interdisciplinary perspective

and is intended for an audience with systems biological

background but not necessarily experience in machine

learning, who are interested in machine learning approaches

for generating biological insight. We aim to familiarize readers

with the term interpretability and equip themwith a fundamental

machine learning background necessary for understanding the

concept. To achieve this, we take an example-based approach by

highlighting studies that successfully extract biological insight

from non-sequential omics data sets with the help of

interpretation methods.

Furthermore, we present a scheme for categorizing research

papers based on two criteria, 1) the use of interpretation methods

and 2) at which point prior knowledge enters a research project.

With this categorization system, we hope to contribute to the

establishment of terms associated with interpretability and allow

ML projects to be compared in their interpretability. In this work,

we have assigned a total of 26 publications to 9 categories that our

scheme outlines.

We start with a characterization of the utilized data sets, what

studies predict from them, and how to prepare them for machine

learning. Then we present supervised learning methods that

systems biologists applied to omics data and showcase
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available software tools for data manipulation, visualization, and

up to fully automatic ML solutions for omics data analysis. We

try to answer the question: “What is interpretability?” by

introducing fundamental concepts, describing our

categorization scheme, and highlighting exemplary works in

systems biology. With this work, we want to raise awareness

for interpretable machine learning and its potential for gaining

insight from omics data.

2 Data sets

Due to the data-driven nature of machine learning, data is

essential for a successful ML project (Mendez et al., 2019).

Ultimately, any machine learning model tries to learn

discriminative features, relationships, patterns, or structures

found within a data set. In a data set for supervised learning,

a sample consists of variables that describe its properties (the

features, e.g., molecule abundances) and has one or more

outcome variables associated with it that provide the

corresponding prediction target (the labels) (Shalev-Shwartz

and Ben-David, 2013; Angermueller et al., 2016; Deisenroth

et al., 2020). Labels can be any variables we wish to predict,

ranging from categorical variables describing cancer (sub)types

(Alakwaa et al., 2018; Sharma et al., 2019; Zhang et al., 2021) to

continuous specifications of cell growth (Kim et al., 2016; Culley

et al., 2020). Based on whether labels are categorical or

quantitative variables, one differentiates between the two

supervised prediction tasks, classification or regression (Bishop,

2006, p. 3). A feature can be any variable we expect to be

predictive of a target variable, such as metabolite abundances

(Trainor et al., 2017; Stamate et al., 2019; Sha et al., 2021),

“traditional risk factors” (Liu et al., 2017), metabolic fluxes

(Culley et al., 2020), and even kinetic parameters when the

goal is to predict the feasibility of kinetic models (Andreozzi

et al., 2016). Samples with known labels provide the “ground

truth” enabling the ML model to learn how predictions for

unlabeled samples should optimally look like (Martorell-

Marugán et al., 2019).

Usually, the data set that holds all collected and labeled

samples is divided into at least a training set and an independent

test set (Trainor et al., 2017; Alakwaa et al., 2018; Sharma et al.,

2019; Culley et al., 2020; van Dooijeweert et al., 2021). A

learning algorithm uses the training set to improve/construct

a ML model (Bousquet and Elisseeff, 2002), e.g., by estimating

parameters or functional forms. Since the model is fit to the

training data, the model’s error on this data can be drastically

smaller on unseen data like the test set (Maceachern and

Forkert, 2021), which means that the model struggles on

new samples drawn from the same underlying distribution,

i.e., the model has a poor “generalization” ability (Shalev-

Shwartz and Ben-David, 2013, sect. 1.1). This phenomenon

is known as overfitting. Guiding high-level modeling decisions

(i.e., hyperparameters like the number of layers in a neural

network) with the test set can similarly overfit the model to this

data (Bishop, 2006, p. 32). It is, therefore, required to use a third

separate validation set (Angermueller et al., 2016) or, if samples

are rare, use other techniques like cross-validation that avoid

using the test set for such optimization purposes (Bishop, 2006,

p. 32f). After tuning the design and training, a model’s realistic

performance, i.e., “predictive accuracy” (Murdoch et al., 2019) is

measured on the out-of-sample test set (Angermueller et al.,

2016).

With omics data sets becoming more readily available,

they are also more frequently exposed to machine learning

algorithms. Alone in this review, the categorized studies

covered eight distinct data types characterizing a biological

system—not counting network-type data. Omics data sets

lend themselves to interpretable machine learning solutions

because of their sheer complexity, making them hard to

interpret by visual inspection or simple statistical methods.

Table 1 provides an overview of the reviewed studies that

demonstrates a wide diversity of prediction targets. We

compile some of the targets into the categories

“Diagnosis,” “Clinical Outcome,” and “Physiology.”

Physiology includes phenotypic predictions, genetic

properties, cellular state and dynamics, etc. Predictions

that did not fit any of these categories were regional origin

of an organism (Date and Kikuchi, 2018), type of a cell (Wang

et al., 2020; Wang et al., 2021), “feasibility” of kinetic models

(Andreozzi et al., 2016), and body region where a tumor

emerged (Zhang et al., 2021). The most common category was

Diagnosis with 16 examples. Among the diagnosed diseases,

cancer is most prevalent. One reason is the commendable

availability of large omics data sets enabled by The Cancer

Genome Atlas (TCGA) program. Unarguably, precision

medicine, especially cancer research and diagnostics has

benefited a lot from machine learning in recent years

(Grapov et al., 2018; Chiu et al., 2020). Another trend that

seems to arise is the application of machine learning to

problems that have been traditionally solved with

mechanistic models, like the estimation of metabolic fluxes

(Alghamdi et al., 2021) and metabolite changes over time

(Costello and Martin, 2018). Phenotypic discrimination is

also very apparent. This includes predicting cell growth (Kim

et al., 2016; Culley et al., 2020), patient biological sex (Zhang

et al., 2021), and organism body size (Asakura et al., 2018).

Zhang et al. (2021) demonstrated that even multiple

predictions, ranging from cancer type classification and

stratification over patient age and sex to patient survival,

are possible from the same integrated data source. Building

large “multi-task” (Zhang et al., 2021) machine learning

frameworks that can predict multiple biological system

properties for one sample seem promising as data

collections grow and become more well-curated, as

exemplified by Kim et al. (2016).
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TABLE 1 Overview of the categorized studies.

Omics data type Prediction
Method(s)

Effective raw
features

Effective raw samples Prediction type Ref

Metabolomics Ensemble DNN, DNN,
RF, SVM

106 NMR peaks 502 profiles Regression (Physiology; fish
body size)

Asakura et al.
(2018)

Metabolomics LogReg 24 metabolites 1571 profiles Binary Classification
(Clinical Outcome;
prospective type 2 diabetes)

Liu et al. (2017)

Metabolomics SVM 1737 metabolites 58 profiles Binary Classification
(Diagnosis; Diamond
Blackfan Anaemia)

van Dooijeweert
et al. (2021)

Metabolomics RF, AdaBoost, SVM, NBC 109 metabolites 12–18a profiles Binary Classification
(Physiology; pathway
presence in tomato pericarp)

Toubiana et al.
(2019)

Metabolomics DNN, XGBoost (DT), RF 347 metabolites 357 profiles Binary Classification
(Diagnosis; alzheimer-type
dementia)

Stamate et al.
(2019)

Metabolomics LGP, LogReg 70 metabolites 389 profiles Binary Classification
(Diagnosis; knee
osteoarthritis)

Hu et al. (2018)

Metabolomics LGP, SVM, RF 242 metabolites 114–115 profiles Binary Classification
(Diagnosis; alzheimer’s
disease, amnestic mild
cognitive impairment)

Sha et al. (2021)

Metabolomics DNN, PLS-DA, RF, SVM ≤106 NMR peaks 1022 profiles Binary Classification (Other;
regional origin of fish)

Date and
Kikuchi (2018)

Metabolomics PLS-DA, Sparse PLS-DA,
RF, SVM, kNN,
NBC, ANN

≤1032b metabolites 38 profiles Multi-class Classification
(Diagnosis; cardio vascular
disease)

Trainor et al.
(2017)

Metabolomics PLS-DA, Sparse PLS-DA,
RF, SVM, kNN,
NBC, ANN

≤431b metabolites not assigneda Binary Classification
(Diagnosis; adenocarcinoma
lung cancer)

Trainor et al.
(2017)

Metabolomics PLS-DA, Sparse PLS-DA,
RF, SVM, kNN,
NBC, ANN

not assigneda not assigneda Multi-class Classification
(Physiology; genotype)

Trainor et al.
(2017)

Metabolomics DNN, RF, SVM, DT, LDA,
NSC, GBM

162 metabolites 271 profiles Binary Classification
(Diagnosis; breast cancer
stratification)

Alakwaa et al.
(2018)

Metabolomics SVM, PLS-DA 16 and 131 metabolites 21 and 32 profiles Binary Classification
(Diagnosis; gestational
diabetes mellitus)

Leitner et al.
(2017)

Proteomics LDA, SVM, kNN, RF 123 peptides 183 profiles Multi-class Classification
(Physiology; genotypes)

Hoehenwarter
et al. (2011)

Transcriptomics CNN, RF, DT, AdaBoost 60483 genes 6216 profiles Multi-class Classification
(Diagnosis; different cancer
types)

Sharma et al.
(2019)

Transcriptomics SimNet ≤17814b genes 348 profiles Binary Classification
(Diagnosis; breast cancer
stratification)

Pai et al. (2019)

Transcriptomics SimNet not assigneda 194 profiles Binary Classification
(Diagnosis; asthma)

Pai et al. (2019)

Transcriptomics SVR, RF, DNN, BEMKL,
BRF, MMANN

≥68c genes 1229 profiles Regression (Physiology;
eukaryotic growth rate)

Culley et al.
(2020)

single-cell Transcriptomics GNN 862 genes 162 single-cell profiles Multi-class Classification
(Other; cell type)d

Alghamdi et al.
(2021)

single-cell transcriptomics CapsNet, SVM, RF, LDA,
kNN, ANN

3346 genes 17933a single-cell profiles Multi-class Classification
(Other; cell type)d

Wang et al.
(2020)

single-cell transcriptomics CapsNet 9437 genes 4993 profiles Multi-class Classification
(Other; cell type)d

Wang et al.
(2021)

Epigenomics VAE in combination with
different ML methods,
RBF SVM, RF,
ANN, DNN

438831 DNA
methylation sites

3905 profiles Multi-class Classification
(Diagnosis; brain cancer
subtypes)

Zhang et al.
(2021)

(Continued on following page)
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TABLE 1 (Continued) Overview of the categorized studies.

Omics data type Prediction
Method(s)

Effective raw
features

Effective raw samples Prediction type Ref

Multi-omics (DNA copy
number, Transcriptomics,
Proteomics)

modified NSC, SVM, NSC ≤16266a proteins,
≤17282a genes

103 profiles per omics-type Multi-class Classification
(Diagnosis; breast cancer
stratification)

Koh et al. (2019)

Multi-omics
(Transcriptomics,
Proteomics, microRNA
Transcriptomics, DNA
methylation, DNA copy
number)

SimNet not assigneda 150, 252, 77 and 155 profiles per
omics-type in four independent
data sets

Binary Classification
(Clinical Outcome; cancer
patient survival)

Pai et al. (2019)

Multi-omics (mRNA
Transcriptomics,
microRNA
Transcriptomics,
Epigenomics)

VAE in combination with
different ML methods,
RBF SVM(R), RF(R),
ANN(R), DNN(R),
CoxPH

58043 genes,
438831 DNA
methylation sites,
1881 miRNAs

9736–11538 profiles per omics-
type

Multi-class Classification
(Diagnosis; different cancer
types), Regression
(Physiology; patient age),
Binary Classification
(Physiology; patient
biological sex), Multi-class
Classification (Physiology;
tumour stage, Other; body
region of tumor emergence),
Regression (Clinical
Outcome; patient survival
function)

Zhang et al.
(2021)

Multi-omics (Proteomics,
Metabolomics)

SVM, GLM, NSC, RF,
LDA, DNN

≤141b metabolites,
≤ 27a proteins

26 profiles per omics-type Binary Classification
(Clinical Outcome; perinatal
outcome in asymptomatic
women with short cervix)

Bahado-Singh
et al. (2019)

Multi-omics
(Transcriptomics, SNP-
omics (genetic variants))

DNN with Lasso, DSPN,
AdaBoost, DT, SVM,
ANN, RF, kNN, GP, NBC,
RBM, RBF SVM, SVM
with Lasso, LogReg with
Lasso

2598 genes,
127304 SNPs

1378 profiles per omics-type Binary Classification
(Diagnosis; schizophrenia)

Nguyen et al.
(2021)

Multi-omics
(Transcriptomics, SNP-
omics (genetic variants))

DNN with Lasso, DSPN,
AdaBoost, DT, SVM,
ANN, RF, kNN, GP, NBC,
RBM, RBF SVM, SVM
with Lasso, LogReg with
Lasso

118 genes, 332 SNPs 248 profiles per omics-type Binary Classification
(Diagnosis; lung cancer
stage)

Nguyen et al.
(2021)

Multi-omics
(Transcriptomics,
Proteomics, Metabolomics,
Fluxomics)

RNN, LassoReg, Ensemble
LassoReg

4096 genes,
1001 proteins,
356 metabolites,
≤ 120b fluxes

≤3579b transcriptomics profiles,
≤71b proteomics profiles,
≤696b metabolomics profiles,
≤43b fluxomics profiles

Regression (Physiology;
expression level of mRNAs,
proteins and metabolites,
prokaryotic growth rate)

Kim et al. (2016)

Multi-omics (Fluxomics,
Metabolomics)

DT ≤106a metabolites,
≤175a fluxes

not assigneda Binary Classification (Other;
feasibility of kinetic
parameter sets)

Andreozzi et al.
(2016)

Multi-omics (time-series
Proteomics and
Metabolomics)

Models found by TPOT ≤86e metabolites,
≤76e proteins

21 profiles per omics-type Regression (Physiology;
metabolite time derivatives)

Costello and
Martin (2018)

aTrue number not clearly obvious from the descriptions found in the main body of the work.
bNumber might be lower because some (additional) raw features or samples might have been filtered out.
cValue varies between different prediction methods.
dThis prediction task was repeated on other data sets from the same omics type(s) that are not listed here.
eEstimated from provided supplementary material.

Table notes: Counts for effective raw features/samples are explained in detail in Section 2.1. Additionally, non-omics features are not listed. The listed prediction methods are generic types,

meaning that theymay describe any derivedmethod. Please consult the referenced publications for details on the utilizedmethod. Supervisedmethods that were not used for predictions but

e.g., in preprocessing, the post-hoc phase, or for additional analysis are not listed. Bold methods indicate which methods were presented as the authors’ methods of choice or which were

primarily used for predictions. Abbreviations: DNN, Deep Neural Network; RF, Random Forest; SVM, Support Vector Machine; DT, Decision Tree; LDA, Linear Discriminant Analysis;

NSC, Nearest Shrunken Centroid; GBM, Gradient Boosting Machine (Boosted Tree Model, Generalized Boosted Model, Gradient Boosted Tree); TPOT, Python package for automatic

model selection (see Supplementary Table S1); PLS-DA, Partial Least Squares Discriminant Analysis; RBF, Radial Basis Function Kernel; ANN, feed-forward Artificial Neural Network;

LogReg, Logistic Regression; XGBoost, Extreme Gradient Boosting; Lasso, Lasso (L1) Regularization; LassoReg, Lasso Regression; SVR, Support Vector Regression; BEMKL, Bayesian

EfficientMultiple Kernel Learning; BRF, Bagged RF;MMANN,Multi-Modal ANN; VAE, Variational Autoencoder; RNN, Recurrent Neural Network; EnsembleX, combination of multiple

base models of type X; GNN, Graph Neural Network; NBC, Naïve Bayes Classifier; CapsNet, Capsule Network; GLM, Generalized Linear Model; LGP, Linear Genetic Program; AdaBoost,

Adaptive Boosting; GP, Gaussian Process; RBM, Restricted Boltzmann Machine; SimNet, Similarity Network; X(R), Regression variant of method X; CoxPH, Cox Proportional Hazard

Model; miRNA, micro Ribonucleic Acid; SNP, Single-Nucleotide Polymorphism; kNN, k-Nearest Neighbors; CNN, Convolutional Neural Network; DSPN, Deep Structured Phenotype

Network.
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2.1 Data set dimension and size

The number of features (i.e., data set dimension) and

samples (i.e., data set size) can be an important factor for a

MLmodel’s performance. Alakwaa et al. (2018) found that their

neural network model under-performed when data set size was

low but out-performed other MLmethods when the training set

was sufficiently large. Further, Mendez et al. (2019) compared

the performance of several ML models on multiple

metabolomics data sets and suggested that, at least in their

study, classification error was impacted less by a change in the

ML method than by a change in the number of training

samples. We have, therefore, also included this information

in Table 1. However, one should be explicit when listing data set

dimensions and sizes. In a ML project, the original data set is

often heavily processed: original features are scaled, new

features are created, some original samples or features are

omitted, etc. In this work, we summarize the part of the

workflow that starts after raw data tables have been

constructed and manipulates data before it reaches the ML

model for prediction as data preprocessing. A raw data table in

this context summarizes one omics type and contains one value

per omics entity for every observed entity (e.g., one abundance

value per metabolite for every patient). Data preprocessing is

outlined in more detail in Section 2.2. Preprocessing often

changes the dimension and size of a data set, sometimes

creating completely new features and samples. As an

example, Toubiana et al. (2019) derived a set of 444 graph-

based features for 339 pathways from a few repeated profiles of

106 metabolites by characterizing pathways in metabolite

correlation networks. Sample conversions that change the

entity a sample belongs to, e.g., from a “biological replicate”

to a pathway (Toubiana et al., 2019), seem relatively rare.

However, since feature conversions are frequently

encountered (Andreozzi et al., 2016; Koh et al., 2019; Pai

et al., 2019; Sharma et al., 2019; Toubiana et al., 2019; Culley

et al., 2020; Zhang et al., 2021) we need to clarify what the

numbers found in Table 1 mean.

Typically, specifications of dimension and size

characterize only either the raw data set or the ML-ready

data set used in optimizing and testing a ML model. In our

opinion, a reasonable alternative approach to express data set

dimensions and sizes is one that quantifies the amount of raw

data that ultimately contributes to the ML-ready data set. We

call the corresponding values effective raw feature/sample

counts. These metrics describe the number of raw features (i.e.,

variables of genes, SNPs, DNA methylation sites, proteins,

metabolites, fluxes, etc.) and raw samples (e.g., omics feature

profiles) from the raw data sets that contribute information to a

single data set available for ML. Hence raw features or samples that

are not integrated into the ML-ready data set because they were

filtered out during preprocessing are not counted towards these

values. However, even if raw features partially become target variables

(Kim et al., 2016) they can still be considered effective. Since effective

raw features and samples are part of the rawdata set, it is important to

not confuse their counts with specifications that refer to final features

and samples of theML-ready data set, whichmight be quite different.

We argue that effective raw feature and sample counts allow

comparison of ML-ready data sets even under extreme data set

transformations and reductions. Although these numbers seem

relevant they are unfortunately often difficult to reconstruct from

a reader’s perspective without analysing the original data and code.

Further, when the same raw data set yields multiple distinct ML-

ready data sets, effective counts can vary a lot between models, as

noticeable in the study by Culley et al. (2020).

Figure 1 shows effective counts for ML-ready data sets in the

26 categorized publications. Generally, we find that studies that

use solely metabolomics data (Leitner et al., 2017; Liu et al., 2017;

Trainor et al., 2017; Alakwaa et al., 2018; Asakura et al., 2018;

Date and Kikuchi, 2018; Hu et al., 2018; Stamate et al., 2019;

Toubiana et al., 2019; Sha et al., 2021; van Dooijeweert et al.,

2021) use a lower number of effective raw features for predictions

than studies employing only transcriptomics (Sharma et al., 2019;

Culley et al., 2020; Wang et al., 2020; Alghamdi et al., 2021; Wang

et al., 2021). The two exceptions on the transcriptomics side

(Culley et al., 2020; Alghamdi et al., 2021) originally had more

raw features but some of themwere omitted for at least onemajor

analysis because some genes were not present in a metabolic

network model. Due to technical limitations, metabolomics still

FIGURE 1
Comparison of effective raw data set dimensions and sizes in
the categorized studies. Each point represents a data set that was
used for optimizing and testing at least one predictive model. In
multi-omics, a data set includesmeasurements frommultiple
omics sources. Each data set is plotted at the position that
corresponds to its effective raw dimension and size. Please refer to
the main text for explanations on the meaning of effective raw
feature and sample counts (Section 2.1). Note that the graph shows
only a selection of all ML-ready data sets from all studies.
Supplementary Figure S1 provides references to the shown data
points.
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struggles to reach high throughputs, such that either the number

of raw features or the number of raw samples is restricted. This

depends also on the experimental method. All metabolomics

studies in Figure 1 with more than 200 effective raw features

(Trainor et al., 2017; Stamate et al., 2019; Sha et al., 2021) use

liquid chromatography coupled to mass spectrometry (LC-MS)

or LC-MS together with another method, respectively. While the

study with the second-lowest number of effective raw features

(Liu et al., 2017) used LC-MS together with nuclear magnetic

resonance (NMR) spectrometry, in this case, the authors reduced

their raw feature count from originally 261 to 24 effective

metabolite features for predictions. Although methods of 2-

dimensional gas chromatography can detect respectable

amounts of molecules (Phillips et al., 2013), studies that used

solely gas chromatography (Alakwaa et al., 2018) or NMR

(Asakura et al., 2018; Date and Kikuchi, 2018) did not reach

more than 200 compounds. Another concern of metabolomics is

that the exact identity of some of the raw features is often unclear

(Weckwerth, 2011). Recently, some efforts have been made to

solve this metabolite annotation problem also with machine

learning approaches (Nguyen et al., 2019). The biological

meaning of features is especially important when results

should be interpreted. Consequently, interpretation methods

that evaluate the importance of individual features might

struggle to generate meaningful biological insight when

applied to metabolomics data with unreliable annotations.

On the other end of the scope, transcriptomics oftentimes

easily reaches over 3,000 effective raw features (Sharma et al.,

2019; Wang et al., 2020; Wang et al., 2021) and studies that use

measurements from multiple omics sources can have and retain

close to 500,000 raw features due to the high-dimensionality of

epigenomics data and strategies to condense this information

(Zhang et al., 2021). However, taking into account more features

for a prediction is not always favourable. Besides technical

difficulties linked to data sets with many features, like storing

large feature vectors and computational cost (Bommert et al.,

2022), working with high-dimensional samples causes diverse

issues. The machine learning literature summarizes challenges

that arise in high-dimensional data sets under the “curse of

dimensionality” (Bishop, 2006; Shalev-Shwartz and Ben-David,

2013; Forsyth, 2019). Especially, when relevant information in

the data is “sparse,” meaning that only a few features truly

influence the prediction target, like it is often the case for

transcriptomics data (Vikalo et al., 2007), considering

additional features only “add[s] noise to the data” (Culley

et al., 2020). Having high-dimensional samples, while the

number of samples is much lower, is even worse. One major

problem is that the same number of samples are often spread over

wider distances in a higher-dimensional space (Forsyth, 2019,

p. 77f) and it would, therefore, require much more samples to

similarly populate this space (Bishop, 2006, p. 35). In this case,

the risk of overfitting to the training data is increased (Kim and

Tagkopoulos, 2018; Jiang et al., 2020). A way to mitigate the

“curse” is by reducing the number of dimensions by combining

original features to find a new lower-dimensional description for

each original sample or by omitting some original features

(Zhang et al., 2021). The corresponding methods are often

called feature extraction and feature selection and summarized

as dimensionality reduction techniques (Reel et al., 2021). These

methods are frequently “unsupervised,”meaning that they do not

use the information stored in the labels (Cai et al., 2022) and are

almost always advisable when dealing with a large number of raw

features. Feature selection methods can make ML models more

accurate (Chen et al., 2020) and better interpretable (Bommert

et al., 2022). For more details, see the following section about data

preprocessing (Section 2.2).

In addition, sometimes omics data such as metabolite

amounts reference information that is changing over time.

These dynamics are important to consider when modeling

with data collected at multiple time points, as it may affect the

reliability of ML predictions. One possible innovation for

correcting algorithms that have to deal with input data

representing dynamic information is by analysing concept

drift (Agrahari and Singh, 2021). Concept drift in machine

learning arises when the statistical properties of the target

variable change over time, usually due to the fact that the

identity of the input data that the model was trained on has

significantly changed over time. Then, a model that is

unaware of this change can no longer make accurate

predictions. It has already been shown that metabolomics

data is subject to concept drift, making prediction models not

taking the dynamics into account less reliable (Schwarzerova

et al., 2021).

2.2 Data preprocessing

In the machine learning community there is a popular

saying: “garbage in, garbage out.” It means that every

successful machine learning project lives and dies with the

quality of the data set it uses. Besides the experimental

procedure that determines the raw data quality, data

preprocessing, the step that takes raw data and turns it

into a data set suitable for learning, is critical (Kotsiantis

et al., 2007), especially for omics data (Kim and Tagkopoulos,

2018). Figure 2 illustrates the flow of data and information

through a modeling framework, indicating the vital role of

data preprocessing. Data preprocessing can involve many

steps, and these often heavily depend on the raw data and

application. In particular, during preprocessing

• data from different sources might be combined (data

integration), e.g., microRNA and mRNA expression

levels might be “concatenated” (Cai et al., 2022),
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• samples might be deleted (cleaning), e.g., because a patient

might be an obvious outlier, the diagnosis is unclear, or a

value is obviously corrupted like a negative abundance

record,

• missing values need to be filled in (imputation), e.g., by

inferring them from other measurements,

• noise might be reduced (smoothing), e.g., by “smoothing

methods” (Simonoff, 1996),

• new features and data representations might be created

with the help of dimensionality reduction techniques and/

or expert knowledge (feature extraction [Guyon and

Elisseeff, 2006] and feature engineering [Kuhn and

Johnson, 2019]), e.g., an “autoencoder” (see Section

3.3.2 for explanation) might find a compact vector

description of a large epigenomics profile (Zhang et al.,

2021), or the fluxome might be inferred from transcript

levels via constraint-based models (Culley et al., 2020),

• the scale of variables might be changed (scaling), e.g.,

normalizing and/or standardizing gene expression values

within genes,

• the format of variables might be changed (encoding), e.g.,

“0” might indicate absence of a gene and “1” its presence

(Kim et al., 2016),

• a subset of the initial variables might be selected (feature

selection), e.g., some metabolite features can be

disregarded because they are linked to pharmacotherapy

of the disease of interest (Liu et al., 2017) or because they

were previously reported to be irrelevant for disease

prediction.

There is no universal recipe that, when applied to any data

set, will yield good results (Kotsiantis et al., 2007). Hence, finding

a preprocessing procedure that works well for a given problem

sometimes requires testing several methods (Forsyth, 2019,

p. 376). In many cases some preprocessing steps are not

needed or they might need to be done in a different order.

Additionally, prior biological knowledge might enter into the

modeling framework at several points throughout preprocessing.

A few examples are as follows: Culley et al. (2020) incorporated a

genome-scale metabolic model into their modeling framework to

derive simulated fluxome-level features by bounding reactions

with experimental transcriptomics data. Pai et al. (2019) created

features for groups of genes from transcript-level features by

using known gene-pathway associations. Andreozzi et al. (2016)

used prior knowledge about the kinetic properties of enzymes to

help create multiple kinetic models that served as input to their

machine learning model. Koh et al. (2019) used biological

networks to calculate interaction-level features from the

abundances of interaction partners (i.e., genes and proteins).

Possibilities in finding new data representations seem very

diverse. Omics profiles can be converted to images by

mapping expression levels of genes or pathways onto pixels

with unsupervised techniques, making them accessible for

“convolutional neural networks” (Sharma et al., 2019; Oh

et al., 2021), which are explained later in Section 3.3.

Autoencoders can condense almost 500,000 biological features

from three omics sources into a single feature vector with

128 entries informative for several subsequent predictions

(Zhang et al., 2021).

FIGURE 2
Data and information flow in a modeling framework. The modeling framework inhabits the complete work-flow of a machine learning project,
from the raw data set to producing a final prediction. Data preprocessing converts the raw data set into a data set suitable formachine learning. In the
machine learning phase, model-based or post-hoc interpretationmethodsmight be applied to generate novel biological knowledge. Prior biological
insight (see Table 2 for examples) might enter at different steps, sometimes improving the interpretability of the ML model.
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Although preprocessing can reduce computational cost and

significantly improve predictions (Zhang et al., 2019), it can also

hurt performance when valuable information is accidentally

thrown away during a preparation step (Bishop, 2006, p. 3;

Guyon and Elisseeff, 2006, p. 4). This is observable in the

work of Culley et al. (2020). In their performance comparison,

distinct regression models that were trained on original

experimental transcriptomic features consistently out-

performed those trained on artificial flux features derived

from the same experimental data. Culley et al. (2020)

observed only performances similar to ML models trained

solely on the original data when they combined information

from the original and converted data. In one case, the integrated

data slightly outperformed the original gene expression data.

This example may demonstrate that mechanistic insight (e.g.,

constraint-based modeling) can enrich experimental data (Culley

et al., 2020). Nonetheless, converting features from one omics

layer to another should be done with care, since blindly trusting

new features while disregarding the original data could lead to

poorer results (Guyon and Elisseeff, 2006, p. 4). For details on

how to prepare raw omics data sets for machine learning the

work of Kim and Tagkopoulos (2018) is a good starting point.

Further, there are great books (Guyon and Elisseeff, 2006; Kuhn

and Johnson, 2019) for learning how to manipulate and select

features in order to improve performance.

A common problem in omics data sets is that the number of

features is much higher than the number of samples. In that case,

dimensionality reduction through feature extraction,

engineering, or selection is useful to reduce the impact of data

sparsity on the prediction reliability.

3 Toolbox for supervised machine
learning

With the growing interest in machine learning in recent years,

the toolbox of available methods and platforms to apply them

grows constantly. As a consequence, selecting a method that works

well for a given task and data set can be daunting for non-experts in

the field of data science. There is “no free lunch” (Wolpert and

Macready, 1997) in supervised machine learning, meaning that

there exists no “universal” model that works well in any situation

(Shalev-Shwartz and Ben-David, 2013, sect. 5.1). Instead expertise

about the specific biological problem is important for a successful

ML project (Shalev-Shwartz and Ben-David, 2013, sect. 5.1.1). In

this section, we provide an overview of some of the supervised

learning methods that have been applied to omics data sets. Due to

the sheer diversity of methods that have been introduced to

systems biological problems (see Table 1), describing them all

in detail would go beyond the scope of this work.

From a very general point of view, supervised learning is the

task of learning a mapping (a “hypothesis”; Shalev-Shwartz and

Ben-David, 2013, sect. 2.1) between a set of variables (the

features) and one or more target variables (the labels) given a

set of pairs of these two (the training data) to discriminate among

target variables (Angermueller et al., 2016). The ML model

normally receives features in the form of a vector

(Angermueller et al., 2016). By convention this feature vector

is denoted x ∈ Rd, where d is the dimension of the vector

(Bishop, 2006; Forsyth, 2019; Deisenroth et al., 2020). For

simplicity, we will now consider only the case where there is a

single target variable. Depending on the type of this label one

discriminates between two categories of supervised machine

learning methods, namely classification and regression. In a

classification problem setting, a label, yi, describes to which

class a sample, i, belongs and can take one of two in binary

classification (yi ∈ {C0, C1}) or one of many possible values in

multi-class classification (yi ∈ {C0, C1, . . . , Cn}). If our goal is to

predict if a tumor belongs to a cancer subtype, possible classes

could be: “subtype-A,” “subtype-B,” or “subtype-C,” which could

be encoded to the numerical values {0, 1, 2}. For regression the

label is a real number, yi ∈ R (Deisenroth et al., 2020, p. 289).

When using a training set of the form T = {(x0, y0), (x1, y1), . . .,

(xN, yN)} (Deisenroth et al., 2020, p. 370) the task for a supervised

ML algorithm is now to select a suitable hypothesis (Shalev-Shwartz

and Ben-David, 2013, chpt. 2). A hypothesismaps a feature vector, x

∈ X, to a label, y ∈ Y, h: X → Y (Shalev-Shwartz and Ben-David,

2013, sect. 2.1). During learning, the algorithm picks from a set of

possible hypotheses, the hypothesis class, h ∈ H (Shalev-Shwartz

and Ben-David, 2013, sect. 2.3). To tell the learning algorithmwhich

hypothesis works well, we have to define a criterion that measures

how large the error is between the true label (yi; known from the

training data) and a prediction made by the model, ŷi � h(x). This
criterion is known as a loss function, lh(yi, ŷi) (Deisenroth et al.,

2020, p. 260). The optimization problem is now to minimize the

mean error over all our training samples (Deisenroth et al., 2020,

p. 260; Shalev-Shwartz and Ben-David, 2013, sect. 2.2 and 2.3). This

is known in statistical learning theory as empirical risk minimization

(ERM) with inductive bias (Shalev-Shwartz and Ben-David, 2013,

sect. 2.3).

It is important to note that we usually want to find a model

that minimizes the error on data not presented during training

(Deisenroth et al., 2020, p. 261), like samples from patients we

want to diagnose in order to give them the right medical

treatment. However, minimizing this error would require

unlimited training samples (Deisenroth et al., 2020, p. 261).

The fact that we have only access to a restricted training set

(Deisenroth et al., 2020, p. 262) is why one should always test a

trained model on data the model was not fit to. A predictor that

performs well on training data but poorly on new data has

learned a bad hypothesis, one that does not generalize to new

samples drawn from the same data-generating distribution

(Maceachern and Forkert, 2021), as mentioned earlier in

Section 2.
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3.1 Classification

3.1.1 Support vector machine
Support Vector Machines (SVM) are frequently used for

binary classification purposes (Leitner et al., 2017; Alakwaa et al.,

2018; Date and Kikuchi, 2018; Sha et al., 2021; van Dooijeweert

et al., 2021). In this basic setting, SVMs aim to find a “decision

boundary” in the form of a hyperplane (Bishop, 2006, p. 326f)

that segregates the two classes of data points (Forsyth, 2019,

p. 21). In the case where the two classes are perfectly separable

there exists an endless number of possible hyperplanes that

correctly classify all training samples (Deisenroth et al., 2020,

p. 374). SVMs select the hyperplane that lies half-way between

the two data point clusters. More specifically, they choose the

hyperplane that is farthest away (in terms of “perpendicular

distance”) from the nearest data point (Bishop, 2006, p. 327).

SVMs can also be applied to problems where classes are not

perfectly separable (Cortes et al., 1995) by permitting some data

points to be incorrectly labeled (Deisenroth et al., 2020, p. 379).

The error function that allows SVMs to find an optimal solution

is the hinge loss (Forsyth, 2019, p. 23). There are several great

books that introduce SVMs in detail (Bishop, 2006; Shalev-

Shwartz and Ben-David, 2013; Forsyth, 2019; Deisenroth

et al., 2020).

Support vector machines are probably one of the most

classical machine learning methods and frequently serve as

base-line models in performance comparisons for omics data

sets (Asakura et al., 2018; Date and Kikuchi, 2018; Koh et al.,

2019; Wang et al., 2020; Nguyen et al., 2021; Sha et al., 2021). van

Dooijeweert et al. (2021) chose a SVM as their primarymethod to

classify individuals based on their metabolomics signatures as

either healthy or potentially having Diamond Blackfan

Anaemia (DBA).

3.1.2 Decision trees, random forests and boosted
trees

Decision trees classify samples based on a tree-like

hierarchical decision process. Starting from a root node

and proceeding towards one of many leaf nodes, a sample

is classified by following a path within the tree that is

controlled by making a decision at each step (i.e., at each

“internal node”; Shalev-Shwartz and Ben-David, 2013, chpt.

18). A final decision leads to a leaf that determines the class

label for the given sample (Shalev-Shwartz and Ben-David,

2013, chpt. 18). Decisions within the tree use certain

properties of the sample, which can be viewed as asking a

yes/no question similar to, Is the expression of gene A higher

than a threshold? and then proceeding along the

corresponding branch (Shalev-Shwartz and Ben-David,

2013, chpt. 18). Decision trees can be automatically

constructed by repeatedly choosing questions (“splitting

rules”) from a pool of questions while each time evaluating

the benefit of using a particular question with the help of a

gain measure (Shalev-Shwartz and Ben-David, 2013,

sect. 18.2).

The ability to verbalize and visualize a decision tree in terms

of simple yes/no questions makes them a common example of a

likely interpretable machine learning method (Shalev-Shwartz

and Ben-David, 2013; Lipton, 2016; Murdoch et al., 2019). As

long as its “depth” [i.e., the number of decisions to reach a leaf

(Shalev-Shwartz and Ben-David, 2013, sect. 21.1)] stays within

the limits of human comprehension a decision tree is usually a

simulatable classifier (see Section 4.1 for explanation) as implied

by Lipton (2016). However, decision trees have a known

disadvantage, i.e., a single decision tree of arbitrary size tends

to overfit data (Shalev-Shwartz and Ben-David, 2013, sect. 18.1

and 18.2). By combining multiple decision trees into a random

forest (Breiman, 2001), letting them “vote” on labels, and

choosing the one that gets the most votes, overfitting can be

circumvented (Shalev-Shwartz and Ben-David, 2013, sect. 18.3).

Using a “bootstrap aggregating” (short “bagging”) method

(Breiman, 1996) is a common way to construct random

forests (Forsyth, 2019, p. 41f).

Another approach that combines decision trees is boosting

(Friedman, 2002). In short, boosting constructs a series of “base”

models (e.g., decision trees) in which each model has a different

voting power and they are trained such that more attention is

brought to samples incorrectly labeled by earlier models (Bishop,

2006, p. 657). For a more detailed description of random forests

and boosting please refer to the work of Breiman (2001) or to

Bishop’s (2006) book for bagging and boosting. Andreozzi et al.

(2016) provide an illustrative toy example of a decision tree and

demonstrate how the rules learned by the tree can be utilized to

improve the “feasibility” of a population of kinetic models.

Similar to support vector machines, random forests are

popular for performance comparisons in systems biology

(Alakwaa et al., 2018; Asakura et al., 2018; Date and Kikuchi,

2018; Wang et al., 2020; Nguyen et al., 2021; Sha et al., 2021).

3.1.3 k-nearest neighbors
k-nearest neighbors (kNN) is a method that classifies new

data points based on how similar they are in their features to

samples in the training data set for which the true class label is

known (Forsyth, 2019, p. 7). More specifically, a new sample is

given the label that is most probable when looking at its k-nearest

neighbors (Bishop, 2006, p. 125f) in terms of an appropriate

measure of distance in feature space (Forsyth, 2019, p. 8). kNN

classifiers are sometimes used in performance comparisons

(Trainor et al., 2017; Wang et al., 2020; Nguyen et al., 2021),

however, from the 26 considered studies in this review, none

presented kNN as their method of choice for predictions.

3.1.4 Nearest shrunken centroid
Nearest shrunken centroid (NSC) is a modified version of the

nearest-centroid classifier and was proposed by Tibshirani et al.

(2002) for inferring tumor classes from trancriptomics data. Its
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advantage over the original classifier (i.e., nearest-centroid) lies in

that it allows for an inherent selection of features that are most

distinct between sample classes (Tibshirani et al., 2002). Thus, it

is suitable for data sets with a high number of features that may

simultaneously contain only a few relevant signals like

transcriptomics data.

Following the steps in the original publication (Tibshirani

et al., 2002): First, the algorithm calculates an average sample (i.e.,

the centroid) for each class and the whole data set. Then, the

similarity between the class centroids and the global centroid is

evaluated by a t-statistic for every feature and class. This

t-statistic is then numerically “shrunken” by subtracting a

constant, Δ. In the final classifier, a feature effectively loses its

ability to distinguish between classes if all of its corresponding

values dropped beneath zero or became zero in this step. This

way, features that are unimportant for predictions can be

gradually removed as Δ increases (Tibshirani et al., 2002).

Koh et al. (2019) modified the original version of NSC such

that it takes into account also related features when calculating

test statistics.

3.2 Regression

Regression is the task of finding a mapping from a feature

vector to a real number (Jiang et al., 2020). In a regression setting,

a fundamental assumption is that our labels are subject to some

random measurement error; hence, there is no relationship

between the labels and features in the form of a deterministic

function (Deisenroth et al., 2020, p. 289). An example of a

regression problem would be the prediction of an organism’s

body size from metabolomic measurements (Asakura et al.,

2018).

3.2.1 Linear regression
In linear regression we assume that a straight line that is

randomly displaced from the origin relates features and labels

(Forsyth, 2019, p. 209). Given a training data set, suitable model

parameters (a.k.a. fitting the line) are usually found by so-called

“maximum likelihood estimation” using a “gradient descent”

algorithm (Deisenroth et al., 2020, p. 293), which is, in this

context, the same as finding the minimum of the sum of squared

residuals between model predictions and the training labels

(Bishop, 2006, p. 141).

3.2.2 Lasso regression
Lasso is a regularization method that was proposed by

Tibshirani (1996) and can eliminate non-informative features

by setting their contributions to zero, potentially yielding a sparse

model (i.e., a model that effectively uses only some of the given

features; Forsyth, 2019, p. 262f). Generally, regularization tries to

avoid overfitting during training, e.g., by keeping parameters in

reasonable ranges, embedding feature selection into the model

(Jiang et al., 2020), or randomly switching neurons on and off in a

neural network (Angermueller et al., 2016). In lasso regression,

this is achieved by adding a regularization term to the loss

function of the regression model that shrinks some

parameters to zero, eliminating the contributions made by the

corresponding features (Bishop, 2006, p. 144f). Kim et al. (2016)

primarily used lasso regression in their modular ML approach to

predict quantities in several omics layers andNguyen et al. (2021)

incorporated lasso regularization into their deep neural network

for selecting predictive features. Lasso regression was also applied

to omics data as a feature selection strategy for the final predictive

model (Leitner et al., 2017; Liu et al., 2017; Pai et al., 2019).

Leitner et al. (2017) used this approach to select for the most

suitable set of metabolites for early prediction of gestational

diabetes mellitus (GDM). A combination of two different data

sets, blood and urine samples, showed the highest prediction

accuracy with a SVM model.

3.2.3 Partial least squares regression
Partial least squares (PLS) regression was introduced by

Wold (1975) and constructs a set of latent variables that are

most predictive of multiple target variables from the original

features (Abdi, 2010). PLS works well when there are less samples

than features and when features are suspected to be highly

correlated with each other (Abdi, 2010; Trainor et al., 2017).

Consequently, metabolomics data lends itself to PLS, e.g., because

of its oftentimes low number of samples with many features and

correlated metabolites (Mendez et al., 2019). Additionally, PLS is

well-accessible for post-hoc interpretations that measure feature

importance (Fonville et al., 2010; Leitner et al., 2017; Mendez

et al., 2019).

A variant of PLS that is sometimes used to classify omics

profiles is partial least squares discriminant analysis (PLS-DA)

(Trainor et al., 2017; Date and Kikuchi, 2018). In this case, the

target variables are categorical and a threshold on the predictions

made by a corresponding regression model determines the

predicted labels (Brereton and Lloyd, 2014).

For in-depth mathematical descriptions of the regression and

the classification approach, see Abdi (2010) and Brereton and

Lloyd (2014). Fonville et al. (2010) discuss some interpretability

aspects of PLS and related methods in metabonomics.

3.3 Neural networks

Neural networks comprise a large group of machine learning

methods that all have in common that they contain entities called

neurons (Sengupta et al., 2020). Real biological neurons and how

they wire and learn together initially served as a model for these

mathematical units (Macukow et al., 2016). Nonetheless, modern

artificial neural networks (ANN) have only little in common with

nervous systems. A neuron can be seen as a function that takes an

input feature vector, x, and returns a value, y, that represents its
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current activity (Angermueller et al., 2016). A typically non-

linear activation function determines how the neuron responds to

inputs weighted by learnable weight parameters (Mendez et al.,

2019; Sengupta et al., 2020). Another learnable parameter, the

bias, is added before the input-to-output conversion and

determines how easily the neuron activates (Sengupta et al.,

2020). Generally, one could speak of a neural network when a

neuron receives input from another neuron.

In the most classical type of neural networks, called “feed-

forward neural networks,” neurons are organized into layers

(Mendez et al., 2019). Each layer holds a number of neurons

that solely receive input from neurons in the previous layer and

pass their output only to neurons in the next layer. However,

some neurons might receive no input and instead show a steady

activation (Shalev-Shwartz and Ben-David, 2013, sect. 20.1).

Nonetheless, normally two consecutive layers are “fully

connected,” meaning that every neuron in a subsequent layer

receives a vector, y(i), corresponding to all outputs from a

preceding layer (Angermueller et al., 2016). In a feed-forward

neural network there are three types of layers. The input layer

feeds the feature vector of a sample for which a prediction is to be

made into the network. This input signal is then propagated

through one or more hidden layers until the last layer, the output

layer, is reached. The outputs, y(out), of the neurons in the output

layer can for instance represent probabilities for cancer classes

(Alakwaa et al., 2018) or even metabolite concentration change

over time (Costello and Martin, 2018). In a binary classification

task, the output layer often has only one neuron. At any hidden

layer, an output vector, y(h), can be seen as a new set of internal

“features” for an input sample abstracted automatically by the

hidden neurons from their input vector (LeCun et al., 2015). This

ability, to sequentially find new, more discriminative, features,

allows feed-forward neural networks to enrich the information

relevant for predictions (Forsyth, 2019, p. 367) and filter out less

relevant information (LeCun et al., 2015).

When neural networks contain more than one hidden layer

they are often termed “multilayer” or deep neural networks

(DNNs) (Shrestha and Mahmood, 2019; Zhang et al., 2019).

Deep neural networks have the advantage that they avoid having

to carefully construct (i.e., “hand-engineer”) input

features—instead the original raw features can be used directly

in most cases (LeCun et al., 2015). Backpropagation is the key

ingredient that allows DNNs to learn efficiently (Macukow et al.,

2016). During backpropagation, the model’s prediction error is

traced back to individual model parameters, hence allowing them

to be appropriately adjusted (LeCun et al., 2015).

Neural networks can be applied to a variety of problems

(Shrestha and Mahmood, 2019). When we allow neural networks

with a particular activation function to have an unlimited

number of hidden layers they can theoretically simulate any

function connecting input features and target variables (Hanin,

2019).

3.3.1 Specialized neural networks
There are a lot of different neural network architectures that

were mostly designed to perform well on one specific task.

Examples of specialized neural networks that have been

applied to omics data sets are convolutional neural networks

(Sharma et al., 2019; Oh et al., 2021), recurrent neural networks

(Kim et al., 2016), graph neural networks (Alghamdi et al., 2021),

capsule networks (Wang et al., 2020; Wang et al., 2021), and

autoencoders (Zhang et al., 2021).

Convolutional neural networks (CNNs) were developed to

work with data in which features have a known spatial relation,

e.g., sequential data, image-like data, and stacks of image-like

data (LeCun et al., 2015). They can learn to recognize complex

objects such as animals in pictures by internally decomposing

their input (LeCun et al., 2015). This ability is partly due to the

fact that consecutive layers are not fully linked such that a neuron

sees only a part of the whole picture, the “local receptive field”

(Shrestha and Mahmood, 2019). Sharma et al. (2019) applied

CNNs to transcriptomics data by assigning RNAs to pixels

according to their similarity in the training data and then

integrating RNA abundances into these pixels for every sample.

Recurrent neural networks (RNNs) perform well on time-

series data, where “information of previous time steps” needs to

be remembered because it is relevant for later time points

(Sengupta et al., 2020). Unlike in classical feed-forward

architectures (e.g., multi-layer feed-forward neural networks),

in RNNs, neurons receive information extracted from earlier

inputs additionally to the present input (Sengupta et al., 2020).

Kim et al. (2016) used a RNN to predict transcript levels in a cell

from genetic and environmental features in the hope of

replicating the behaviour of cycles frequently found in

transcriptional regulatory networks.

Graph neural networks (GNNs) is an umbrella term for

neural networks which can work with data that can be

represented as graphs (Zhou et al., 2018) and there are many

subtypes of them (Wu et al., 2019). For instance, “Message

Passing Neural Networks (MPNN)” (Gilmer et al., 2017) are a

type of “convolutional graph neural networks” (Wu et al., 2019)

in which vertices in the graph store information and share

information along edges with neighboring vertices in a step-

wise process until an output is generated by taking into account

the final states of vertices (Gilmer et al., 2017) for local “node-

level” or global “graph-level” predictions (Wu et al., 2019).

Alghamdi et al. (2021) used a GNN to infer metabolic

reaction rates in individual cells from transcriptomics data by

viewing the metabolic network as a factor graph.

In the next sections, we will discuss autoencoders and capsule

networks in more detail. We highlight autoencoders because of

their ability to serve as powerful feature extractors, as

demonstrated on multi-omics data (Zhang et al., 2021), and

capsule networks because of their young age and distinct nature

to “regular” neural networks. Shrestha andMahmood (2019) and
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Sengupta et al. (2020) review many more specialized neural

network architectures, and Zhou et al. (2018) and Wu et al.

(2019) discuss graph neural networks in great detail.

3.3.2 Autoencoders
An autoencoder is a special feed-forward neural network

architecture that, rather than trying to predict target variables

from an input, learns to output its given input (Martorell-

Marugán et al., 2019). Since they only use feature information

they can be classified as “unsupervised DNN[s]” (Shrestha and

Mahmood, 2019). The important detail about this architecture is

that it includes a hidden layer with usually only a few neurons

(Sengupta et al., 2020). This characteristic layer is sometimes

called the bottleneck. Since information is passed on from layer to

layer, at the bottleneck the model is forced to find a description of

the input with low dimension (Sengupta et al., 2020). In contrast

to principal component analysis for dimensionality reduction,

non-linear activation functions allow autoencoders to compress

their inputs non-linearly (Shrestha and Mahmood, 2019), which

can lead to more informative descriptions (Charte et al., 2018).

The bottleneck divides autoencoders into two parts, the encoder,

and the decoder (Shrestha and Mahmood, 2019). While the

encoder tries to extract the most relevant information from

the original input to condense it at the bottleneck, the

decoder tries to reproduce the input in the output layer from

it (Shrestha and Mahmood, 2019). Once an autoencoder was

trained, it can generate a compact description from a sample

which may then serve as input for predictive models or can be

used to plot the data when the new description has only two or

three dimensions (Zhang et al., 2021).

There is a wide variety of autoencoders that can serve other

purposes than just dimensionality reduction. For instance,

when an autoencoder is challenged to reproduce original

samples from samples that were randomly perturbed the

model can learn to remove similar “noise” from new

samples (Gondara, 2016). Another commonly used version

is a variational autoencoder (VAE). Rather than learning

discrete sample descriptions, VAEs learn the parameters of

a normal distribution from which new descriptions can be

drawn (Zhang et al., 2021). As such an VAE can act as a

sample generator that could theoretically come up with omics

measurements for imaginary patients when decoding a newly

drawn description (Shrestha and Mahmood, 2019; Zhang

et al., 2021). Furthermore, model parameters learned by an

autoencoder can serve as first drafts for those of a

supervised neural network, allowing effective “pre-training”

of supervised models (Erhan et al.,

2010) as demonstrated on omics data (Alakwaa et al., 2018).

3.3.3 Capsule networks
Capsule Networks (CapsNets) are a novel type of neural

network that was introduced by the team of Geoffrey E. Hinton

(Sabour et al, 2017). CapsNets have challenged the state-of-the-

art CNNs in image identification. CapsNets aim to overcome

some of the flaws of CNNs, like the loss of local information

during a typical filter operation and difficulties with recognizing

objects when they appear in new orientations (Sabour et al,

2017). CapsNets are exceptionally good at resolving objects

when they are shown on top of each other (Sabour et al, 2017).

According to the authors (Sabour et al, 2017), in a capsule

network multiple neurons are configured into “capsules” that

each detect the presence and characteristics of an associated

“entity.” In an transciptomics profile, an individual capsule can

be set up to predict the presence of a specific protein and

indicate its properties (Wang et al., 2021). A capsule returns a

vector that corresponds to the activities of its neurons and

indicates the probability that the entity is present with its scale

and the entity’s characteristics by its orientation (Sabour et al,

2017). Capsules are further organized into layers that follow a

child-parent like hierarchy. As an example, in the

implementation of Wang et al. (2020), the capsules in the

last capsule layer each indicated the presence of a cell class

that the authors aimed to predict. In a later work (Wang et al.,

2021), child capsules of these parent capsules representing cell

classes were encouraged to portray transcription factors or

groups of interacting proteins. When processing samples, an

innovative dynamic routing protocol ensures that each capsule

signals mostly to a single parent capsule, i.e., the one

whose output harmonizes well with its own,

which amplifies plausible relationships between

capsules and, consequently, between their entities (Sabour

et al, 2017).

3.4 Software implementation

In terms of software implementation, three main

programming languages, namely, Python, R and Matlab are

frequently used in omics analysis. Currently, Python is

coming to the fore in machine learning in general (Srinath,

2017). Despite many Python innovations, R offers numerous

libraries and packages for biological analyses, including ones

specifically for handling omics data (Chong and Xia, 2018;

Picart-Armada et al., 2018). This is mainly due to the history

of bioinformatics analysis using the Bioconductor repository

(Gentleman et al., 2005). Nevertheless, we must point out that

R has its original roots in statistical analysis. Thus, R also offers

methods developed at the borderline between computer science

and statistics (Torsten Hothorn, 2022).

The main difference in software implementations using

Python or R is usually the target application. Mostly, R

packages are created and tested for one data type with very

specific properties, see Supplementary Table S1. As a result, the

R language in omics analysis is seldomly used directly for

developing neural networks, but rather for optimizing more

classical learning methods such as linear regression or Bayesian
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methods. In addition, a large part of scientific research

regarding ML algorithms is conducted in Matlab. Nowadays,

Matlab also offers many new innovations related mostly to

training and proper optimization of error functions in neural

networks.

A combination of different languages also offers more

analysis options. Appropriate interfaces exist for example to

use Python in R1 and Matlab2. A summary of useful software

packages for (interpretable) machine learning can be found in

Figure 3 and Supplementary Table S1.

4 What is interpretability?

4.1 Basic concepts of interpretability

The concept of interpretability has been thoroughly

discussed in recent years in the machine learning

community, leading to a diversity of different perceptions,

terms, and attempts at its definition (Lipton, 2016; Murdoch

et al., 2019; Barredo Arrieta et al., 2020). Terms that are

strongly associated with interpretable machine learning are

transparency (Lipton, 2016; Barredo Arrieta et al., 2020),

white-box (Loyola-Gonzalez, 2019), explainability,

understandability, and comprehensibility (Barredo Arrieta

et al., 2020). While all of these terms might capture

different notions of the same overall concept (Lipton,

2016; Barredo Arrieta et al., 2020), they seem to refer to

the same underlying desires, which are to trust, understand,

or interpret the decision-making process or the results

obtained from a machine learning model. Besides its

controversial nature, there is a strong agreement that the

topic of interpretability is important in machine learning

(Lipton, 2016; Barredo Arrieta et al., 2020), especially for

experts and scientists that deploy ML models to real-world

problems (Murdoch et al., 2019).

Due to its many facets, it is necessary to fix a definition of

interpretability when writing about it (Lipton, 2016).

Interpretability can be defined as “the ability to explain or to

provide the meaning in understandable terms to a human”

(Barredo Arrieta et al., 2020) or to be able to extract “relevant

knowledge from a machine-learning model concerning

relationships either contained in data or learned by the

FIGURE 3
Overview of useful software packages for machine learning implementations from the most prevalent programming languages in
computational biology (i.e., R, Python, and Matlab). All listed packages have been applied in an omics data analysis context (see Supplementary Table
S1 for references). Most packages focus on either data pre-processing, themodeling phase (i.e., model-based interpretations and designing, training
or executing a ML model in general), or the post-hoc analysis phase (i.e., post-hoc interpretations and data visualization).

1 https://www.rstudio.com/blog/reticulate-r-interface-to-python/

2 http://mathworks.com/help/matlab/call-python-libraries.html
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model” (Murdoch et al., 2019). In this review, we would like to

adapt the second definition and define it in the context of this

work as the ability to generate biological insight from data with

the help of machine learning methods.

4.1.1 Reliability of interpretations
To gain real insight, any information we extract from a ML

model and interpret needs to be reliable. As Murdoch et al.

(2019) describe, this depends on two criteria: predictive

accuracy, i.e., performance of the model, and descriptive

accuracy, i.e., performance of the interpretation method.

They argue that interpretations would be unreliable if

either the ML model fails to model the data accurately or

the interpretation method is unable to correctly extract

information from the model. Furthermore, we argue that

interpretability relies on every step that leads towards an

interpretation. This includes the whole analysis framework:

we need to trust 1) that the raw data contains the desired

information in an unbiased manner, 2) that the data

preprocessing steps retain the relevant information from

the raw data, 3) that, as suggested by Murdoch et al.

(2019), the ML model correctly captures relevant

information from the training data, and 4) that the

interpretation method effectively conveys this information.

All of these points need to work correctly to avoid misleading

interpretations. In particular, raw data quality is very important.

If the raw data is flawed, both predictions and interpretations will

automatically be inaccurate/misleading. Raw data quality relies

on the experimental procedure, a topic we hardly touch on in this

review. This further demonstrates the broad scope of

interpretability.

Preprocessing depends on the properties of the available data,

the problem of interest, and the ML model. Thus, individual

preprocessing steps might need to be validated for every

implementation. Generally, it is crucial to not accidentally lose

valuable information during preprocessing, as discussed in

Section 2.2.

Regarding the ML model, Murdoch et al. (2019)

emphasize that “one must appropriately measure predictive

accuracy.” For this, samples in the test set must not be

involved in model optimization and training, since they

simulate how the model would predict labels of new/

unknown samples. Further, one should collect test samples

without bias, slight changes in the training set and model

should not heavily impact predictive accuracy, and

predictions should be equally accurate for all types of

samples (Murdoch et al., 2019).

Murdoch et al. (2019) suggest that descriptive accuracy

depends on the interpretation and ML method and that some

ML methods offer either superior descriptive or predictive

accuracy: while, e.g., a deep neural network may outperform a

decision tree, the decision tree may be easier to interpret. In

systems biology, we frequently want to achieve both, e.g.,

correctly diagnose a disease and understand the reasoning

behind the diagnosis. Therefore, we may have to balance the

two objectives (Murdoch et al., 2019).

FIGURE 4
Illustration showing the difference between model-based and post-hoc interpretation methods. A model-based interpretation strategy could
be to design a sparse model by limiting the possible connections in a neural network (e.g., with knowledge about biological networks). Once the ML
model is trained, post-hoc analysis can reveal the model parts that are most important for predictions, hinting on genes or biological interactions
relevant for the disease.
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4.1.2 Interpretation methods
There are two general classes of interpretation methods,

namely post-hoc (Lipton, 2016; Murdoch et al., 2019; Barredo

Arrieta et al., 2020) and model-based techniques (Murdoch

et al., 2019), which Figure 4 exemplifies. Model-based

interpretations rely on the implementation of ML models

“readily providing insight into the relationships they have

learned” (Murdoch et al., 2019), whereas post-hoc

interpretations only take place after the designing and

training process and try to produce relevant biological

knowledge just from the finalized model (Murdoch et al.,

2019; Barredo Arrieta et al., 2020).

Model-based interpretation methods

Model-based interpretability can be achieved by enforcing

three different properties in a model: “sparsity,” “simulatability,”

and “modularity” (Murdoch et al., 2019).

Sparsity arises when some parameters are set to zero by the

ML model itself or explicitly by the designer with prior

knowledge, thereby decreasing the number of variables that

need to be comprehended (Murdoch et al., 2019). Further,

sparsity can associate parts of the ML model with biological

entities, which allows additional interpretations and is

discussed in Section 4.4.1. Methods that enforce sparsity

require that there is indeed only a limited number of

relevant connections between the features and the

prediction target as indicated by Murdoch et al. (2019).

When too many or the wrong parameters are eliminated,

the model might learn an inaccurate/misleading relation.

Additionally, any parameter that influences an

interpretation should have similar values when we retrain

the model with a slightly different training set (Murdoch

et al., 2019), e.g., one where a single sample was changed or

omitted/added. This requirement is generally known as

stability in learning theory (Bousquet and Elisseeff, 2002).

Methods that offer sparsity are, for instance, lasso regularized

models (Murdoch et al., 2019) and nearest shrunken centroid

because they intrinsically eliminate contributions of

unimportant features.

Simulatability refers to the degree at which a person can

comprehend and could theoretically think/run through the

whole procedure of computing an output for a given input

(Murdoch et al., 2019; Barredo Arrieta et al., 2020) “in

reasonable time” (Lipton, 2016). Human comprehension

demands that the following properties are sufficiently low:

the complexity of the studied problem [referred to as the

complexity of “the underlying relationship” by Murdoch et al.

(2019)], the samples’ dimension (Murdoch et al., 2019), the

model’s overall complexity, and the number of steps from

input to output (Lipton, 2016). Therefore, making

simulatability a requirement would drastically shrink the

space of available methods and biological problems

(Murdoch et al., 2019). Examples of models that usually

exhibit a high level of simulatability are linear and logistic

regression models, single decision trees, k-nearest neighbor

classifiers, rule-based models, single neuron neural networks

(Barredo Arrieta et al., 2020), and linear genetic programs

(LGPs).

Modularity is a property where the model includes

elements (i.e., “modules”) that make the model partially

understandable because they are interpretable on their own

(Murdoch et al., 2019). In the two case studies of modular

designs (Kim and Tagkopoulos, 2018; Alghamdi et al., 2021)

we highlight later, modules allow restricted insight because

their inputs and outputs are biologically meaningful.

Consequently, the module as a whole depicts a biological

mechanism. It is the biological process that connects

transparent input and output [e.g., transcription and its

regulation; translating the genotype and environmental

context to the transcriptome (Kim et al., 2016)].

Nonetheless, the way a module mathematically models a

biological process could be elusive. This type of modularity

seems related to what Lipton (2016) and Barredo Arrieta et al.

(2020) call decomposability, which they describe as that the

model is fully composed of elements (i.e., features, internal

variables, computations) that make instinctively sense. Hence,

we might call these cases partially decomposable. Neural

network based models with a modular design and

“generalized additive models” offer modularity (Murdoch

et al., 2019), while decision trees and linear models can be

fully decomposable (Lipton, 2016).

Post-hoc interpretation methods

Post-hoc interpretation techniques act after training and

aim to reveal some of the hidden “relationships” the model has

internalized by viewing the training samples (Murdoch et al.,

2019). We see post-hoc interpretations more generally as the

action of extracting valuable information from a trained

model. Thus, a post-hoc interpretation could be as simple

as communicating naturally meaningful coefficients of a linear

model to a human interpreter. There exist various post-hoc

approaches for different ML models that try to interpret a

trained model by, e.g., assessing the importance of input

features or relationships between them (Murdoch et al.,

2019), visualizations, providing exemplary predictions,

simplifying the model, putting reasonings into words, or

elucidating individual properties of the model (Barredo

Arrieta et al., 2020).

For additional examples, and further clarifications on the

mentioned terms regarding interpretability great resources are

the works of Lipton (2016), Murdoch et al. (2019), and Barredo

Arrieta et al. (2020).
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4.2 Interpretability categorization scheme

In this work, we have developed a scheme which allows us to

categorize research studies that applied ML models to biological

data sets. In this scheme, studies are classified into a total of nine

combined categories according to two criteria, 1) the used

interpretation method and 2) if and at which point prior

biological insight was incorporated into the project. Table 2

summarizes similarities between the reviewed studies in these

two characteristics and states the corresponding categorizations.

4.2.1 Use of interpretation methods
Following the definitions laid out in Section 4.1 we

differentiate between:

• No interpretation methods. Studies that do not

implement post-hoc or model-based interpretation

methods.

• Post-hoc interpretations. Studies that gain biological

insight by analyzing a trained ML model with post-hoc

interpretation methods.

TABLE 2 Categorization of research studies applying machine learning techniques to non-sequential omics data sets. Summary of interpretation
methods, assigned category and the approach demonstrated in the publication that led to this classification (top). Summary of utilized modeling
frameworks, assigned category and prior knowledge that entered the modeling framework (bottom).

Interpretation Method

Approach Category Ref

Sparse model model-based Koh et al. (2019); Pai et al. (2019); Nguyen et al. (2021); Wang et al. (2021)

Modular design model-based Kim et al. (2016); Alghamdi et al. (2021)

Well-simulatable
model

model-based Andreozzi et al. (2016); Hu et al. (2018); Sha et al. (2021)

Input-response
analysis

post-hoc Alakwaa et al. (2018); Costello and Martin (2018); Wang et al. (2020); Zhang et al. (2021)

Feature importance post-hoc Leitner et al. (2017); Alakwaa et al. (2018); Asakura et al. (2018); Date and Kikuchi (2018); Bahado-Singh et al. (2019);
Culley et al. (2020); van Dooijeweert et al. (2021)

no interpretation
methods

Hoehenwarter et al. (2011); Liu et al. (2017); Trainor et al. (2017); Mendez et al. (2019); Sharma et al. (2019); Stamate et
al. (2019); Toubiana et al. (2019)

Modeling Framework

Incorporated Prior
Knowledge

Category Ref

Biological network information

Transcriptional regulatory network light gray-box Kim et al. (2016)a; Koh et al. (2019); Nguyen et al. (2021)a; Wang et al. (2021)a

Protein-protein interaction network light gray-box Kim et al. (2016); Koh et al. (2019); Wang et al. (2021)a

Co-expression protein network light gray-box Kim et al. (2016)

Metabolic network light gray-box Alghamdi et al. (2021)a

Pathways of metabolites dark gray-box Toubiana et al. (2019)b

Other biological relationships

Chromosomal allocation of CpG sites light gray-box Zhang et al. (2021)a

Expression quantitative trait loci light gray-box Nguyen et al. (2021)a

Chemical composition light gray-box Alghamdi et al. (2021)

Constraint-based metabolic modeling light gray-box Kim et al. (2016)b

dark gray-box Andreozzi et al. (2016)b; Culley et al. (2020)b

Reaction kinetics dark gray-box Andreozzi et al. (2016)b

No prior knowledge black-box Hu et al. (2018); Sha et al. (2021); Alakwaa et al. (2018); Date and Kikuchi (2018); Bahado-Singh et al. (2019), Wang
et al. (2020); van Dooijeweert et al. (2021); Leitner et al. (2017); Costello and Martin (2018); Asakura et al. (2018);
Sharma et al. (2019); Mendez et al. (2019); Stamate et al. (2019); Liu et al. (2017); Trainor et al. (2017);
Hoehenwarter et al. (2011)

aKnowledge was used to select connections in a neural network
bKnowledge was used to create new features/variables.
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• Model-based interpretations. Studies that gain biological

insight by either using a well-interpretable machine

learning model as their primary model or modifying a

machine learning model such that its sparsity,

simulatability, modularity or decomposability is increased.

We consider machine learning models to be “well-

interpretable” if they were explicitly declared to frequently

demonstrate sparsity, simulatability, modularity, or

decomposability by the interpretable machine learning

community, or if they obviously display one of these

properties. In particular, this includes, methods that use

lasso regularization or “sparse coding” (Murdoch et al.,

2019), decision trees (Lipton, 2016; Murdoch et al., 2019;

Barredo Arrieta et al., 2020), linear regression models,

logistic regression models, k-nearest neighbor classifiers,

single neuron neural networks, rule-based models, Bayesian

models (Barredo Arrieta et al., 2020), generalized additive

models (Murdoch et al., 2019; Barredo Arrieta et al., 2020),

neural network based models with a modular design (Murdoch

et al., 2019), nearest shrunken centroid, and linear genetic

programs.

4.2.2 Use of prior knowledge
Using prior knowledge to guide the design of aMLmodel can

boost interpretability and even performance, e.g., when

introducing sparsity (Murdoch et al., 2019). If neural

networks are wired according to known biological

relationships, elements of the ML model can be virtually

coupled to biological entities. This possibility was

demonstrated for cellular components (Ma et al., 2018), genes

(Nguyen et al., 2021), regulatory proteins, and protein interaction

clusters (Wang et al., 2021). For defining categories with respect

to the integration of prior biological knowledge, we adopt a view

from the field of system identification (SI). SI discriminates

between the three categories black-box, gray-box and white-

box for mathematical models based on the amount of

theoretical and experimental knowledge that went into their

construction (Sjöberg et al., 1995; Isermann and Münchhof,

2011).

Machine learning models are often tightly embedded into

a much larger modeling framework. This modeling

framework includes all data preprocessing steps as

explained in Section 2.2 and can be seen as anything that

supports the data flow from the initial raw data to a final

prediction. Sometimes, this modeling framework can be

enormous (Andreozzi et al., 2016), representing a

significant portion of the added scientific value of a study.

Because prior knowledge can enter not only in the ML model

itself but also during preprocessing, we want to utilize this

categorization criterion to capture a property of the

modeling framework. With this in mind, we differentiate

between:

• Black-box. Modeling frameworks that do not incorporate

any prior biological knowledge—they are purely

determined by measurement data (“data-driven”).

• Dark gray-box. Modeling frameworks that incorporate

prior biological knowledge in any step before the

machine learning model that makes the final prediction.

• Light gray-box. Modeling frameworks that incorporate

prior biological knowledge into their machine learning

model. This category also includes cases where prior

biological knowledge enters at both points, before the

machine learning model, and within it.

Please note that because of how SI (Sjöberg et al., 1995;

Isermann and Münchhof, 2011) defines “white-box” models, a

corresponding category would inherently exclude any approach

that includes a ML model. This is because in SI, the term white-

box describes models in which every mechanism and parameter

is known from theoretical knowledge (i.e., previous experience

and first principles), without relying on any measurement data

(Sjöberg et al., 1995). In machine learning, a learning algorithm

automatically integrates measurement data into mathematical

models, which contradicts with the white-box definition from SI.

Consequently, a white-box category does not appear in our

scheme. Please further consider that the terms “black-box”

and “white-box” frequently pop up in the machine learning

literature and try to convey the level of interpretability of a

MLmodel (Lipton, 2016; Loyola-Gonzalez, 2019; Murdoch et al.,

2019; Barredo Arrieta et al., 2020). However, we avoid these

notions because they seem vaguely defined and overused. We

want to emphasize that they should not be confused with the

well-established homonyms found in SI (Sjöberg et al., 1995;

Ljung et al., 1998; Isermann and Münchhof, 2011) upon which

we base our second criterion.

4.2.3 Additional considerations and examples
Although we try to outline clear categories, it is possible to

encounter studies whose allocation seems uncertain. In this

section, we provide additional considerations together with

examples to make assignments more conclusive.

The model-based interpretations category does not exclude

the use of post-hoc interpretation methods. From the fact that

data is the target of interpretations (Murdoch et al., 2019) and

how we defined post-hoc methods follows that post-hoc

interpretations must always accompany a model-based

strategy. For instance, the post-hoc method integrated

gradients (Sundararajan et al., 2017) is applied by Nguyen

et al. (2021) to a ML model that was modified to exhibit sparsity.

Whether a machine learning model is well-interpretable is

difficult to judge. For instance, the notion of simulatability

depends on the complexity of the model (Lipton, 2016;

Murdoch et al., 2019; Barredo Arrieta et al., 2020).

Decomposability demands that all features are meaningful

(Lipton, 2016; Barredo Arrieta et al., 2020), which depends on
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FIGURE 5
Examples of post-hoc interpretationmethods from Section 4.3 in simplified form. (A) The impact of perturbing individual features on the overall
performance of the ML model can indicate how important features are. This is the basic principle behind “mean decrease accuracy,” as it was
performed byDate and Kikuchi (2018). Thereby, entries of individual features are shuffled between test samplesmultiple times. Model performance is
measured each time and compared to the performance obtained by using the unchanged test set. (B) Activation patterns of neurons can allow
insight into the ML model, revealing important neurons that have learnt to discriminate between classes and important features that enable this
discriminative ability. This input-response analysis was part of the post-hoc interpretation strategy of Alakwaa et al. (2018). They used it to verify that
some neurons have learnt to distinguish between two cancer subclasses and to discover metabolites that are primarily associated with one subclass.
In the generalized version illustrated here, activities of neurons in the first hidden layer are recorded while the already trained neural network
processes the training samples. Comparing the activities between different classes can then identify characteristic neurons. Inputs that strongly
connect to these class-characteristic neurons are likely important. (C) Statements found in well-performing linear genetic programs (LGPs) can
reveal important input features and might further indicate important feature interactions. This was demonstrated by Hu et al. (2018) and Sha et al.
(2021) and is shown here in a simplified way. As described by Hu et al. (2018) and Sha et al. (2021), LGPs aremade up of a sequence of statements that
convert some input features, [X], to an output variable, y, and are generated by a process similar to biological evolution. Since LGPs do not need to use
all features, individual and pairwise counts of features that influence the output in well-performing programsmay indicate the importance of features
and their relationships (Sha et al., 2021).
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the raw data and preprocessing. For modular designs, individual

modules need to be interpretable on their own (Murdoch et al.,

2019), which depends on their nature, context, and relationship

to each other. Reducing the number of variables that need to be

comprehended by building sparse models (Murdoch et al., 2019)

might generally improve interpretability. However, if too many

variables remain in the sparse model, interpretations may still be

limited, as implied by Murdoch et al. (2019). All these factors

vary between implementations of the same general ML method.

To judge if a ML model is well-interpretable we have taken an

Occam’s Razor approach. We assume every implementation of a

ML method is well-interpretable if the interpretable

machine learning community (Lipton, 2016; Murdoch et al.,

2019; Barredo Arrieta et al., 2020) mentions that the method

usually displays sparsity, simulatability, modularity, or

decomposability.

All categories that assess aspects of the machine learning

method are based on primary ML models. Many studies

develop a machine learning approach and then compare

it to a set of well-established base-line models (Asakura

et al., 2018; Date and Kikuchi, 2018; Wang et al., 2020; Sha

et al., 2021; Zhang et al., 2021). We call the models that the

authors present as their methods of choice/interest (or

which they primarily use) for predictions the primary ML

models. We considered interpretability aspects only of

primary models and viewed the modeling framework

from their perspective. Consequently, any additional ML

models, e.g., base-line models, lasso regression to select

features for a primary model (Leitner et al., 2017; Liu

et al., 2017; Pai et al., 2019) or kNN for data imputation

(Alakwaa et al., 2018; Stamate et al., 2019) did not influence

our categorizations.

We considered models whose individual predictions were

combined (Kim et al., 2016) as one large primary model. On the

other hand, if models receive the same input but predict different

target variables (Costello and Martin, 2018) these were not seen

as one model.

Biological insight that is a direct consequence of a

prediction was not considered to be generated by an

interpretation method. For example, Toubiana et al. (2019)

mapped pathways onto correlation networks, derived graph-

based features and used these to predict if the pathways are

part of the tomato metabolism. By repeating this procedure

with unlabeled pathways testable hypotheses about their

affiliation to tomato can be proposed (Toubiana et al.,

2019). Here, the output is directly subject to

interpretation, while the model itself is left untouched. We

did not consider this case to be an interpretation method.

Hypothetically, any prediction made by a ML model could be

experimentally tested as long as the output has a biological

meaning.

With all of this in mind, we are now ready to highlight

some of the works we have categorized in Table 2 in more

detail in the next sections. These sections focus on post-hoc

and model-based interpretation methods. If studies have

integrated prior biological knowledge in an original way,

this will also be discussed.

4.3 Post-hoc interpretations

4.3.1 Discovering biomarkers by simple feature
importance measures

Probably the most frequent approach to extract knowledge

from a ML model is to assess feature importance in some way.

Knowing how individual genes or metabolites influence the

predicted probability of a disease can provide a first glimpse

into the mechanisms of the disease. Investigating in which

biological subsystems (e.g., pathways) predictive genes or

metabolites participate lets us narrow down the origin of the

disease within the system. A proposed set of relevant molecules

could serve as biomarkers, enabling us to develop diagnostic tools

that do not require untargeted omics screens. Further, reducing

the number of considered variables may lead to more accurate

predictions by lowering the noise brought by unnecessary

information (Culley et al., 2020). In order to gain biological

insight with feature importance scores, the inputs need to have a

clear connection to a biological entity. For instance, when

working with principal components as inputs, which could be

linear combinations of measurements from over 60,000 genes,

then, their relative importances most certainly provide no

immediate biological insight. Nonetheless, in this specific case,

importance scores could be backtraced to meaningful raw

features (i.e., genes) by knowing the PCA loadings.

An advantage of methods that evaluate feature importance is

that they are convenient to implement, as they come with many

software packages for machine learning. Bahado-Singh et al.

(2019) used functions from the packages caret and h2o in R

to score patient properties, including metabolomic and

proteomic measurements, according to their ability to

discriminate between clinical outcomes. This allowed them to

propose a single metabolite as a promising biomarker for

premature delivery in pregnant women with the same

physiology.

Leitner et al. (2017) ranked untargeted metabolomic features

according to their importance in a PLS-DA model. The top-

ranked metabolite in this analysis pointed them toward a specific

metabolic pathway. Experimentally targeting this pathway by

Stable Isotope Diluted Direct Infusion Electrospray Ionisation

Mass Spectrometry (SID-MS) yielded new metabolomic features

that improved predictions with a SVM model when combined

with untargeted features. This demonstrates that novel biological

insight from interpretations can also allow us to build better

predictive models.

Date and Kikuchi (2018) estimated the relevance of

metabolic markers in their deep neural network (DNN) in
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terms of “Mean Decrease Accuracy (MDA).” MDA measures

the impact of perturbing an individual feature on the

performance of the ML model (Figure 5A). To compute

MDA for a feature, the authors compared the original

performance of their ML model to multiple cases in which

the entries of the feature were shuffled between data samples. A

feature whose entries are mixed between samples loses some of

its predictive power because the labels stay fixed, disconnecting

many entries from their correct label. Multiple such iterations

dampen the stochastic effects of random shuffling. Date and

Kikuchi (2018) demonstrated that calculated MDA scores were

similar among different ML methods and they allowed them to

hypothesize about relevant metabolic markers for a sample’s

regional origin.

4.3.2 Biological insight from recording how the
model responds to different inputs

Since supervised MLmodels learn how to map their inputs to

different desired outputs, they can react very differently to

different samples. Apart from the output itself, there are often

internal responses that arise while processing a sample. For

instance, neurons in neural networks activate differently,

capsules in capsule networks couple to their parents

differently, decision trees follow different paths to get to a

leaf. Although these responses can be quite distinct, we can

expect that they are mostly similar for samples with similar labels

(e.g., those belonging to the same class). Monitoring these

responses can be a handy tool to extract novel biological

knowledge from a ML model. We call this general approach

input-response analysis.

Alakwaa et al. (2018) addressed feature importance with the

same method as Bahado-Singh et al. (2019) and additionally

identified relevant metabolites and pathways by tracking how

individual neurons in a neural network respond when

presented with distinct inputs (Figure 5B). They trained their

ML model on metabolite measurements from breast cancer

patients belonging to the estrogen receptor positive or negative

class, which are associated with distinct survival rates. Depending

on the input, neurons found in each layer will activate differently.

Alakwaa et al. (2018) noticed significant differences amongst the

two cancer classes in the responses of some neurons in the first

hidden layer of their trained model. By backtracing these

discriminative signals over the strongest neuronal connections

to the inputs, they could find relevant metabolites. The authors

reported that some of these molecules were indicated to be linked

to breast cancer by other studies. Finally, they looked at pathways

harbouring relevant metabolites to further investigate their role in

cancermetabolism. For this purpose, also data of enzymes showing

distinct expression levels between the cancer classes was used. This

study demonstrates how learnt connection weights together with

neuron response patterns can allow a glimpse into the

inner workings of a ML method often thought to be

incomprehensible.

Wang et al. (2020) implemented a capsule network (see

Section 3.3.3 for explanation) to predict a cell’s type based on

its single-cell gene expression pattern. They adopted an

interpretation strategy very similar to that of Alakwaa et al.

(2018). They analyzed how their capsule network responds to

samples from different classes and backtracked the observed

signals to the inputs of the network (i.e., transcript levels). This

enabled the authors to hypothesize about a set of “core genes”

typical for every cell class and allowing it to be discriminated

from other cell classes. Their model is divided into two parts, a

“feature extractor” and the actual capsule network. The feature

extractor consists of several neural networks that each aim to find

an informative vector description of the expression levels and

supply it to a different primary capsule. A process called

“Dynamic routing” connects the primary capsules to higher-

level capsules (Sabour et al, 2017). In the implementation of

Wang et al. (2020), the higher-level capsules each represent a cell

class and their activation levels are used to classify a single-cell

mRNA sample. During dynamic routing, so-called coupling

coefficients are calculated that determine the contribution a

primary capsule makes to the activity (Sabour et al, 2017) of a

“cell type capsule” (Wang et al., 2020). These coupling

coefficients depend on the input and the authors computed

their mean values for every cell class. This way, they were able

to find the primary capsules that received gene expression

information that was most valuable for identifying each cell

class. Since every primary capsule receives input from a single

neural network, analysis of the weights learned by each network

could identify genes characteristic of a cell class. Taken together,

the work of Wang et al. (2020) further demonstrates that even

very complex model architectures that have many parameters

can allow the extraction of novel biological insight.

Nguyen et al. (2021) used the method integrated gradients

(Sundararajan et al., 2017) to assess the relevance of their features

(i.e., SNPs and genes). Integrated gradients presents the trained

model with a series of artificial inputs that progressively contain

more information from a real sample while looking on how the

output changes in response (Sundararajan et al., 2017). With

their calculated scores, the authors found genes and SNPs that

most influenced probability for schizophrenia. Additionally, they

designed their neural network such that links between the input

and first hidden layer convey a biological interpretation,

representing either SNP-gene or gene-gene interactions. Using

a method derived from integrated gradients termed Conductance

(Dhamdhere et al., 2018) together with their special architecture

allowed Nguyen et al. (2021) to evaluate also the importance of

the biologically meaningful connections in the neural network.

They reported that many of their results are supported by

literature, and additional data, respectively. Since the step of

assigning neural network links to biological interactions

involves altering the ML model, this approach falls under

model-based interpretation methods and will be discussed in

more detail in Section 4.4.1. Implementations of integrated
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gradients and conductance are available in the Python package

Captum.

The work of Costello and Martin (2018) exemplifies how

input-output analysis of a trained ML model can provide

biological insight that is experimentally testable. The authors

trainedmultiple models to each predict the current rate of change

for another metabolite given metabolite and protein abundances

at the same time instant. This design was chosen with the hope of

challenging traditional kinetic models in their ability to pursue a

metabolic system over time. The models were trained with

samples from smoothed metabolite and protein trajectories of

measured time series from two biotechnologically interesting

pathways. Costello and Martin (2018) demonstrated how their

models can generate novel biological knowledge. For that,

synthetic data of multiple artificial “strains” was created. Each

strain differed in how its protein timeseries was generated (i.e., by

changing the parameters of hill function expression models).

Using their ML models, they predicted potential product yields

for each strain to identify proteins whose over-/underexpression

influence yield. This analysis was done with partial least squares

(PLS) regression. They also demonstrated that even if their ML

models were trained only on two experimental data sets, they

could exceed the accuracy of a carefully “handcrafted” kinetic

model in predicting metabolite trajectories within a pathway. The

ML framework of Costello andMartin (2018) as a whole could be

argued to be interpretable because of its modular appearance.

Every individual ML algorithm receives the same inputs and

predicts another quantity, while both inputs (i.e., protein and

metabolite levels) and output (i.e., dynamics of a single

metabolite) have a clear biological interpretation. Nonetheless,

we see their regression models as separate units and not parts of a

modular design since their predictions are not combined and

they are trained independently. Further, their ML models are

very distinct and rather incomprehensible, comprising

completely different methods discovered by the software tool

TPOT that automatically generates efficient machine learning

solutions for a given task (see Supplementary Table S1 for more

information on TPOT).

4.3.3 Biological insight from ML methods that
are frequently simulatable

Hu et al. (2018) utilized a supervised method that generates

so-called linear genetic programs (LGPs) (Figure 5C). The authors

used it to separate patients with osteoarthritis from healthy

individuals based on their metabolome characteristics. As

explained by Hu et al. (2018) and Sha et al. (2021), a linear

genetic program is a sequence of “statements” that describes how

features (i.e., metabolite abundances) should be combined with

themselves or with other variables and under which conditions.

At the end, a special variable constitutes the output of the

program (i.e., chance for osteoarthritis). LGP classifiers are

improved by an algorithm that essentially mimics biological

evolution (Hu et al., 2018; Sha et al., 2021). After “training,”

Hu et al. (2018) evaluated the number of times a metabolite

feature was present in one of their best performing models, and

how often two metabolites appeared in the same LGP. With this

information and the help of graph analysis they identified

potential metabolic markers and showed that they correlate in

their incidence in the top LGPs.

In their recent study (Sha et al., 2021), Hu et al. applied the

same method to discover metabolites that can differentiate

between patients with Alzheimer’s Disease (AD), patients with

amnestic mild cognitive impairment, and healthy individuals.

Many of the top metabolites found to be predictive of AD were

also suggested by two other ML methods (i.e., RF and SVM),

however, with some discrepancies.

Alakwaa et al. (2018), Wang et al. (2020), and Hu et al. (2018)

found their own method to rank features by their predictive

power. When extracting such importance scores from a model,

comparing the results to those obtained by established methods

can be critical. The result, which features are important, should

not depend on the utilized method because feature importance

should be fundamentally determined by the causal relationships

found in the biological process that created the data. Sha et al.

(2021) reported that from 20 relevant metabolites found by their

method, 10 overlapped with 20 they had identified using another

post-hoc interpretation method on another MLmodel. Although

in total 242 metabolites were considered, this could indicate that

some of the top-ranked metabolites from one method might not

be good biomarkers. Individual linear genetic programs

demonstrate high simulatability because they can be read like

a piece of computer code as suggested by Sha et al. (2021).

However, as demonstrated by the results of Hu et al. (Hu et al.,

2018; Sha et al., 2021), LGPs performing well on the same data

can be very diverse, using different features and relationships

between them. Hence, we note that one should be careful to not

over-interpret a single LGP.

Andreozzi et al. (2016) expanded their previously developed

“ORACLE” framework by a machine learning part. According to

the authors, ORACLE integrates experimental data, including

metabolomics and fluxomics, and theoretical knowledge about

enzyme kinetics and creates a collection of kinetic models. The

aim of their decision tree algorithm “iSCHRUNK” was then to

learn from these kinetic models what makes some of them

“feasible” and others not. Kinetic models generated by

ORACLE were labeled as either feasible or not feasible.

Models were considered feasible if they had a locally stable

steady state, and matched theoretical knowledge as well as the

available experimental data. The parameter values and feasibility

label of each kinetic model embody their training data set. After

training, the learned “splitting rules” (see Section 3.1.2 for

explanation) can be interpreted as kinetic parameter ranges

that partition the parameter space. Drawing from a feasible

region of the space allowed the authors to discover new

parameter sets corresponding to presumably feasible kinetic

models.
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Since decision trees are frequently outperformed by more

complex methods like random forests (Alakwaa et al., 2018;

Sharma et al., 2019), the work of Andreozzi et al. (2016) is an

excellent example of how supposably sacrificing predictive

accuracy by choosing a simple ML model can drastically

increase descriptive accuracy. Using a decision tree allowed

them to exploit it as a generator for high-quality kinetic

models, which could probably not have been

done so easily using more complex ML models like neural

networks.

4.4 Model-based interpretations

As outlined in Section 4.1.2, model-based interpretation

techniques rely on modifying the ML algorithm to increase

interpretability or choosing a well-interpretable model

(Murdoch et al., 2019). Note that the following examples

focus on improving interpretability by design choices rather

than selecting archetypally interpretable models. A general

pattern that can be recognized is that most studies mentioned

here couple parts of their MLmodel to biological entities with the

help of biological network information.

4.4.1 Sparse models allow more in-depth
interpretations

In their recent study, Wang et al. (2021) enhanced their

capsule network that we described earlier in Section 4.3.2 by

incorporating prior insight from biological networks. Their ML

model was designed to take a single-cell transcriptomics profile as

input and predict the type of the corresponding cell. Expression

information from all genes (the inputs) was fed into every

primary capsule via its own neural network. In this work

(Wang et al., 2021), sparsity was enforced because only genes

who are regulated by the same transcription factor (TF) or genes

whose proteins interact (i.e., participate in the same interaction

subnetwork) provide input to the same primary capsule. This

way, primary capsules are primed to represent individual TFs or

protein interaction clusters. Gene-TF and gene-cluster

relationships were inferred from a transcriptional regulatory

network (TRN), and a protein-protein interaction (PPI)

network, respectively. After training, they applied a similar

FIGURE 6
Examples of model-based interpretation methods from Section 4.4 in simplified form. (A) Guiding the topology of a neural network by a
biological network can increase interpretability. This example captures the fundamental principle of the model-based interpretation strategy
presented by Nguyen et al. (2021) and further by Wang et al. (2021). By assigning each neuron in the first hidden layer, H1, to a biological entity (i.e., a
transcription factor in this example), connections to biologically meaningful inputs (i.e., genes) can be wired according to a biological network.
This limits the possible connections in the neural network, introducing sparsity. After training, post-hoc techniques could measure the importance
(red glow) of the interpretable connections, revealing potentially relevant biological interactions. (B) Simplified version of the modular design
described by Kim et al. (2016) for predicting the growth phenotype, metabolic dynamics, and expression levels of a cell from its genetics and
environment. In general, a modular design may describe a sample or aspects of it in different biologically meaningful ways (i.e., interpretable sample
representations). Modules then convert between these transparent representations and may rely on machine learning or mechanistic principles. In
the portrayed example (Kim et al., 2016), ML modules connect the genetic and environmental inputs and different omics representations. A
mechanistic module (i.e., a metabolic model) is embedded into the design and infers the fluxome under constraints derived from multiple
representations. Finally, predictions from multiple ML modules are combined to estimate the phenotype.
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post-hoc interpretation strategy as in their previous study (Wang

et al., 2020). Again, by calculating mean coupling coefficients for

every cell type, the relationships between primary capsules and

their parents (the “cell type capsules”) could be unraveled. This

time, the mean coupling coefficients could be directly interpreted

as relevances of individual TFs and protein clusters for classifying

a certain cell type. Their results supported their interpretation

approach. They reported that important TFs and PPI clusters

were predominantly associated with only a single cell type and

many of these affiliations were known from literature. Wang

et al.’s work demonstrates that with the help of prior knowledge

more in-depth interpretations are possible [compare Wang et al.

(2020) with Wang et al. (2021)]. Their previous black-box

modeling framework was converted to a gray-box and by

invoking sparsity they successfully implemented a model-

based interpretation method.

Nguyen et al. (2021) deployed a sparse deep neural network

to learn about potential biological relationships. Their model

infers a diagnosis for schizophrenia from transcriptomics and

genetic variants (SNPs) data. Features from both biological data

types served as the inputs for the neural network. However,

neurons in the first hidden layer were allowed to receive only

information from inputs that are associated with the same gene

(Figure 6A). This way, these neurons were tied to individual

genes similar to the primary capsules in the work of Wang et al.

(2021). Associations between the gene neurons and inputs were

inferred from expression quantitative trait loci (the gene’s

expression is influenced by the input SNP), and

transcriptional regulatory interactions (the gene is regulated

by the input gene). Since, in their design, the inputs, the first

hidden neurons, and connections between them have a biological

meaning, more advanced post-hoc interpretations were possible,

as described in Section 4.3.2. Additionally, the authors’ neural

network was lasso regularized (see Section 3.2.2 for explanation)

such that inputs from genes and SNPs with low predictive power

are ignored. Both limited connectivity and lasso regularization

increase the sparsity of the ML model, making interpretations

easier.

Koh et al. (2019) employed a network-focused strategy to

classify breast cancer tumors based on their multi-omics

signatures and learn about molecular subsystems that

characterize tumor subclasses. Raw transcriptomics,

proteomics, and gene copy number features were converted

to one feature per molecular interaction. Considered

interactions were either TF-gene or protein-protein

interactions from a TRN, or PPI network, respectively. The

new interaction-level features should reflect the probabilities of

each interaction and were, thus, calculated such that they were

high if both interaction partners were overexpressed, and low if

both were underexpressed. Gene copy number information

served as a tool to scale mRNA abundances, reducing/

increasing them when the corresponding gene was over-/

underrepresented. For learning from the new features, the

authors modified the original nearest shrunken centroid

(NSC) algorithm. As many other supervised methods, vanilla

NSC cannot integrate any prior knowledge about how features

might influence each other. However, their modification

allowed NSC to consider also the features of interactions

that are close in the biological network context when

deciding whether an interaction’s feature is important for

discriminating between classes. This allowed the authors to

favor interactions that form subsystems. The authors suggested

that these subsystems are biologically more meaningful than

important interactions that are dispersed over the biological

network. Importantly, NSC chooses a set of relevant features for

every class separately (Tibshirani et al., 2002). Consequently,

the subsystems discovered by Koh et al. (2019) varied between

tumor subclasses. Further, identifying annotated pathways that

agree with important subsystems facilitated interpretability and

enabled the authors to hypothesize about pathway over-/

underexpression in breast cancer subclasses.

The work of Koh et al. (2019) demonstrates that biological

expertise can help us to carefully engineer new interpretable

features that allow us to view our data from a different (e.g.,

network) perspective. Notably, the authors reported that in

comparison to unmodified NSC applied directly on

proteomics and transcriptomics features, their method

performed worse on experimental data and better on

synthetic data. Although their interaction-level features

seem to have captured most of the valuable information

stored in the raw features while offering great

interpretability, this example again emphasizes that one

should be careful when replacing original features, as

mentioned earlier in Section 2.2.

4.4.2 Modular designs are partially transparent
Kim et al. (2016) curated a large data compendium for

E. coli “Ecomics,” which harbours measurements from five

different omics layers, together with data about the experiments

and network-type data. With this data collection they predicted

the complete state (i.e., levels of mRNA, proteins, metabolites,

and metabolic fluxes) and growth dynamics of a cell based on its

genetics (i.e., strain, genetic perturbations) and environmental

factors (i.e., medium, stress). Their design (Figure 6B) was

divided into modules that each predict quantities from only

one omics layer. The metabolic fluxes were predicted with

constraint-based metabolic modeling, while all other

modules used machine learning (i.e., a recurrent neural

network or lasso regression). Modules were partly

exchanging information, providing and/or receiving

predicted values to/from other modules. Information from

all modules was compiled to collectively predict growth rate.

Most interesting for this review is their recurrent neural

network (RNN) for predicting transcript abundances. The

RNN received a description of the experimental condition

and was trained to match experimental transcript profiles
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with its predictions. The authors selected a RNN for this task to

account for cycles (i.e., “feedback loops”) frequently found in

transcriptional regulatory networks. The authors hoped that

signals would propagate through the iterative layers of the RNN

similar to signals traveling in a loop in the biological network.

Further, they chose a sigmoid activation function partly because

of its similarity to the Hill function. Intriguingly, when neural

connections (referred to as “network topology” by the authors) in

the RNN were guided by a transcriptional regulatory network,

predictions were more accurate. As a whole their modeling

framework is a good example of an interpretable machine

learning framework due to its pronounced modularity. Every

input and output of a module has a clear biological meaning.

Besides providing transparency, modular designs have the

advantage that modules can be trained/tuned independently as

long as data for a module’s input and output is available, which

allowed Kim et al. (2016) to use most of their data collection as

training data. Further, they integrated prior knowledge at several

points in their design, including the metabolic model for fluxome

predictions. This makes their modeling framework a light gray-box.

Alghamdi et al. (2021) developed a graph neural network that

can estimate metabolic fluxes in one cell from single-cell

transcriptomics data. For that the metabolic network was

viewed as a directed factor graph (i.e., a special bigraph). In

this bigraph, “factor nodes” were individual metabolites and

“variable nodes” embodied the reactions in which connected

metabolites participate. Directed links indicated whether the

metabolite acts as a product or a substrate in a reaction. This

graph was constructed from the stoichiometry of a global

metabolic network, and then reduced in size to cope with the

computational cost linked to finding global flux solutions.

Reductions were realized by combining reactions and omitting

certain metabolites. To train their model a tailored loss function

(see Section 3 for explanation) was designed. Therein reasonable

solutions were defined to minimize the “flux imbalance” (i.e.,

influx versus outflux) of all metabolites, harbour zero or positive

fluxes with an appropriate scale, and possess consistency with

experimental data. Each rate of a combined reaction was

estimated from the transciptomic features of its associated

genes via a deep neural network (DNN), resulting in a total of

169 parallel DNNs that need to be trained in harmony. For

training, Alghamdi et al. (2021) used their own algorithm. They

tested their approach on various data sets, including their own,

where they compared predicted flux changes due to genetic and

environmental perturbations with experimentally observed

metabolite concentration changes, confirming the predictive

ability of their approach. We see their complete graph neural

network as a modular system with good model-based

interpretability. Every input (i.e., single-cell transcriptomic

features) and output (i.e., metabolic fluxes) of each DNN

module has a clear biological interpretation. Modules are

arranged/connected according to a biological network

topology, allowing network analysis. This possibility was

demonstrated by the authors: by specifically up- or

downregulating groups of genes (e.g., in glycolysis) certain

metabolic subnetworks (e.g., the Krebs cycle) were impacted

as expected. Further, they showed that targeting

individual genes can reveal the genes that most influence

certain fluxes.

5 Conclusions and outlook

In this review, we have categorized 26 scientific papers

according to their interpretation strategies and the integration

of prior knowledge and discussed some of them in detail. We

have found that despite the large diversity of machine learning

methods utilized in these studies, some parallels in their

interpretation methods can be established. The majority of

studies computed scores that assess the importance of input

features (Alakwaa et al., 2018; Asakura et al., 2018; Date and

Kikuchi, 2018; Hu et al., 2018; Bahado-Singh et al., 2019; Koh

et al., 2019; Wang et al., 2020; Nguyen et al., 2021; Sha et al., 2021;

Wang et al., 2021). These scores were then sometimes used to

discover molecular subsystems (e.g., pathways) of interest

(Alakwaa et al., 2018; Koh et al., 2019; Wang et al., 2020;

Nguyen et al., 2021). Most model-based interpretation

methods relied on either coupling parts of a machine learning

model to comprehensible biological entities [e.g., genes (Nguyen

et al., 2021), TFs (Wang et al., 2021), interacting proteins (Wang

et al., 2021), fluxes (Alghamdi et al., 2021)] or associations

between them [e.g., regulatory interactions (Wang et al.,

2021), SNP-gene links (Nguyen et al., 2021)] or implementing

MLmethods that can be considered simulatable (Andreozzi et al.,

2016; Hu et al., 2018; Sha et al., 2021). Many papers integrated

prior knowledge in the form of biological networks into their

modeling frameworks (Koh et al., 2019; Toubiana et al., 2019;

Alghamdi et al., 2021; Nguyen et al., 2021; Wang et al., 2021),

thereby turning them into gray-boxes; while some studies even

incorporated whole constraint-based models (Kim et al., 2016;

Culley et al., 2020). Whenever extracting knowledge from

machine learning approaches, it is important to make sure

that the results are in-line with available literature. One

reason why this is especially critical is that many ML models

use stochastic training algorithms that can produce drastically

different parameterizations on the same training set. When these

parameters then influence interpretation results, e.g., by

calculating importance scores, we need to make sure that the

results are not due to random effects. In other words, results

found by interpretation methods should be consistent between

different training runs and methods, to not fall into the trap of

overinterpretation.

Because we find that the combinatorial space of distinct

biological data sets (in source/type, dimension, and size) and what

we could learn from them seems endless, interpretation methods

might always need to be tailored to a specific scientific problem. Just
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like in data preprocessing (see Section 2.2) there is no universal recipe

for good results. This is, despite some fundamental similarities,

reflected in the diversity of approaches we highlighted in this

review. A consequence of this diversity is that putting

interpretation strategies into well-defined categories can be

complicated. One reason for this is the fuzziness of the notions

associated with interpretability. For instance, the definition of

simulatability is very subjective. At which point is a ML model

like a decision tree simple enough for a human to reconstruct its

decision-making process? Apart from the ambiguity in terminology

arising fromdifferent notions, we see a high relevance of interpretable

machine learning in systems biology research.
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