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Untargeted metabolomics studies are unbiased but identifying the same feature

across studies is complicated by environmental variation, batch effects, and

instrument variability. Ideally, several studies that assay the same set of

metabolic features would be used to select recurring features to pursue for

identification. Here, we developed an anchored experimental design. This

generalizable approach enabled us to integrate three genetic studies consisting

of 14 test strains of Caenorhabditis elegans prior to the compound identification

process. An anchor strain, PD1074, was included in every sample collection,

resulting in a large set of biological replicates of a genetically identical strain

that anchored each study. This enables us to estimate treatment effects within

each batch and apply straightforward meta-analytic approaches to combine

treatment effects across batches without the need for estimation of batch

effects and complex normalization strategies. We collected 104 test samples for

three genetic studies across six batches to produce five analytical datasets from

two complementary technologies commonly used in untargeted metabolomics.

Here, we use the model system C. elegans to demonstrate that an augmented

design combined with experimental blocks and other metabolomic QC

approaches can be used to anchor studies and enable comparisons of stable

spectral features across time without the need for compound identification. This

approach is generalizable to systems where the same genotype can be assayed in

multiple environments and provides biologically relevant features for downstream

compound identification efforts. All methods are included in the newest release of

the publicly available SECIMTools based on the open-source Galaxy platform.
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Introduction

Untargeted metabolomics studies compare the variation in

metabolites caused by genetic perturbations, treatments, and

environmental differences (Liu and Locasale, 2017).

Metabolomics is a powerful tool in biomarker discovery and

holds great promise for precision medicine (Peng et al., 2015;

Burgess, 2021; Schmidt et al., 2021). Targeted metabolomics is

common in studies exploring human health questions that range

from aging (Jones et al., 2012; Hastings et al., 2019) to complex

diseases (Lewis et al., 2008; van der Sijde et al., 2014; Menni et al.,

2017; Barupal et al., 2018; Rahman et al., 2021; Sindelar et al.,

2021). An advantage of untargeted metabolomics for these

questions is the ability to reach beyond sets of well-studied

compounds to explore differences in an unbiased way (Cajka

and Fiehn, 2016). Despite the attractiveness of an unbiased

survey, untargeted metabolomics has challenges. In particular,

the collection of highly variable biological material in a

reproducible manner across batches makes the identification

of differential compounds and comparisons of their

abundances across datasets challenging. Chemical annotation

of compounds, which is key to combining data across studies,

requires considerable time and labor (Blazenovic et al., 2018).

Given this bottleneck, it is essential to find novel ways to

prioritize spectral features and overcome intractable challenges

such as matrix effects, instrument drift, and batch variation

(Sherman et al., 2018; Fan et al., 2019; Misra, 2020; Kim

et al., 2021).

Batch effects across experiments are an enormous problem in

untargeted metabolomics and a barrier to adopting these

methods (De Livera et al., 2015). Normalizing to a quality

control (QC) or biological reference material (BRM) included

in each batch has been shown to be effective (Barupal et al., 2018;

Fan et al., 2019; Kim et al., 2021). Although normalization

strategies are improving (Fan et al., 2019; Kim et al., 2021);

non-linear effects (Huaxu Yu and Huan, 2022), sample variation,

the inability to separate environmental variance, and analytical

artifacts (Misra, 2020) still pose ongoing challenges to the

identification of common spectral features across studies.

While different approaches to sample-based and data-based

normalization have been described, such as total protein

content, total ion count (TIC), and pooled QCs (Wulff JEM

and Mitchell, 2018; Sindelar et al., 2021), reproducibility and

heteroscedasticity (unequal variance) issues remain (Sumner

et al., 2007; Fiehn et al., 2008; Dunn et al., 2012; Spicer et al.,

2017; Broadhurst et al., 2018).

Our goal is to compare the same features across large

numbers of independent samples (Smirnoff, 2018; Fang and

Luo, 2019; Molon et al., 2020; Helf et al., 2022). As sample

size increases, challenges associated with variation must be

accounted for appropriately. In metabolomics studies,

variation in pre-analytical sample collection (growth),

analytical sample preparation (extraction), and data collection

(instrument) (Gouveia et al., 2021) can be confounded.

Identification of shared spectral features using a BRM is a

successful strategy (Liu et al., 2020a; Gouveia et al., 2021) that

has proven essential in large-scale studies (Beisken et al., 2015;

Liu et al., 2020a; Wasito et al., 2021). Implementation of BRM

controls for instrument variation can be used to estimate and

normalize extraction variation (Sherman et al., 2018; Gouveia

et al., 2021; Kim et al., 2021). In both liquid chromatography-

mass spectrometry (LC-MS) and nuclear magnetic resonance

(NMR) spectroscopy, ambiguity in whether features are

generated by genetic or environmental factors coupled with

batch effects and challenges in peak picking algorithms

present obstacles to applying untargeted metabolomics to

broader studies (Schrimpe-Rutledge et al., 2016; Misra, 2020).

Although corrections for extraction and instrumentation

variation exist, their utility in large studies for samples with

complex matrices is limited (Beisken et al., 2015; Schrimpe-

Rutledge et al., 2016; Chamberlain et al., 2019). Here, we

use the model system Caenorhabditis elegans to demonstrate

that an augmented design combined with experimental

blocks (Federer WTaS and Schlottfeldt, 1954; Federer and

Zelen, 1966; Federer et al., 2001) can be combined with other

metabolomic QC approaches to anchor studies and enable

comparisons of stable spectral features.

C. elegans is a model organism ideally suited to study

conserved small molecules in metabolism (C. elegans

Sequencing Consortium, 1998; Cook et al., 2017; Edison et al.,

2016). The worm’s short life cycle, self-fertilization of

homozygous hermaphroditic individuals, ease of cultivation,

and ability to propagate large numbers of animals (Shaver

et al., 2021) are ideal for large-scale studies (Hodgkin, 2001;

Girard et al., 2007; Edison et al., 2016; Yilmaz and

Walhout, 2016). These traits allow one to 1) develop, test,

and validate approaches to identify stable spectral features,

2) demonstrate the feasibility of large-scale biochemical

pathway analyses with genetic mutants, and 3) focus on

spectral features likely to reveal essential components of

metabolic pathways by comparing features that vary due to

genetic perturbations.

We designed three C. elegans studies to link natural and

deliberate knock-out genetic perturbations (Figure 1). The first

and second studies comprised central metabolism (CM) mutants

and UDP-glucuronosyltransferase (UGT) mutants as examples of

primary and secondary metabolism, respectively. CMmutants have

been used in studies showing that diagnostic changes can be
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associated with human disease (Marquez et al., 2019; Martinez-

Reyes and Chandel, 2020). UGTs are an evolutionarily diverse class

of Phase 2 enzymes involved in detoxification (Yang et al., 2017;

Meech et al., 2019). Although UGTs are vital to internal

detoxification across species, the functions of UGTs have not

been well described (Hasegawa et al., 2010; Stupp et al., 2013;

Yang et al., 2017; Meech et al., 2019). The third study comprises

genetically diverse natural strains (NS) from a broad geographic

base, used to describe natural variation in the metabolome of C.

elegans (Rockman and Kruglyak, 2006), including N2, a widely used

laboratory-adapted strain (Zhang et al., 2021).

Collectively, CM and UGT mutants, and NS, allow us to 1)

identify spectral features that vary due to genetic perturbations,

2) compare the same spectral features across all three studies

without compound identification, and 3) plan future experiments

that can be directly compared to these studies. The experimental

design used here is straightforward to execute in model systems.

An anchor strain (PD1074 here) is included alongside every test

strain during growth and data collection, augmenting the design.

Including the same strain enables the measurement and

elimination of variation from non-genetic effects and the

identification of stable features across a wide range of

environmental conditions. Augmented designs are common in

large-scale agricultural studies and are commonly used to

compare large numbers of genotypes across heterogeneous

environments (Federer WTaS and Schlottfeldt, 1954; Federer

and Zelen, 1966). One of the main benefits of augmentation is the

ability to estimate treatment effects within batches, thereby

enabling the investigator to combine treatment effect

estimates across batches using a relatively simple meta-

analytic approach. This then avoids the complexities of

estimating and adjusting for batch effects statistically. Given

the limited resources and expense of compound identification,

analysis of a set of stable spectral features for differences in

intensity in several contexts provides one way of prioritizing

compounds for identification.

Methods

C. elegans strain selection

This study used 15 Caenorhabditis elegans strains obtained

from the Caenorhabditis Genetics Center (CGC) and

Caenorhabditis elegans Natural Diversity Resource (CeNDR)

(Cook et al., 2017). Fourteen C. elegans strains were used as

‘test strains’, and one strain, PD1074, was used as the anchor/

reference strain (Supplementary Table S1). Strains were selected

to cover the diversity of interests in the metabolomics

community, including samples with mutations in primary and

FIGURE 1
Fourteen C. elegans strains are evaluated in three genetic studies (natural strains, central metabolism mutants, and UDP-
glucuronosyltransferase mutants). PD1074, the anchor control strain (orange), is grown alongside test strains (green, yellow, purple). Multiple
biological replicates of PD1074 capture environmental variation in growth conditions. Non-polar and polarmetabolic data were collected by nuclear
magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Data acquisition controls included
biological referencematerial, pooled PD1074, pooled test strains, and extraction blanks. Biological replicates of PD1074 (n = 42 for LC-MS, n = 52 for
NMR) were assayed individually and allocated across all data acquisition batches. Meta-analysis between PD1074 and individual test strains provided
comparable inferences to mixed effects models, and the resulting estimated relative effects of each test strain to PD1074 provide straightforward
comparisons of test strains between studies.
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secondary metabolism and natural strains. PD1074 was selected

as the anchor strain as it is a traceable variant of the laboratory-

adapted N2 Bristol strain.

C. elegans sample growth and preparation
Populations of genetically identical nematodes were

independently generated for every biological replicate using a

large-scale culture plate (LSCP) method (Shaver et al., 2021).

Escherichia coli from an Iterative Batch Averaging Method

(IBAT) was used as a food source for C. elegans strains grown

on LSCPs (Gouveia et al., 2021). For each independent LSCP,

nematodes were collected, population size estimated, and the

sample was divided into at least 12 identical aliquots of

200,000 nematodes in ddH2O and flash-frozen in liquid

nitrogen to quench metabolism and stored at −80°C (Shaver

et al., 2021). We continuously seeded and harvested PD1074 as

test samples were seeded or harvested during the LSCP growth

process (Figure 2A, Supplementary Figure S1) (Shaver et al.,

2021). PD1074 samples were included in each extraction batch

(Figure 2B), and data were collected on multiple biological

replicates concurrent with test samples (Figure 2C). These

PD1074 samples anchor the three studies in an augmented

design (Federer WTaS and Schlottfeldt, 1954; Federer et al.,

2001).

Iterative batch averaging method (IBAT) of
PD1074

An IBAT C. elegans control for the PD1074 strain was

included in the experimental design. Sequential aliquots of

independently grown PD1074 were pooled together to

generate a biological reference material (BRM) (Gouveia et al.,

2021). While we used PD1074, any strain of C. elegans could

serve this purpose. IBAT controls are used to estimate extraction

variance and assist in alignment across batches (Figure 2B). All

IBAT controls were generated independently from this

experiment.

FIGURE 2
Experimental design overview. (A) Each C. elegans LSCP was grown and harvested with at least one PD1074 sample (sample growth variation
captured) (Supplementary Figure S1). (B) PD1074 samples and test strains (NS, CMmutants, or UGT mutants), IBAT references, and extraction blanks
were included in each batch for LC-MS or NMR (batch preparation variation captured). (C) A total of six batches in three sets were collected.
Instrument controls, library standards, and pooled PD1074 samples were included at the start and end of each run (instrumentation variation
captured) were in each run. Independent samples from each test strain were collected in two independent sequential batches. (D) In LC-MS,
PD1074 spectral features were identified from PD1074 pools and retained if they were present above the level of the extraction blank in 100% of the
individual PD1074 spectra. In NMR, semi-automated peak-picking and binning were performed to extract peak heights and identify stable peaks
present in PD1074 samples. (E) Meta-analysis models to identify differences between test strains and PD1074.
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Batch design

Centrifuge capacity dictated that extraction batches were

capped at 24 samples. Six extraction batches were needed

(104 test strains, Supplementary Table S1). Extraction batches

included IBAT controls, extraction blanks, half of the biological

replicates for each test sample, and four to seven

PD1074 biological replicates. Extraction blanks control for

homogenization and extraction steps to account for and

remove non-biologically related LC-MS or NMR features that

represent background effects. All NS were collected in batches

1 and 2. The CMmutants were collected in batches 3 and 4, with

AUM2073 and VC2524 collected in batches 5 and 6. The UGT

mutants were collected in batches 5 and 6, with RB2011 collected

in batches 1 and 2. Batches were collected back-to-back in NMR

but were collected over several months in LC-MS, although the

column and instrument were unchanged. We note there was a

needle failure between batches 5 and 6 in the HILIC LC-MS (+)

run, and an instrument failure occurred during the collection of

the HILIC negative data precluding us from including data on

that fraction. For both NMR and LC-MS, library standards and

batch pools for the PD1074 samples and the test strains were

added to each run before data acquisition at the beginning and

end of each batch (Figure 2C).

NMR sample homogenization and
extraction

Frozen lyophilized C. elegans aliquots were retrieved from

-80°C. 200 μl of 1 mm zirconia beads (BioSpec Products) were

added to each sample and homogenized at 420 rcf for 90 s in a

FastPrep-96 homogenizer and subsequently placed on dry ice for

90 s to avoid overheating; this step was repeated twice.

Using the homogenized samples, 1 ml of 100% isopropanol

(IPA) chilled to -20°C was added to the lyophilized/homogenized

sample powder and Zirconia beads in two increments of 500 μl.

After each addition of 500 μl, samples were vortexed for

30 s–1 min, and left at room temperature (RT) for 15–20 min.

After RT incubation, samples were stored overnight (~12 h) at

-20°C. Samples were centrifuged for 30 min at 4°C (20,800 rcf).

The supernatant was transferred to a new tube to analyze non-

polar molecules. 1 ml of pre-chilled 80:20 methanol:water

(CH3OH:H2O) (4°C) was added to the remaining nematode

pellet to analyze polar molecules. The polar fraction was

shaken at 4 °C for 30 min. Samples were centrifuged at

20,800 rcf for 30 min at 4°C. The supernatant was transferred

to a new tube to analyze polar molecules. Both polar and non-

polar samples were placed in a Labconco Centrivap at RT and

monitored until dry. Polar samples were reconstituted in D2O

(99%, Cambridge Isotope Laboratories, Inc.) in a 100 mM

sodium phosphate buffered solution with 0.11 mM sodium

2,2-dimethyl-2-silapentane-5-sulfonate (DSS-D6; 98%;

Cambridge Isotope Laboratories, Inc.). Non-polar samples

were reconstituted in CDCl3 (99.96%; Cambridge Isotope

Laboratories, Inc.). Samples were vortexed until fully soluble,

and 45 μl of each sample were transferred into 1.7 mm NMR

tubes (Bruker SampleJet) for acquisition.

NMR acquisition

To collect the polar fraction, one-dimensional (1D) 1H NMR

spectra were acquired with a noesypr1d pulse sequence on a NEO

800 MHz Bruker NMR spectrometer equipped with a 1.7 mm

TCI cryoprobe and a Bruker SampleJet autosampler cooled to

6°C. During acquisition, 32,768 complex data points were

collected using 128 scans with two dummy scans. The spectral

width was set to 15 ppm.

To collect the non-polar fraction, 1D 1H NMR spectra were

acquired with a zg pulse sequence (zg30). During acquisition,

65,536 complex data points were collected using 64 scans with

four dummy scans. The spectral width was set to 20.2 ppm.

Immediately after each 1D acquisition, a two-dimensional

(2D) J-resolved spectrum was collected using the Bruker pulse

program jresgpprqf. For both the polar and non-polar fractions,

8,192 and 40 points were collected using eight scans, four dummy

scans, and spectral widths of 16 and 0.09 ppm, respectively.

For NMR metabolite annotation three 2D experiments

1H–1H TOCSY (dipsi2gppphzspr), 1H-13C HSQC

(hsqcetgpsisp2.2) and 1H-13C HSQC-TOCSY

(hsqcdietgpsisp.2) were collected on separate pooled

PD1074 polar samples. The HSQC experiment was collected

using 6,250 and 720 points in the indirect and direct dimensions,

32 scans and 16 dummy scans and a spectral width of 13 ppm for

the proton and 165 ppm for the carbon dimensions. The HSQC-

TOCSY experiment parameters were identical to HSQC except

for 32 dummy scans and a 90 ms mixing time. The TOCSY

experiment was collected with 7,272 points and 800 points in the

indirect and direct dimensions, 32 scans and 16 dummy scans, a

spectral width of 11.367 ppm in both dimensions and a

DIPSI2 mixing time of 90 ms.

Reproducibility
LC-MS and NMR study design, sample collection, sample

preparation, instrument parameters, and chromatographic data

can be found on Metabolomics Workbench, https://www.

metabolomicsworkbench.org Study ID (LC-MS: ST002092;

NMR polar: ST002095; NMR non-polar: ST002096). Step-by-

step guides for data processing with all individual scripts are

available at: https://github.com/artedison/metaanalysis. Pre-

processing steps, input parameters, and set values used for

LC-MS data are also available in Supplementary Table S5. All

data analysis scripts with detailed step-by-step documentation

for each of the five technologies are provided https://github.

com/McIntyre-Lab/papers/tree/master/shaver_metaanalysis_
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2022. For convenience, all data used in analyses, and all

analysis results have also been compiled in Supplementary

Data Sheet S2.

NMR data processing and stable feature
selection

Data were processed using NMRPipe (Delaglio et al., 1995)

(Version: mac11_64, https://www.ibbr.umd.edu/nmrpipe). A

Fourier transform with an exponential line broadening of 1.5 Hz,

and manual phase correction were carried out (Delaglio et al.,

1995). Using tools from MATLAB (The MathWorks, R2019a

(MATLAB, 2019)), the spectra were referenced to 7.24 ppm

using the CDCl3 resonance, and the polar extracts are

referenced to 0.00 ppm using DSS. Solvent regions were

removed followed by baseline correction using a statistical

smoothing function (Xi and Rocke, 2008). Alignment was

performed using CCOW (Tomasi and Andersson, 2004) and

PAFFT (Wong et al., 2005) algorithms, and a binning algorithm

was applied. PD1074 samples, PD1074 pools, and IBAT

controls were visually compared, and peaks present in all

samples were manually identified (ppm). A total of 589 and

575 stable spectral features were identified in the NMR polar

and non-polar data, respectively.

The blank feature filtering (BFF) threshold (BFFthreshold) was

calculated using the extraction blanks (B) as shown in Eq. 1.

BFFthreshold � Baverage + 3 × Bstandard deviation (1)

Individual features were retained if the average value of the

feature for the PD1074 samples was more than 100 times greater

than the threshold (Patterson et al., 2017). After BFF, a total of

585 in NMR polar and 487 in NMR non-polar stable spectral

features were retained. Two-dimensional NMR experiments

were also processed using NMRPipe (Delaglio et al., 1995).

Spectra were Fourier transformed using a 90° shifted sine

window function and automatic zero filling, manually phased,

and referenced to DSS or CDCl3 (Supplementary Figure S2).

LC-MS sample homogenization and
extraction

Frozen aliquots of 200,000 C. elegans nematodes were

retrieved from -80°C and lyophilized in a VirTis® BenchTop™
“K” Series Freeze Dryer (SP Industries, Inc.). Using glass and

zirconium oxide beads, the aliquots were homogenized for

3 minutes in a Qiagen Tissuelyser 2. Homogenized nematodes

were extracted with 1.5 ml of IPA at -20°C overnight

(approximately 12 h), then pelleted and the supernatant

transferred to separate 2 ml centrifuge tubes. Supernatants

were dried to completion in a Labconco Centrivap and stored

at -80°C for non-polar LC-MS analysis. The pellet was extracted a

second time using 80:20 CH3OH:H2O (v:v) for 20 min at RT

while shaking at 1,500 rpm. Samples were pelleted to separate

proteins, and the supernatant was transferred to separate 2 ml

centrifuge tubes, dried down to completion, and stored at -80°C

for polar LC-MS analysis.

LC-MS data acquisition

Non-polar extracts were reconstituted in 75 µl of IPA

containing isotopically labeled lipid standards (a detailed

list of standards is included in the SI) and analyzed by LC-

MS using a ThermoFisher Scientific Accucore C30 150 ×

2.1mm, 2.6 µm column paired with a Thermo Fisher

Orbitrap ID-X in positive and negative polarity. Polar (80:

20 CH3OH:H2O) extracts were reconstituted in 75 µl of 80:

20 CH3OH:H2O containing isotopically labeled arginine,

hypoxanthine, hippuric acid, and methionine (Cambridge

Isotope Laboratories, Inc.) and analyzed by LC-MS using a

Waters BEH Amide 150 × 2.1 mm, 1.7 µm column paired with

a Thermo Fisher Orbitrap ID-X in positive and negative

polarity. LC-MS/MS data for each mode of analysis was

collected using three rounds of iterative DDA (Thermo

Scientific AcquireX) performed on pooled test samples.

Data for each sample were collected in full MS1 with a

resolution of 240,000 FWHM (full-width half-maximum) and

MS/MS spectra of pooled samples were collected at a resolution

of 30,000 FWHM using a 0.8 Da isolation window and stepped

HCD collision energies of 15, 30, and 45.

LC-MS data processing and stable feature
selection

Thermo .raw files were converted to centroid mode and

.mzML format using Proteowizard’s MSconvertGUI tool

(Chambers et al., 2012). We used the memory-efficient large-

scale pipeline SLAW (Delabriere, et al., 2021; https://github.com/

zamboni-lab/SLAW) for parameter optimization and data

processing. SLAW offers the following peak picking

algorithms: XCMS centWave (Smith et al., 2006; Tautenhahn

et al., 2008), OpenMS FeatureFinderMetabo (Kenar et al., 2014;

Röst et al., 2016), andMZmine ADAP (Pluskal et al., 2010; Myers

et al., 2017) For this study, ADAP was selected (Myers et al.,

2017). ADAP parameter optimization was carried out using the

12 PD1074 pools included in each batch, and features were

retained if present above the noise threshold in all

PD1074 pools. We then selected features using the same BFF

algorithm described for the NMR data processing in Eq. 1

(Patterson et al., 2017) and removed solvent front features

based on the retention time of the void volume. Features were

retained if present in 100% of the PD1074 spectra (pools and

individual samples).
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LC-MS spectral features often vary across biological

replicates. Additional complexities include retention time drift,

batch effects, and algorithmic limitations in estimating peak

abundances in complex spectra (Lange et al., 2008; Dunn

et al., 2012; Smith et al., 2015; Brunius et al., 2016; Liu et al.,

2020b). Including multiple independent and pooled

PD1074 samples in each batch can mitigate these issues. A

plasticizer contamination event precluded us from

quantitatively assessing the performance of the IBAT controls

in the LC-MS experiment.

Quality control for NMR and LC-MS

Stable spectral features (LC-MS and NMR peak height)

were rank transformed (add_group_rank.py, SECIMTools

version 22.3.23, https://github.com/secimTools/

SECIMTools). Atypical samples and potential feature

artifacts were identified using the following SECIMTools

QC tools (https://github.com/secimTools/SECIMTools):

pairwise standard Euclidean distance (SED, standardized_

euclidean_distance.py), principal component analysis (PCA,

principle_component_analysis.py), sample density

distributions (distribution_samples.py), coefficient of

variation (CV, coefficient_variation_flags.py), and Bland-

Altman plots (BA, bland_altman_plot.py).

BA plots on PD1074 pools and individual PD1074 samples

within a batch were used to visualize feature alignment variation

and identify successful alignment across batches. Per feature CV

was used to identify aberrant features. Sample outliers and/or

atypical samples were identified based on sample distribution,

PCA, and SED plots. Samples whose distance in SED plots to

other samples did not cross the 95% percentile for the

distribution of pairwise distances were manually examined.

(Supplementary Table S2). PD1074 LSCP sample “aos54”

failed the QC assessment for NMR. The PD1074 LSCP

samples “aos53” and “aos41” failed the QC assessment for RP

LC-MS datasets. Test strain “aos49” in batch 5 was removed from

all datasets, and test strain “aos25” in batch 1 was removed from

the HILIC LC-MS positive dataset.

Meta-analysis provides similar inferences
to mixed models

Meta-analysis is a statistical analysis that combines summary

statistics instead of an analysis of individual samples (Lin and

Zeng, 2010; Liu, 2021). Batch effects across experiments are an

enormous problem in metabolomics experiments, and the

complications in adequately addressing this in mixed model

analyses is a well-known problem (Liu et al., 2020b; Liu,

2021). In meta-analysis, an effect size is calculated for each

study (in this case within each batch) and then combined and

weighed by the individual study sample sizes (Hall and

Rosenthal, 1995; Rosenthal and DiMatteo, 2001). Meta-

analysis has been shown to be equivalent to more complex

linear model approaches on individual data on larger sample

sizes (Lin and Zeng, 2010). We demonstrate that in this

experiment meta-analysis, even with relatively small sample

sizes per group (n = 6 for test samples), is very similar to a

mixed effects model with the variance modeled appropriately

(Liu, 2021). A fixed-effect model is used here as there are only

two batches per strain. We use the usual fixed-effect model effect

size estimate (Hall and Rosenthal, 1995; Rosenthal and DiMatteo,

2001):

�θw � ∑
k
i�1wiθi

∑
k
i�1wi

where wi is a weight calculated as the inverse of variance for the

effect size in batch i, where i = 1 or 2, and �θw is the effect size of

interest inferred from the individual effect sizes in batches. For

the ANOVA comparison, the effect size is calculated as:

�θ � lsmeantest − lsmeanPD1074

sd

sd � �
n

√
*se

To illustrate the comparability between these approaches, we

compare the linear model by batch l, where strain i is the

independent variable and ion signal for each spectral feature

m, and test replicate j is the response variable:

Ymlij � μ + batchl + straini + elij

The effect size estimates are consistent between the two

approaches (e.g., Supplementary Figure S3).

Meta-analysis for each test strain (meta-
strain model)

All replicates of a test strain were contained within two

sequential batches: however, different test strains within the

same study span multiple sets. We used meta-analysis by

feature to compare the test strain to the control, where

each batch is treated as an ‘experiment’ using the fixed

effects (FE) model and standardized mean difference

(SMD) (Kirpich et al., 2018). We then calculated the strain

effect relative to the control for each strain within each batch.

Positive effect sizes indicate that the test strain had a higher

peak than PD1074 for a given chemical feature. Similarly,

negative effect sizes indicate that PD1074 had a higher peak

than the test strain. Estimates of the strain effect were

combined across batches using the meta-analytic weight.

This approach does not require the batch effect to be

estimated and adjusted-instead the strain effect relative to

PD1074 is estimated within the batch.
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Meta-analysis to compare test strains
(meta-study model)

We demonstrate how we can compare individual features

across strains using meta-analysis with a statistical evaluation of

the joint evidence of NMR polar feature 2.3291 ppm

(Supplementary Figure S4). We wrapped the metaphor R

package (Viechtbauer, 2010) in python (meta_analysis.py) to

calculate batch-level summary statistics and model estimates.

Here since there is a common reference, the strain effects can be

compared directly using a meta-analysis. The python script has

also been wrapped for implementation in Galaxy (https://

galaxyproject.org/) and is available through SECIMTools

version 22.3.24 or newer (https://github.com/secimTools/

SECIMTools). The python code includes an option to output

a forest plot for each feature.

NMR spectra annotation

The 2D experiments HSQC, HSQC-TOCSY, and TOCSY

were collected from a pooled sample composed of all individual

PD1074 samples. Peak picking and spectral matching against

publicly available databases (i.e., HMDB (Wishart et al., 2022),

BMRB (Ulrich et al., 2008), and NMRShiftDB (Kuhn and

Schlorer, 2015)) were carried out by COLMARm (Complex

Mixture Analysis by NMR) using 0.04 and 0.3 ppm chemical

shift cutoffs for 1H and 13C respectively, and a matching ratio

cutoff of 0.6. Annotated compounds where the feature with the

highest effect size was selected for annotated compounds with

more than one significant feature. After a list of compounds was

identified, WormFlux (Yilmaz and Walhout, 2016) (version

iCEL1314), a web based metabolic network modeling of C.

elegans was used to visualize the putative pathways for CM

mutants on the C. elegans metabolic network (Annotation

confidence scores (Walejko et al., 2018); Supplementary

Table S3).

Elemental formula assignment LC-MS

SIRIUS (version 4.9.12), a java-based software

framework for the analysis of LC-MS/MS data of

metabolites and other small molecules (Dührkop et al.,

2019), was used to generate elemental formulas. The mgf

output from SLAW containing MS/MS information was used

as input. For molecular formula identification, the default

Orbitrap settings were used with an upper mass limit of

850 Da due to the high combinatorial possibilities and

decrease in accuracy at high molecular weight. Only

formulas found in databases were considered and all

precursors were assumed to be ± 1 for positive and

negative mode, respectively. SIRIUS ranks molecular

formulas for each compound individually using accurate

mass, fragmentation trees, and isotope pattern analysis

(Dührkop et al., 2019). ZODIAC takes the fragmentation

trees as input and re-ranks the molecular formula candidates

by taking similarities of compounds in the dataset into

account (Ludwig et al., 2019). ZODIAC (Ludwig et al.,

2019) and SIRIUS (Dührkop et al., 2019) scores are

available at https://github.com/artedison/metaanalysis/tree/

main/LC-MS/SIRIUS_output (Supplementary Table S4).

Results

We developed a method to identify stable spectral features

and identify differences in features between test strains and

controls and among test strains using a straightforward meta-

analytic approach.We collected 104 test samples for three genetic

studies across six batches to produce five analytical datasets from

two complementary technologies commonly used in untargeted

metabolomics (3 LC-MS and 2 NMR; Figure 1, 2, and

Supplementary Figure S2).

Stringent quality assurance/quality controls (QA/QC)

combined with a focus on spectral features consistently

detected in PD1074 identified: 3,953 stable spectral features in

reversed phase (RP) LC-MS positive, 377 in RP LC-MS negative,

199 in hydrophilic interaction liquid chromatography (HILIC)

LC-MS positive, 585 in NMR polar, and 487 in NMR non-polar

datasets.

Meta-analysis (meta-strain model)
identifies differences in spectral features
between test and reference strains
without the need for complex
normalization

For each spectral feature, the difference between the

PD1074 individual LSCP (n = 6–10) and the test strain

(n = 2–6) was estimated within the batch. Here, the batch

effect is not estimated. Instead, we identified statistically

significant spectral features by performing a meta-analysis

across batches for each test strain (Hedges and Olkin, 1985)

(Figure 2E). Inferences are similar to a more complex mixed

model approach (Supplementary Figure S3), as predicted by

studies that have compared individual analyses and meta-

analytic approaches for larger sample sizes (Liu, 2021). An

advantage of the meta-analysis is the ability to apply this

technique generally, especially when there may be complex

patterns of variance across batches such as those present in

large cohort studies and/or due to technical variation (e.g.,

after an instrument interruption). This is because the

experimental design allows the estimation of the treatment

effect within each batch.
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We calculated the number of significant spectral features for

each test strain compared to PD1074 (Table 1). We see a similar

pattern across platforms for the percentage of significant features

identified across the three studies, with the highest percentage

found in the RP LC-MS (-) dataset (Figure 3A). The highest

percentage of significant spectral features was 58% in the CM

mutation study. In the individual strains, the CMmutant, VC1265

(pyk-1) had the largest overall effect across platforms and fractions,

followed by RB2347 (idh-2). AUM2073 (unc-119) and KJ550 (aco-

1) had the smallest overall effects (Figure 3B). For the UGT

mutants, VC2512 (ugt-60) had the largest overall effect,

followed by RB2607 (ugt-49). RB2011 (ugt-62) had the smallest

overall effect (Figure 3C and Supplementary Figure S5). In the NS,

the most genetically divergent strains from PD1074 (CB4856 and

DL238) had the largest overall effect in both platforms, andN2 had

a small set of differences, as expected, since PD1074 has minor

genetic differences with N2 (SI, Figure 3D and Supplementary

Figure S6). In the LC-MS datasets we were able to determine

elemental formulas for 26.6%, 56%, and 83.4% of the stable spectral

features in RP LC-MS (+), RP LC-MS (-), and HILIC LC-MS (+),

respectively. Elemental formulas for significant features ranged

between 27.9% and 79.1% (Table 1).

Identification of spectral features
significant in mutant and natural strains
are of interest for follow-up compound
identification

One way of reducing the number of features for follow-up is

to examine features that are affected by a gene knock-out that

also vary in nature. The percentage of significant features in each

of the mutant studies (CM and UGT) that overlapped in at least

one NS (Figure 4, Supplementary Figure S7, S8) are features of

interest for compound identification. CMmutant strains VC2524

(gdp-2), AUM2073 (unc-119) and RB2347 (idh-2) share 100%,

75% and 68% of their significant features with a NS, respectively.

UGT mutants, RB2607 (ugt-49) and RB2055 (ugt-1) share 67%

and 62% of their significant features with a NS, respectively.

We focused on compounds affected in any CM mutants and

used those to identify which UGTs and NSs had genetic variation in

those same compounds for the NMR polar data. Using COLMAR

(Zhang et al., 2009), we identified three putative compounds

significant in strains from all three studies. Of the 35 putative

compounds showing evidence for metabolic variation in the

NMR data, 13 were annotated (Supplementary Table S3).

TABLE 1 Summary of significant spectral features found in all three studies across NMR and LC-MS. The total number of significant spectral features
(p < 0.05) for a given strain and each analytical platform are listed. SIRIUS (Dührkop et al., 2019) was used to determine elemental formulas for all
MS/MS features.

Study Group Strain Number of significant spectral features

NMR LC-MS

Non-polar Polar RP+ RP- HILIC

Central metabolism mutans (CM) AUM2073 11 29 175 8 3

KJ550 9 14 110 17 10

RB2347 23 22 421 38 14

VC1265 25 49 671 79 42

VC2524 19 13 261 24 4

Total CM sig. features by platform 87 127 1638 166 73

UGT mutants (UGT) RB2011 2 6 237 21 16

RB2055 8 20 161 34 10

RB2550 11 23 200 18 5

RB2607 18 17 539 69 9

VC2512 33 72 736 101 34

Total UGT sig. features by platform 72 138 1873 243 74

Natural Strains (NS) N2 1 3 22 6 7

DL238 18 15 631 52 9

CX11314 13 16 254 44 7

CB4856 23 29 869 113 17

Total NS sig. features by platform 55 63 1776 215 50

Total sig. feautres within platform 146 228 2541 281 115

Total number of sig. features with elemental formulas 709 152 91
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FIGURE 3
Summary of significant spectral features found in each analytical platform and across the three studies. (A) Percent of significant features. The
total number of significant features in all strains, by study, is used as the denominator for each of the five technologies. Significant spectral features
identified in at least one strain by study are displayed for (B) central metabolism mutants, (C) UGTmutants, and (D) natural strains. Zero indicates the
strain has no significant spectral feature differences from PD1074, while one indicates that all spectral feature differences from PD1074 are
present in that strain. Significant feature totals are summarized at the end of the plot and detailed in Table 1.
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Nine putative compounds show metabolic variation in

response to the pyk-1 mutation (Figure 5). The mutation in

pyk-1 affects a large portion of the metabolome. The gene pyk-1,

is involved in one of the last enzymes of glycolysis, encoding for

pyruvate kinase and responsible for glycolytic ATP production.

The depletion of lactic acid production is consistent with the

mutation in pyk-1 (Luz et al., 2016) in the strain VC1265. We saw

the depletion of lactic acid in DL238 (NS), and an increase in

VC2512 (ugt-60) (Figure 5). As expected, none of the

13 compounds identified in the NMR polar dataset were

significant in N2 (Figure 5). Interestingly, annotated

compounds were also similar to PD1074 in CX11314 (NS),

RB2055 (ugt-1), RB2607 (ugt-49), and RB2011 (ugt-62).

Meta-analysis (meta-study model) identifies
differences in spectral features between test
strains across independent batches

In addition to the more standard approach where differences

between a single test strain and their respective control strain are

compared, the meta-analysis (meta-study model) identifies

differences in spectral features between test strains across

batches. Heatmaps of the CM mutant study in Figure 6

demonstrate the unique benefits of this approach. Each

heatmap shows features where the effect sizes are in the same

direction for the CMmutant study (Supplementary Figure S5, S6

for UGT and NS results). For the meta-study model of the CM

mutants, each feature is compared across the five strains shown

in Figure 6. In the NS, N2 was excluded from meta-study

comparisons due to the genetic similarity of N2 to the control

strain PD1074 (Figure 3, Supplementary Figure S8). We

calculated the number of features that were not significant in

any of the individual meta-strain comparisons but are significant

when compared via the meta-study (Supplementary Table S6).

To visualize the effect size of a specific feature across

strains within the meta-study model and to contextualize

features within a study group we visualized features significant

in the meta-study model using a forest plot. An example of one

such comparison can be seen across the NS in Supplementary

Figure S4.

Discussion

Modern analytical technologies can detect many more

spectral features than can be identified and interpreted.

While there are many gains to be made by uncovering the

FIGURE 4
Percent of significant features for each of the mutant studies (CM and UGT) that are also significant in at least one NS by analytical platform. (A)
UGT mutants (B) CM mutants. Data points at zero indicate the analytical platform detected no significant spectral features shared between the
mutant strain and a natural strain. Data points at one indicate all significant spectral features for the mutant strain are shared with a natural strain for
that analytical platform.
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richness of the larger metabolome, here we take a narrower

approach by focusing only on features that we can detect

consistently in the strain PD1074. This choice results in fewer

features but enables us to compare these features over time

across a variety of studies. However, the principle behind this

approach is not limited to a single strain/genotype but is

constrained by the size of the extraction batch. If multiple

strains are present across batches, stable features can be

identified from any strain. In studies of non-model systems

including multiple ‘control’ samples in each batch can be used

to estimate the treatment effect for each group relative to the

control within each batch. The treatment effect for the study is

found using the meta-analytic approach of a weighted average

across batches. Further, if all groups in the study are present in

each batch, there is no need to prioritize feature selection for

any one group, instead, spectral features consistently present

within any of the groups can be prioritized for future studies

so that database matching and, ultimately, compound

identification efforts are focused on the most likely

biologically important spectral features. This aspect is

important as studies increase in size and complexity

(Annesley, 2003; Lewis et al., 2008; Gebauer et al., 2016;

Wehrens et al., 2016; Menni et al., 2017; Chamberlain

et al., 2019; Gouveia et al., 2021).

Recent computational advances now enable joint

alignment and feature selection when batches are

augmented with a common QC standard like a BRM

included (Sousa and Ferreira, 2013). The IBAT control

used here is a BRM. BRM are important tools for

understanding batch variation, but do not allow for the

assessment of feature stability due to individual variation

among biological replicates. The study design proposed

leverages biological variation within batches to obviate the

need for estimating and correcting for the batch effect.

The inclusion of QC samples is critical in large-scale studies

(Peng et al., 2014; Han and Li, 2020; Gouveia et al., 2021). Our

inclusion of individual PD1074 biological replicates and

PD1074 pools during sample generation, analytical

measurement, and data processing is an extra layer of

replication. We used the biological replicates of

PD1074 samples both for the selection of stable spectral

peaks, to enable the estimation of strain effects within batches;

and to provide a reference strain for combining data across

studies. This conservative approach focused the experiment, and

our attention on spectral features likely to be present in a

subsequent independently prepared MS2 experiment in the

compound identification process, and not on spectral features

present sporadically due to variation in growth or extraction.

FIGURE 5
Heatmap of metabolites identified by NMR. Significant NMR spectral features in the central metabolism mutants are compared across UGT
mutants and natural strains. Deep blue boxes indicate the metabolite is significant and more abundant in PD1074 compared to the test strain. Deep
red boxes indicate the metabolite is significant and more abundant in the test strain. Light colored boxes indicate the direction of effect when the
metabolite is not significantly different between PD1074 and the test strain. For compounds with more than one significant feature, the highest
effect size feature is used for this figure. The significant compound list provides metabolites to pursue in subsequent experiments (Supplementary
Table S3).
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Using this approach, we annotated 13 compounds in our

NMR polar dataset. For the confident identification of

features, compound annotation using an orthogonal

method, such as LC-MS, is required. Compound

identification approaches for LC-MS require additional

experimentation for confident annotations. As a first step

in the compound identification pipeline, we calculated

elemental formulas based on accurate mass (within 5 ppm)

using SIRIUS (Dührkop et al., 2019). A set of stable features

simplifies MS/MS experiments by enabling the scientist to

target spectral features of biological interest (e.g., different in

abundance in multiple experiments). Focusing on spectral

features that are consistently detectable enables the

investigator to predict the presence of those features in

future samples rather than relying on the potential

intersection among MS/MS features collected by data-

dependent acquisition (DDA) or iterative DDA approaches.
1H and 13C 1D NMR, collisional cross-section (CCS), in silico

prediction, retention time prediction, and MS/MS

fragmentation data collection can be prioritized for target

features identified with this approach (Bouwmeester et al.,

2019; Bonini et al., 2020; Soper-Hopper et al., 2020; Borges

FIGURE 6
Heatmaps of significant spectral features in the CM mutant study. (A) RP LC-MS positive mode (B) RP LC-MS negative mode (C) HILIC LC-MS
positive mode (D) NMR polar and (E) NMR non-polar. The first two columns pertain to the meta-study results. The left-most column indicates the
significant features found in themeta-studymodel, followed by the estimated effect size in themeta-studymodel across CMmutants. The following
five columns are the effect sizes for individual strains, and the contents of the cell are the estimates of the effect of that strain (column), for that
feature (row) compared to PD1074 from the meta-strain model. Features where the effect sizes are consistent for all strains are included. The effect
sizes range from (2 to -2). Positive effect sizes (i.e., the strain had a higher peak at that given metabolic feature than PD1074) are displayed in red.
Negative effect sizes (i.e., PD1074 had a higher peak at that given metabolic feature than the test strain) are displayed in blue. The right-most column
indicates the number of strains in which a given spectral feature is statistically significant.
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et al., 2021; Das et al., 2022). In silico prediction methods for

NMR and MS/MS have improved accuracy, although

ambiguity is expected to remain, especially for large

molecular weight compounds (Das et al., 2020). However,

even with MS/MS data, compounds may elude identification.

Once compounds are identified, network modeling and

pathway mapping can aid in understanding the relationship

between metabolites within and between pathways. However,

mapping metabolites in pathways is complicated because

many metabolites are involved in multiple pathways and/or

pathways are incomplete. The genetic mutation approach

used to annotate gene function in pathways has had limited

success in untargeted metabolomics because of the scope of

the experiments and the necessity of multiple subsequent

experiments to discern pathway-gene relationships. With

large numbers of unknown spectral features, this problem

is complex. Meta-analysis allows for the identification of

significant spectral features in a straightforward manner

when batch effects complicate mixed effects models. For

forward and reverse genetic mutation studies, the meta-

study model serves as a valuable approach where effect

sizes can be calculated and used to assess patterns across

an entire pathway. Similarly, untargeted studies of collections

of genotypes (Noble et al., 2021) using a reference genotype, in

this case PD1074, can leverage data across experiments and

increase the utility of untargeted metabolomics for genetic

studies (Blazenovic et al., 2018). Meta-analysis can be used to

make formal statistical comparisons across studies conducted

over long periods of time or in different labs without the need

to estimate and correct for batch effects. (Yoshimura et al.,

2019).
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