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In recent years, the Burden of Amplitudes and Epileptiform Discharges (BASED)

score has been used as a reliable, accurate, and feasible electroencephalogram

(EEG) grading scale for infantile spasms. However, manual EEG annotation is, in

general, very time-consuming, and BASED scoring is no exception.

Convolutional neural networks (CNNs) have proven their great potential in

many EEG classification problems. However, very few research studies have

focused on the use of CNNs for BASED scoring, a challenging but vital task in the

diagnosis and treatment of infantile spasms. This study proposes an automatic

BASED scoring framework using EEG and a deep CNN. The feasibility of using

CNN for automatic BASED scoring was investigated in 36 patients with infantile

spasms by annotating their long-term EEG data with four levels of the BASED

score (scores 5, 4, 3, and ≤2). In the validation set, the accuracy was 96.9% by

applying a multi-layer CNN to classify the EEG data as a 4-label problem. The

extensive experiments have demonstrated that our proposed approach offers

high accuracy and, hence, is an important step toward an automatic BASED

scoring algorithm. To the best of our knowledge, this is the first attempt to use a

CNN to construct a BASED-based scoring model.
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1 Introduction

Infantile spasms (IS) is one of the most common age-dependent epileptic

encephalopathies in infancy, most of which are difficult to treat and have a poor

prognosis (D’Alonzo et al., 2018; Kesavan and Sankhyan, 2019). Also known as the

WEST syndrome, IS is characterized by a triad of symptoms: epileptic spasm, which is the

major seizure type in infancy; impairment of psychomotor development; and the presence

of hypsarrhythmia in the interictal electroencephalogram (EEG) (Wilmshurst et al.,
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2015). The approximate incidence rate of IS in infants is 0.2–0.5

% with geographical differences, and the peak age of onset is

4–7 months (D’Alonzo et al., 2018; Jia et al., 2018). IS should be

diagnosed and treated as early as possible, especially in patients

with predictors of poor outcome (Bitton et al., 2021; Kvernadze

et al., 2021). However, only 29% of children with IS achieve

diagnosis and treatment within 1 week of onset, mainly due to

the neglect of epileptic spasms and misreading EEG changes

(Hussain et al., 2017; Harini et al., 2020).

The EEG features of IS are complex and show a variety of

characteristics. Hypsarrhythmia is the typical feature of EEG

during the interictal period and is an important diagnostic

criterion and index for therapeutic evaluation in IS. However,

many variant forms of hypsarrhythmia in IS exist, with an

occurrence rate of up to 69%) (Demarest et al., 2017;

Nenadovic et al., 2018). It has been shown that different EEG

evaluators have poor inter-rater reliability (IRR) in the

assessment of typical hypsarrhythmia and other atypical EEG

features of IS (Hussain et al., 2015). It has further been found that

quantitating characteristics of hypsarrhythmia improves the

accuracy of EEG diagnosis for IS, leading to earlier treatment

initiation (Smith et al., 2018). Therefore, it is necessary to raise

the reliability and validity of EEG evaluation methods for IS, such

as EEG grading scales, and to improve the IRR of these methods.

At present, several EEG grading scales for IS have been

developed. Among them is the Burden of Amplitudes and

Epileptiform Discharges (BASED) score, which is a novel and

simplified EEG grading scale, and the most used. This scoring

method uses a 6-point scale based on the interictal EEG of IS,

with 0 being normal and 5 being the most epileptic (Mytinger

et al., 2015). The 2015 version of the BASED score was the first

reported version (Mytinger et al., 2015). After modification and

further validation, the 2021 version was published (Mytinger

et al., 2021). The BASED score has been widely used as a criterion

for the evaluation of EEG in pre-treatment and post-treatment

studies of patients with IS (Wang et al., 2021; Yan et al., 2021;

Wan et al., 2022). The definition of remission is that, for a pre-

treatment score of 4 or 5, the score must improve to 3 or less; and

for a pre-treatment score of 3, the score must improve to 2 or less.

Although the BASED score has shown excellent IRR, relying only

on a manual process and human visual recognition to quantify

EEG data remains subjective and challenging. Manual EEG

annotation is highly time-consuming, and BASED scoring is

no different. Therefore, it is important to establish a standard,

automatic EEG scoring system that uses intelligent quantification

of EEG data to achieve time-savings while maintaining high

reliability and validity. This will assist the clinical diagnosis of IS

and its monitoring during treatment.

In the past few decades, convolutional neural networks

(CNNs) have shown great potential in multiple fields, such as

computer vision and speech recognition (LeCun et al., 2015).

This method is suitably scaled for large datasets, as a hierarchical

structure in natural signals can be exploited. As such, CNNs

appear suitable for analyzing long-term, multi-dimensional, and

highly non-stationary signals, such as EEG signals. Several

studies have explored the application of CNNs to EEG

analysis in healthy populations in areas such as sensory

processing, cognitive-emotional processing, speech, and motor

planning/execution and have achieved excellent performance

(Sussillo et al., 2016; Schirrmeister et al., 2017; Lawhern et al.,

2018).

CNNs are proven to have huge potential for EEG

classification problems. However, studies focusing on using

CNN for BASED scoring, a challenging but vital task in the

diagnosis and treatment of IS, are few. Motivated by this fact, we

here propose a multi-layer CNN for automatic BASED scoring.

We tested our model with the long-term EEG recordings of

11 patients with IS, annotating them into four levels of the

BASED score for clinical use. The results demonstrated an

excellent classification accuracy of 96.9% on the validation set.

To the best of our knowledge, this is the first attempt to use a

CNN to construct a BASED scoring algorithm.

2 Materials and methods

2.1 Subjects

We retrospectively included patients meeting the diagnosis

standard of IS from 2019 to 2021 at Shengjing Hospital of China

Medical University. All patients with IS also met the following

inclusion criteria: 1) each patient with two scalp video-EEG data

available, the diagnostic EEG before treatment and the first

video-EEG after treatment; 2) patients with 4 h of video-EEG

monitoring, including a slow-wave sleeping period; 3) patients

aged between 3 and 12 months during the video-EEG

examination; and 4) patients with generalized epileptic

spasms. The study was approved by the Research Ethics

Board of Shengjing Hospital of China Medical University with

IRB number 2022PS692K.

2.2 Data acquisition

Using the standard international 10–20 system with

16 channels, EEG was recorded at a sampling rate of 1,000 Hz

with a video–EEG system (Nihon Kohden) and a low-cut

frequency (LCF) filter of 0.5 Hz was used. The 2021 BASED

score was used to quantify the EEG changes of IS (Mytinger et al.,

2021). As this standard required, the most epileptic, 5-min clean

EEG data during interictal slow-wave sleep was chosen in each

patient by two expert EEG reviewers (Mytinger et al., 2021). All

EEG clips were then shuffled into a random order, with all

personal and identifying information completely removed.

Another three expert EEG reviewers were blinded and scored

the EEGs randomly. According to the BASED score system, all
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the EEG clips were divided into four levels as BASED scores 5, 4,

3, and ≤2. The datasets are available from the corresponding

author upon reasonable request.

2.3 Data preprocessing

Two epileptologists manually read the long-term EEG and

annotated the BASED score. A 64-order butter-worth band-pass

filter ([0.5Hz, 128Hz]) was enabled to eliminate the noises. The

EEG was then cropped into segments using a 5-s sliding window

with a 2-s overlap, and then a z-score method was used to

normalize the EEG data. Figure 1 illustrates the preprocessing.

Given a multi-channel EEG dataset X with patient i ∈ {1, 2,

. . . , N}, where N is the number of patients. Each dataset was

divided into segments, as described earlier. Concretely, given

dataset Di � (X1, y1), (X2, y2), . . . , (XNi , yNi ), where Ni

denotes the total number of segments for patient i. The j-th

EEG segment Xj ∈ RC.T, 1 ≤ j ≤ Ni contains C channels and T time

points per segment, where C = 16 and T = 5*1,000 = 5000, in this

study. The class label of segment j is denoted by yj ∈ { ≤ 2, 3, 4, 5},

corresponding to the BASED score from 0 to 5.

2.4 Problem formulation

The EEG segments were divided under a 5-fold cross-

validation strategy. Since the EEG were manually annotated

into four levels based on the BASED scores, the experimental

task here was a 4-label classification problem.

2.5 Convolutional neural network

In this study, the proposed BASED scoring algorithm was

made of a CNN. The multi-layer CNN model structure is

illustrated in Figure 2. Our model consisted of three

convolutional layers with 8, 16, and 16 filters. A batch

normalization layer was performed after each convolutional

layer. The convolutional layers were followed by two average-

FIGURE 1
EEG preprocessing. The raw EEG was band-pass filtered at [0.5Hz, 128Hz]. A 5-s sliding window with a 2-s overlap was used to crop the long-
term EEG into segments.

FIGURE 2
Network structure. The input is a multi-channel EEG segment with a dimension of 16 (channel) × 5000 (sampling point, 5 × 1,000). L1 is a
temporal filter that contains 8 filters with a 1 × 32 kernel. L2 is a spatial filter that contains 16 filters with a 16 × 1 kernel. In L3, the pool size is (1, 3), and
the stride is none. L4 contains 16 filters with 1 × 16 kernels. In L5, the pool size is (1, 8), and the stride is none. L6 is a dense layer with softmax activation.
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pooling layers. An activation layer was performed before each

average-pooling layer. Meanwhile, a dropout layer was followed

by each average-pooling layer. A dense layer with softmax

activation was used as a classification output layer, which

divided the EEG segments into four levels. The network

referred to previous research works to use CNN in EEG

decoding, including, DeepConvNet, ShallowConvNet

(Schirrmeister et al., 2017), and EEGNet (Lawhern et al., 2018).

The input to the CNN structure was the band-pass filtered

16-channel scalp EEG. A CNN predictor was trained to assign

the input segment Xj a class label, i.e., f (Xj; θ) ∈ RC.T → RP, where

θ was the parameter set of CNN, C = 16 was the number of

channels, T = 1,000, ×, 5 = 5000 were the time points, and P ∈ { ≤
2, 3, 4, 5} was the possible output label. The model contains three

convolutional layers, three batch normalization layers, two

average-pooling layers, and a dense layer with softmax

activation. The first two convolutional layers corresponded to

the temporal filtering and spatial filtering of the EEG segment. In

the first layer, each filter performed a convolution over time,

while in the second layer, each filter performed spatial filtering

with weights for all possible pairs of electrodes with filters of the

preceding temporal convolution. After each average-pooling

layer, a 50% dropout was used to avoid over-fitting.

2.6 Experiment setup

2.6.1 Model evaluation and implementation
We conducted a comprehensive evaluation in this study by

using the proposed model to classify the long-term EEG into four

levels of BASED scores. A 5-fold cross-validation was designed in

our experiments. The whole gold standard dataset was divided

into five portions. In each repeated iteration, we randomly used

one portion of the data as testing data and applied the rest four

portions of the data as training data. This process would be

repeated 5 times until all data had been tested once. The

classification performance was evaluated by aggregating all

iterations. Our approach was implemented with Tensorflow

2.3.0. For training models, we used Adam with a batch of

16 EEG segments and 300 epochs. The drop-out rate was

0.5 for our approach.

2.6.2 Evaluation metrics
We calculated true positive (TP), false positive (FP), true

negative (TN), and false negative (FN) for the classification by

comparing the classified labels and gold-standard labels. Then,

we calculated the accuracy, precision, and recall as follows:

Accuracy � TP + TN

TP + TN + FP + FN

Precision � TP

TP + FP

Recall � TP

TP + FN
.

(1)

3 Results and discussion

3.1 Sample

A total of 36 patients (26 boys and 10 girls) with IS were finally

included (age range, 3–12 months; mean age, 6.58 months; standard

deviation, 2.46). A total of 72 4-h video-EEG datasets were obtained

for testing. The detailed information is shown in Table 1.

3.2 Performance evaluation

To verify the classification performance of our proposed

model, we tested it on both the validation set and training set.

Table 2 shows the classification performance of our model for

evaluating BASED score on the training set and validation set. By

adopting a 5-fold cross-validation strategy in the validation set,

our model achieved a mean accuracy of 96.9%, which is highly

accurate in evaluating the BASED score automatically.

Meanwhile, our model achieved similar performance on the

training set, which was a mean accuracy of 95.9% in

evaluating the BASED score. Table 2 shows the similar

TABLE 1 BASED score for EEG clips

BASED score

5 4 3 ≤2

EEG clip number 21 25 15 11

Age (months) (M± SD) 6.57 ± 2.56 7.00 ± 2.69 6.13 ± 1.99 6.09 ± 2.26

TABLE 2 Training and validation set performance over 300 epochs for
our model.

Dataset Accuracy (%) Precision (%) Recall (%)

Training set 95.9 ± 0.26 91.9 ± 0.33 91.6 ± 0.25

Validation set 96.9 ± 0.36 93.9 ± 0.17 93.8 ± 0.24
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superior performance on recall and precision, which reflected the

proportion of true positive. Also, it is of note that our model

brought a suitable trade-off on annotating EEG segments into

four levels of BASED scores.

3.3 Multi-label classification performance
evaluation

To measure the multi-label classification performance of our

model, we introduced a confusion matrix as a metric. Figure 3 shows

the full confusion matrix of the training set and validation set. Some

misclassifications are presented in Figure 3, but the overall

classification performance of our model was highly accurate. This

was quantified in Table 3 via precision and recall. For four levels of

BASED scores, the average precision was over 88%. Table 3 shows a

similar multi-label classification performance on recall, which

quantified the number of correct positive predictions made out of

all positive predictions. Dividing EEG segments into four levels of

BASED score benefited from the convolutional layers for highly

accurate classification. In contrast, from Figure 3 and Table 3, it is

clear that only a few EEG segments were classified in the wrong

category on the validation set and training set.

3.4 Performance of the proposed model
with 5-fold cross-validation

The performance of our model in the 5-fold cross-validation test

is illustrated in Figure 4. As shown, we repeated the experiment 10×

and averaged the results. In the validation set, the accuracy of each

test was much higher than the chance level (1/4 = 25%). The highest

accuracy was 98.2%, while the lowest accuracy was 94.9%. A

consistent accuracy of over 94% was obtained across all the tests.

The average accuracy was 96.9%, which was also very promising. In

the training set, the highest accuracy was 96.4%, while the lowest

accuracy was 95.1%. An accuracy of > 95% was consistently

obtained across all tests. The average accuracy was 95.9%.

3.5 Discussion

Our motivation was to investigate the performance of a CNN,

which is known to have great potential in clinical research and

solutions, in BASED scoring for IS. As indicated in the previous

sections, the scalp EEG was used as the input of a multi-layer CNN

pain detector. While classifying the EEG segments under 4-levels

BASED score, a consistent accuracy of over 90.0% was obtained

across all classes. The average accuracy was above 95.0%, which was

very promising. BS = 3 was the only class where precision and/or

recall was lower than 90% on either the training or validation set. The

recall of BS = 3was 82.32%, whichwas the lowest across all the classes

on the validation set. This indicates that BS = 3 is more likely to be

misclassified when compared with the other classes.

The network structure used here was in reference to previous

research works to use CNN in EEG decoding, including,

DeepConvNet, ShallowConvNet (Schirrmeister et al., 2017),

and EEGNet (Lawhern et al., 2018). The results proved that

the CNN-basedmodel can achieve very high accuracy for BASED

scoring. In general, the proposed method showed outstanding

FIGURE 3
Confusion matrix for the training set and validation set. BS represents the BASED score.
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performance, obtaining high accuracy in the 4-level classification

problem, proving its good stability to handle the BASED scoring.

Although our study produced favorable findings, there are

still some limitations. The raw EEG data used in our study only

came from 3–12 months old patients with generalized epileptic

spasms. It requires to be verified whether the proposed method

can be applied to all the EEG datasets of IS with higher age and/or

with focal epileptic spasms. The sample size of our study was

small, and the clinical application of the proposed method

requires future confirmation in large-sample clinical trials. It

is worth mentioning that the CNN network contains many

hyperparameters, e.g., the number and size of the kernels in

TABLE 3 Accuracy, precision, and recall in each class. BS represents the BASED score.

Class Accuracy (%) Precision (%) Recall (%)

BS≤ 2 (training set) 99.80 99.15 99.19

BS = 3 (training set) 96.65 88.14 90.38

BS = 4 (training set) 96.71 95.83 95.55

BS = 5 (training set) 99.39 99.66 98.00

BS≤ 2 (validation set) 99.74 99.19 99.59

BS = 3 (validation set) 95.73 89.76 82.32

BS = 4 (validation set) 95.73 92.07 96.34

BS = 5 (validation set) 99.39 99.67 98.08

FIGURE 4
Performance of our model in the 5-fold cross-validation.
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each convolution layer, the size of the stride, and the size of the

kernels in the pooling layer. Although the proposed method

achieved high computational accuracy, its computational cost

must be considered for further optimization.

4 Conclusion

Recent advances in neuroimaging techniques and machine

learning algorithms have significantly enhanced ongoing

research works on automatic EEG analysis. Our study

investigated the usability of a CNN in BASED scoring. The

problem was formulated into a 4-label classification problem

(Score 5, 4, 3, and ≤2) according to the BASED score. Using the

proposed multi-layer network model, a remarkable classification

accuracy of above 96% was achieved in the validation set. Further

research will focus on the interpretability of the layers and the

optimization of the model structure.
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