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Cryo-electron tomography (Cryo-ET) is an emerging technology for three-dimensional (3D)
visualization of macromolecular structures in the near-native state. To recover structures of
macromolecules, millions of diverse macromolecules captured in tomograms should be
accurately classified into structurally homogeneous subsets. Although existing supervised
deep learning–based methods have improved classification accuracy, such trained
models have limited ability to classify novel macromolecules that are unseen in the
training stage. To adapt the trained model to the macromolecule classification of a
novel class, massive labeled macromolecules of the novel class are needed. However,
data labeling is very time-consuming and labor-intensive. In this work, we propose a novel
few-shot learning method for the classification of novel macromolecules (named FSCC). A
two-stage training strategy is designed in FSCC to enhance the generalization ability of the
model to novel macromolecules. First, FSCC uses contrastive learning to pre-train the
model on a sufficient number of labeled macromolecules. Second, FSCC uses distribution
calibration to re-train the classifier, enabling the model to classify macromolecules of novel
classes (unseen class in the pre-training). Distribution calibration transfers learned
knowledge in the pre-training stage to novel macromolecules with limited labeled
macromolecules of novel class. Experiments were performed on both synthetic and
real datasets. On the synthetic datasets, compared with the state-of-the-art (SOTA)
method based on supervised deep learning, FSCC achieves competitive performance.
To achieve such performance, FSCC only needs five labeled macromolecules per novel
class. However, the SOTA method needs 1100 ~ 1500 labeled macromolecules per novel
class. On the real datasets, FSCC improves the accuracy by 5%~ 16%when compared to
the baseline model. These demonstrate good generalization ability of contrastive learning
and calibration distribution to classify novel macromolecules with very few labeled
macromolecules.
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1 INTRODUCTION

Biological processes in cells are dominated by complex networks
of molecular assemblies and their interactions. Analyzing the
native structure and spatial distribution of molecular assemblies
is essential for revealing the macromolecular mechanism of
cellular processes. Cryo-electron tomography (cryo-ET) is an
emerging technique for three-dimensional (3D) visualization
of macromolecular structures (Lučić et al., 2013; Wan and
Briggs, 2016). Compared to other 3D visualization methods
such as X-ray (Blanchet and Svergun, 2013), cryo-ET has the
advantage of revealing the structure of macromolecular structures
in a near-native state at the sub-molecular resolution. Many
important native macromolecular structures have been
discovered using cryo-ET, such as SARS-Cov-2 that caused the
COVID-19 pandemic (Liu et al., 2020).

In principle, the cellular tomograms imaged by cryo-ET can
capture millions of macromolecules with diverse structures. To
recover structures of macromolecules, diverse macromolecules in
tomograms should be detected (Melia and Bharat, 2018),
classified (Gao et al., 2021), aligned and averaged (Zeng et al.,
2021), and called subtomogram averaging (STA) (Bharat and
Scheres, 2016). Macromolecule classification aims to classify
diverse macromolecules into structurally homogeneous subsets
accurately. The input to macromolecule classification is a
subtomogram, a subvolume of the tomogram. Each
subtomogram contains a complete macromolecule. The
accuracy of macromolecule classification directly affects the
performance of downstream tasks. Because misclassified
macromolecules can introduce wrong structures, it further
increases the difficulty in alignment. However, macromolecule
classification remains challenging due to the low signal-to-noise
ratio (SNR), a large variety of macromolecular structures, and
small size of macromolecules.

One pioneering method for macromolecule classification is
the template search (Yu and Frangakis, 2011). Given the template
structure, this method calculates the cross-correlation coefficient
between each subvolume of the tomogram and the template
structure through a sliding window. When the cross-
correlation coefficient is higher than a threshold, the target
macromolecule is been identified. Though this method has
been successfully applied to identify some large
macromolecules (Böhm et al., 2000), the performance highly
depends on the template structure. When the targets and
template structures are from different organisms or have
different conformations, these targets can be missed (Moebel
et al., 2021). To avoid relying on template structures, template-
free classification methods have been developed (Jonić, 2016; Xu
et al., 2019; Martinez-Sanchez et al., 2020). For example, Xu et al.
(Xu et al., 2019) proposed an iterative clustering process to group
macromolecules that have the same macromolecular structures.
Although this template-free method can classify novel
macromolecules, iterative clustering in 3D is time-consuming.
This makes the method only suitable for small datasets and has
limited application in practical scenarios.

Recently, the SHREC contest (Gubins et al., 2020) caused a
surge in supervised deep learning–based subtomogram

classification methods (Himes and Zhang, 2018; Harastani and
Jonic, 2021; Moebel et al., 2021; Pyle and Zanetti, 2021). For
example, Xu et al. proposed the DoG-3D-CNN (Gubins et al.,
2019) method to classify subtomograms after filtering image
noise with a difference of Gaussian (DoG) filter (Wang et al.,
2012). Considering that the subtomogram is a 3D image, to
extract more features from depth dimension, Gao et al. proposed
3D-dilated-Densenet (Gao et al., 2020). 3D-dilated-Densenet
improves the classification performance of macromolecules of
small size. Despite improving classification accuracy and
decreasing the processing time, the abovementioned supervised
deep learning–based methods often have one major bottleneck:
trained models have limited ability to classify novel
macromolecules that are unseen in the training stage. To
adapt the trained model to macromolecule classification of a
novel class (unseen class in the training stage), massive labeled
macromolecules of the novel class are required to retrain the
model. This is inefficient and undesirable in practice tasks as
labeling macromolecules is time-consuming and laborious (Oda
and Kikkawa, 2013). Furthermore, due to complicated structures
and distortion caused by missing wedge and noise, it is hard to
label macromolecules with naked eyes even by experts.

In this study, we propose a novel few-shot learning method for
macromolecule classification of novel classes (named FSCC)
(Figure 1). Combined with contrastive learning and
distribution calibration, a two-stage training strategy is
designed in FSCC to enhance the generalization ability of the
model to novel macromolecules. First, FSCC uses contrastive
learning (Khosla et al., 2020) to pre-train the model on a sufficient
number of labeled macromolecules. This comes from the
intuition that good generalization requires capturing the
similarity between subtomograms in the same class and
contrasting them with subtomograms in other classes. With
contrastive learning, FSCC can pull together macromolecules
belonging to the same class in the embedding space and
separate macromolecules from different classes. Second, FSCC
retrains the model to classify novel macromolecules. Specifically,
FSCC freezes the parameters of the feature extractor of the pre-
trained model. Then, based on distribution calibration (Yang
et al., 2021b), FSCC retrains the classifier with a limited number
of labeled macromolecules from novel classes. Distribution
calibration is a kind of domain adaption method (Sun and
Saenko, 2016). It can bridge the distribution gap between the
source domain and target domain. Distribution calibration has
been widely applied in high-level computer vision tasks such as
object detection (Saito et al., 2019) and image retrieval (Su et al.,
2019). In FSCC, the data distribution learned from a few
macromolecules can be a biased distribution, which leads the
model to become overfitted, whereas in the first pre-train stage,
the data distribution learned from sufficient macromolecules is
more accurate, which can alleviate such an overfitting problem.
Thus, FSCC calibrates the distribution of the novel class by
transferring the distribution statistics from the class with a
sufficient number of macromolecules. After distribution
calibration, FSCC samples an adequate number of features
from the calibrated distribution to augment the inputs to the
classifier.
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To demonstrate the performance of FSCC, we tested FSCC
on synthetic and real datasets. The results show that different
from existing supervised deep learning–based macromolecule
classification methods, FSCC has good generalization ability
to novel macromolecules. FSCC can accurately classify novel
macromolecules with very few labeled macromolecules. On
synthetic datasets, FSCC achieves competitive performance
when compared to the state-of-the-art (SOTA) method based
on supervised deep learning. Specifically, on the synthetic
dataset SHREC21, the F1-score of FSCC is 0.75, while the F1-
score of SOTA is 0.73. To achieve such performance, FSCC
uses only five labeled macromolecules per novel class.
However, the SOTA method uses 1100 ~ 1500 labeled
macromolecules per novel class. On the real datasets,
FSCC improves the accuracy by 5% ~ 16% compared to
the baseline model based on two-stage training. These
demonstrate the good generalization ability of contrastive
learning and calibration distribution to novel
macromolecules.

2 METHODS

2.1 Two-Stage Training Framework
2.1.1 Problem Definition of Few-Shot Macromolecule
Classification
Before introducing the framework of FSCC, we first briefly
introduce the problem definition of the few-shot
macromolecule classification. In the standard few-shot
classification scenario (Li et al., 2021), there are two kinds
of macromolecule datasets: a base dataset Dbase and a novel

dataset Dnovel. Let Cbase be the set of classes covered by Dbase

and let Cnovel be the set of classes covered by Dnovel, then we
have Cbase⋂Cnovel = ∅. The goal of the few-shot classification
method is to use a model trained on Dbase to classify novel
macromolecules of Dnovel, given limited labeled
macromolecules from Dnovel. Here, in one few-shot
classification task, the limited labeled macromolecules are
defined as the support set and the unlabeled
macromolecules, which are needed to be classified and are
defined as the query set. The classes of the query set and
support set are the same at the one few-shot task. According to
the number of classes covered by the few-shot classification
task and the number of labeled macromolecules per class in the
support set, the few-shot task is named N-way-K-shot tasks. N-
way-K-shot means there are N novel classes, and each class has
K labeled macromolecules. Generally, N is set as 5 and K is set
as 1 or 5.

2.1.2 The Framework of FSCC
FSCC designs a two-stage training strategy: pre-training stage and
classifier re-training stage to enhance the generalization ability of
the model to novel macromolecules (Figure 1). In the pre-
training stage, given a sufficient number of labeled
macromolecules (xb, yb) from Dbase, where xb is a In×n×n 3D
subtomogram image and yb ∈ Cbase, FSCC trains a feature
extractor fθ and a classifier C(·|Wb) to predict the class of
macromolecules ŷb. A good feature extractor fθ should learn
an embedding such that the features of macromolecules of the
same class are close to each other, while the features of
macromolecules of different classes are far apart. To learn
such a feature extractor fθ, FSCC designs a weighted loss

FIGURE 1 | Framework of FSCC. FSCC follows a two-stage training strategy. The first training stage is a pre-training stage. FSCC pre-trains the model on a
sufficient number of labeled macromolecules of base classes by contrastive learning. The second training stage is a classifier re-training stage. Here, FSCC re-trains the
classifier with very few labeled macromolecules of novel class. To augment the inputs of the classifier, FSCC calibrates the distribution of novel classes and samples
adequate features from calibrated distribution to re-train the classifier.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 9319493

Gao et al. Few-Shot Learning for Macromolecule Classification

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


function L (Eq. (1)) based on contrastive learning (Jaiswal et al.,
2020) (Subsection 2.2). This weighted loss function L contains
two kinds of loss. The first one LCE (Eq. (2)) is a penalty of
misclassified macromolecules. The other is class similarity–based
loss LSCL (Eq. (3)) which aims to find the similarities between the
macromolecules of the same class and contrast them with
macromolecules from other classes.

To enable the pre-trained model to classify novel
macromolecules, given a few labeled macromolecules (xn, yn)
from Dnovel, FSCC freezes parameters of the feature extractor fθ
and retrains the classifier C(·|Wn). Training the classifier with
very few labeled macromolecules is a challenge because the
feature distribution learned from very few labeled
macromolecules (xn, yn) can be a biased distribution (Yang
et al., 2021a). This biased distribution cannot accurately reflect
the ground-truth distribution of macromolecules of novel classes.
Actually, the estimated distribution of the base dataset Dbase with
a sufficient number of labeled macromolecules is more accurate
than that of the novel dataset Dnovel with limited labeled
macromolecules. Previous work has proved that semantically
similar images have similar feature distributions (Burke, 2018).
Thus, FSCC performs distribution calibration on extracted
features of the input novel macromolecule xn with learned
knowledge from the base dataset Dbase. The detailed
description of distribution calibration is given in Subsection
2.3. After calibration distribution, FSCC samples adequate
features from calibrated distribution to augment the input for
the classifier.

2.2 Supervised Contrastive Learning
FSCC designs a weighted loss function L of the cross-entropy
(CE) loss LCE and the supervised contrastive learning (SCL) loss
LSCL to pre-train the model. L is defined as

L � LCE + λLSCL, (1)
where λ is a weight coefficient of LSCL. We suggest that λ is 0.05
based on the experimental results (Subsection 3.3.2).

Cross-entropy loss LCE (Eq. (2)) is a commonly used loss
function in existing supervised deep learning–based
macromolecule classification methods. LCE is defined as

LCE � − 1
M

∑M
i�1

∑Cb

c�1
yi,c · logŷi,c, (2)

whereM is the number of input subtomograms in the mini-batch;
i means the i-th macromolecule in this mini-batch; c means the
class ID of base classes; yi,c denotes the ground-truth label of input
subtomograms, and ŷi,c denotes the predicted class. Though CE
loss LCE is good at learning the inter-class information, it only
focuses on misclassified macromolecules, while ignoring the
similarity between macromolecules from the same class.
Therefore, the learned features of the same classes present
scattered shape if the model is trained with only cross-entropy
loss LCE (Figure 2).

Contrastive learning is one of the methods that have been
widely used in self-supervised learning to enhance the
generalization ability of the model recently (Jaiswal et al.,
2020). The idea of contrastive learning is to find the
similarities of samples of the same class by contrasting them
with samples from other classes. In our task, with the label
information, FSCC introduces supervised contrastive learning
loss LSCL to cluster macromolecules from the same class, while
simultaneously pushing apart macromolecules from different
classes. The supervised contrastive learning loss LSCL is
defined as

LSCL � ∑N
i�1

− 1
Nyi − 1

∑N
j�1

I yi � yj{ }

· log exp fθ xi( ) · fθ xj( )/τ( )
∑N

k�1Ii≠k exp fθ xi( ) · fθ xk( )/τ( ), (3)

where (xi, yi)(i = 1, 2, . . . ,N) is the labeled macromolecules in one
mini-batch; Nyi is the number of subtomograms that have the
same label as yi; fθ is the feature extractor of the model; and τ is a
hyper-parameter that controls the separation of different classes.
Referring the original contrastive learning loss, we set τ to 0.07
(Khosla et al., 2020). To ensure that the mini-batch
macromolecules cover a different class of macromolecules,
FSCC randomly samples a uniform number of
macromolecules from each base class Cbase. However, training
the model with only supervised contrastive learning lossLSCL can
lead to slow convergence of the model. Therefore, in order to
converge faster, FSCC designed a combined loss function of
cross-entropy loss LCE and contrastive learning loss LSCL

(Figure 2).

2.3 Distribution Calibration
To apply the pre-trained model to classify novel macromolecules,
we fix the parameters of the feature extractor fθ and re-train the
classifier C(·|Wn) with a limited number of labeled
macromolecules of novel classes Cnovel. The feature
distribution learned from very few labeled macromolecules can
be a biased distribution, which can make the model to be
overfitted (Yang et al., 2021a). Actually, as the base dataset
Dbase contains a sufficient number of labeled macromolecules,
the learned feature distribution of base dataset Dbase is more
accurate than that of the novel datasetDnovel. Previous works have

FIGURE 2 | Conceptualization of cross-entropy loss LCE (eq. (2)) and
FSCC loss L (eq. (1)). There are two kinds of extracted features of classes A
and B. When adopting cross-entropy loss LCE to train the model, the inter-
class distance is close. Instead, when adopting the loss of FSCC L, the
inter-class distance increases, while intra-class distance reduces.
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proven that semantically similar images have similar distributions
when the feature distribution follows a Gaussian distribution
(Burke, 2018). Thus, to obtain a more accurate distribution of the
novel dataset Dnovel, FSCC calibrates the distribution of the novel
dataset Dnovel by transferring the distribution statistics of the base
dataset Dbase to the novel dataset Dnovel.

The distribution calibration consists of four steps (Algorithm
1). In step 1, FSCC computes the mean and co-variance to
describe the nearly-Gaussian feature distribution of each base
class in Cbase. The mean μ and co-variance Σ of each base class i
are defined as follows:

μi �
∑ni

j�1vj
ni

,∀i ∈ Cb, (4)

Σi � 1
ni − 1

∑ni
j�1

vj − μi( ) vj − μi( )( )⊤,∀i ∈ Cb, (5)

where vj is a feature vector of the j-th macromolecules from the
base class i and ni is the total number of macromolecules in base
class i.

In step 2, to make the feature distribution of the novel dataset
Dnovel follow Gaussian distribution, FSCC transforms the feature
vector v � [v1, . . . , vm]⊤ of macromolecules of novel class Cnovel

with the Tukey ladder of powers (Tukey, 1977). The computation
is processed in each single dimension. The transformed feature
vector ~v � [~v1, . . . , ~vm]⊤ is defined as

~v � vλ, if λ ≠ 0
log v( ) if λ � 0

{ , (6)

where λ is a hyperparameter that controls correcting the
distribution. As suggested in the previous work, we set λ as
0.5 (Yang et al., 2021a).

In step 3, to search similar base classes to a novel class,
FSCC computes the Euclidean metric between the transformed
feature ~v and the mean of base class μi of each base class i ∈ Cb

(Eq. (7)). With a distance set Sdistance, FSCC selects the k base
classes that has a minimum distance to the transformed feature
~v (Eq. (8)).

Sdistance � μi − ~v




 



2,∀i ∈ Cbase{ }, (7)

Sselected � i| μi − ~v




 



2 ∈ mink Sdistance( ){ }, (8)

where mink(·) means selecting the k minimum distance from the
distance set Sdistance. Sselected covers the k nearest base classes to
the transformed feature ~v of the novel class.

In step 4, with the selected nearest k base classes Sselected,
FSCC computes the statistics of the calibrated distribution of
the novel class Cnovel (Eq. (9)–10). With the calibrated mean μ′
and co-variance Σ′ for each novel class, FSCC samples features
from calibrated distribution to enrich the input for the
classifier.

μ′ � ∑i∈Snui + ~v

k + 1
. (9)

Σ′ � ∑i∈SnΣi

k
. (10)

Algorithm 1. The training of the classifier in FSCC.

3 EXPERIMENTS AND RESULTS

3.1 Data Preparation
To demonstrate the effectiveness of FSCC, it was tested on
synthetic datasets and real datasets. We first introduce the
synthetic datasets. There are two synthetic public datasets,
which were released by SHREC in 2019 and 2021 (Gubins
et al., 2019). For convenience, we named these two synthetic
datasets SHREC19 and SHREC21. The raw SHREC dataset
contains 10 reconstructed 3D tomograms and ground-truth
information that record the localization and class of each
macromolecule. The size of the 3D tomogram is 512 × 512 ×
512 (1 voxel equals 1 nm). It contains thousands of
macromolecules that are uniformly distributed. According to
the molecular weight, macromolecules are grouped into large,
medium, and small sizes by SHREC (Figure 3). We extract all
subtomograms from 10 tomograms based on the ground-truth
information. The extracted subtomogram is at the size of 32 ×
32 × 32. Figure 4 shows an example of subtomograms of SHREC
data. For SHREC19, there are 12 classes of macromolecules and
20785 macromolecules. The class distribution of macromolecules
is uniform. Each class contains ~1700 macromolecules. As
published by SHREC, the SNR of SHREC19 is 0.02. For
SHREC21, there are 13 classes of macromolecules and 16291
macromolecules. Each class contains ~1300 macromolecules. In
the N-way-K-shot classification tasks (N is set as 5), we randomly
divided the SHREC data into the base dataset Dbase and novel
datasetDnovel, with five classes of macromolecules. For SHREC19,
there are seven classes of macromolecules as the base dataset
Dbase. For SHREC21, there are eight classes of macromolecules as
the base dataset Dbase. Both the base dataset Dbase and novel
dataset Dnovel cover macromolecules of small, medium, and
large sizes.

There are two real datasets in our work (Table 1). One real
dataset covers seven classes of macromolecular structures
published by Gao et al. (2020). For convenience, we name this
dataset Dataset1. In Dataset1, there are 400 macromolecules, and
each is reconstructed from the 2D tilt series with a size of 28 ×
28 × 28. Another real dataset is generated by Guo et al. (2018). For
convenience, we name this dataset Dataset2. Dataset2 covers five
classes of macromolecular structures. Each class contains 200
macromolecules (28 × 28 × 28). As the real datasets contain a
limited number of classes, the base dataset Dbase only contains a
few class number of macromolecules if we set the number of novel
classes (N) as 5 in the few-shot classification task. Thus, instead of
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setting N to 5 as in the synthetic dataset, we equally divide the
classes of the real dataset into base class Dbase and novel class
Dnovel. For Dataset1, we randomly split the dataset into the base
dataset Dbase with four classes of macromolecular structures and
the novel dataset Dnovel with three classes of macromolecules. For
Dataset2, we randomly split the dataset into the base dataset Dbase

with three classes of macromolecular structures and the novel
dataset Dnovel with two classes of macromolecules.

3.2 Implementation Details
The architecture of FSCC is named as Conv-6 (Figure 5). The
input of Conv-6 is a 3d subtomogram xi, and the output is the
class ID ŷ of macromolecules. In Conv-6, the feature extractor fθ
comprises six ConvBlocks, and the classifier is the fully connected
layer. Each ConvBlock is a composition of a 3d convolution layer,
a batch normalization layer, a ReLu, and a 3d pooling layer. FSCC
is implemented with Pytorch and trained on the GTX 2080ti
GPU. In the pre-training stage, we train the Conv-6 with all
macromolecules from the base dataset Dbase. The optimizer is
Adam; the initial value of the learning rate is 0.05. When training
with the synthetic datasets, the batch size is 128 and the training
epoch is 5. When training with the real datasets, due to the small
number of labeled macromolecules, to make the model converge,
we set the batch size as 32 and the training epoch as 50. In the
fine-tuning stage, we fixed the parameters of the feature extractor
of Conv6 fθ and re-trained the classifier C(·|Wn) with very few
limited macromolecules of novel class Cnovel. In each few-shot
classification task, we have N × K limited labeled macromolecules
(support set) to train the classifier and N × Q unlabeled
macromolecules (query set) to predict. N is equal to the
number of novel class Cnovel. K is generally set to 1 or 5. For

the synthetic datasets, N is 5. For the real dataset Dataset1, N is 3
and Dataset2 N is 2. All macromolecules in the support set and
query set are randomly sampled from the novel dataset Dnovel.
The classes of the query set and support set are the same at one
few-shot classification task. To demonstrate the stability of FSCC,
we tested it on randomly sampled 100 few-shot classification
tasks. The performance of FSCC reflects in the mean classification
accuracy (Eq. (12)) and F1 score (Eq. (11)) for these 100 tasks. In
Eq. (12) and Eq. (11)), TP means true positive, TN means true
negative, FN means false negative, and FP means false positive.

accuracy � TP + TN
TP + FN + FP + TN

. (11)

FIGURE 3 |Density map andmolecular weight (kDa) of each PDB ID in SHREC data. The top row is the PDB ID. The bottom row is themolecular weight (kDa). From
left to right, the molecular weight of PDB decreases.

FIGURE 4 | Example subtomograms of SHREC data. (A) Consecutive slices of a subtomogram of PDB ID 1bxn in SHREC19. (B) Consecutive slices of a
subtomogram of PDB ID 1bxn in SHREC21.

FIGURE 5 | Architecture of FSCC Conv-6. In Conv-6, the feature
extractor fθ comprises six ConvBlocks and the classifier is the fully
connected layer.
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F1 � 2TP
2TP + FN + FP

. (12)

3.3 Results on Synthetic Data
3.3.1 The Classification Results on Synthetic Datasets
Here, we show the classification performance of FSCC on the
synthetic datasets (Table 2). We tested FSCC and two popular
fine-tuning–based methods on the few-shot classification task
with SHREC19 and SHREC21. These two methods are named
Baseline (Chen et al., 2019) and Baseline++ (Chen et al., 2019) in
the original. Baseline and Baseline++ use the same architecture
network (Figure 5) as the FSCC and adopt a two-stage training
strategy. Baseline is a standard fine-tuning method. Baseline++ is
the same as the original Baseline, except for the training of the
classifier. Baseline++ trains the classifier base on cosine distance
similarity to explicitly reduce intra-class variations. The pre-
training strategy of Baseline and Baseline++ is the same as
that of FSCC. In the fine-tuning stage, Baseline and
Baseline++ re-train the classifier with 10 epochs. In each
epoch, Baseline and Baseline++ randomly sample N × K
labeled macromolecules to re-train the classifier. Thus,
Baseline and Baseline++ methods use 10 × K labeled
macromolecules of novel macromolecules per class.
Concretely, Baseline and Baseline++ use 50 labeled
macromolecules per class when adapting the model to 5-way-
5-shot classification tasks of novel macromolecules and 10 labeled
macromolecules per class when adapting the model to 5-way-1-
shot tasks of novel macromolecules. In contrast to Baseline and
Baseline++ methods, FSCC can re-train the classifier in one few-
shot classification task. This means FSCC only needs five labeled
macromolecules on 5-way-5-shot classification tasks of novel
macromolecules and one labeled sample on the 5-way-1-shot
classification tasks. In Table 2, we report the classification
performance and the number of labeled macromolecules of
each novel class that are needed in the fine-tuning stage. The

classification performance is demonstrated by the mean and
variance of classification accuracy (Eq. (12)) on 100 few-shot
classification tasks. The number of labeled macromolecules is
shown in parentheses after the classification accuracy. Due to the
5-way-5-shot task providing more labeled macromolecules than
that of the 5-way-1-shot task, the classification performance of
FSCC on the 5-way-5-shot task is higher than that of the 5-way-1-
shot task. Compared with Baseline and Baseline++ methods, on
SHREC19, our method improves the accuracy by 3.86% when
there are five labeled macromolecules per class and 5.44% when
there is one labeled sample per class. On SHREC21, our method
improves the accuracy by 4.71% when there are five labeled
macromolecules per class and 9.09% when there is one labeled
sample per class.

We also compared FSCC with the state-of-the-art (SOTA)
performance of supervised deep learning–based methods on
SHREC19 and SHREC21. Table 3 shows the F1-score (Eq.
(11)) and the number of labeled training macromolecules for
each class of macromolecules of FSCC and SOTA. From the
average F1 score, we can see that FSCC can achieve the
classification performance of SOTA methods with five labeled
macromolecules per novel class. However, the SOTA method
uses a significantly larger number of 1100 ~ 1500 labeled
macromolecules per novel class. It is worth emphasizing that
the SOTA results are published by the SHREC contest. SHREC
publics the F1-score of each macromolecule of many popular
supervised deep learning–based methods. Here, the
SHREC–SOTA means the highest F1 score of each class of
macromolecule. Thus, SHREC–SOTA comes from different
supervised deep learning–based methods. For most methods,
there has been no access to source code or pretrained models.
Table 3 only reports the performance of macromolecular
structures from novel class Cnovel. In SHREC19 and SHREC21,
the PDB ID of macromolecules in the novel class is 1u6g, 3cf3,
3gl1, 3qm1, 4d8q, and 4v49. 4d8q is only covered in SHREC19,
and 4v49 is only covered in SHREC21. According to the

TABLE 1 |Macromolecular structures covered in real datasets. The first line shows themacromolecular structures in Dataset1. The second line macromolecular structures in
Dataset2.

Dataset
Name

Base dataset Novel dataset

Dataset1 Rabbit muscle
aldolase

Glutamate
dehydrogenase

DNAB helicase-
helicase

T20S
proteasome

Apoferritin Hemagglutinin Insulin-bound insulin
receptor

Dataset2 Mitochondrial
membrane

Ribosome 26S proteasome Double capped
proteasome

TRiC

TABLE 2 |Classification performance of FSCC and SOTAmethods on the synthetic dataset. The classification performance is measured by classification accuracy, followed
by the number of labeled training macromolecules in parentheses.

Methods SHREC19 SHREC21

5-Way-5-Shot 5-Way-1-Shot 5-Way-5-Shot 5-Way-1-Shot

Baseline (Chen et al., 2019) 73.14 ± 0.47%(50) 65.12 ± 0.74%(10) 71.36 ± 1.19%(50) 59.15 ± 1.70%(10)
Baseline++ (Chen et al., 2019) 75.32 ± 0.37%(50) 66.65 ± 0.67%(10) 73.64 ± 1.04%(50) 65.19 ± 1.02%(10)
FSCC (ours) 77.03 ± 1.21% (5) 70.56 ± 1.61% (1) 76.07 ± 1.03% (5) 68.24 ± 1.03% (1)
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molecular weight, 3g1 and 3qm1 are macromolecules of small
size, 1u6g and 3cf3 are macromolecules of medium size, and 4d8q
and 4v4g are macromolecules of large size. The result shows that
for both methods, macromolecules of large size are easy to be
classified.When the size decreases, the classification accuracy also
decreases. The SHREC contest contains localization and
classification tasks. In SHREC19, SOTA methods first localized
the macromolecules and then classified them. Thus, the
macromolecules may not be in the center of the input
subtomograms. This makes sense that FSCC has higher
classification accuracy because the input subtomograms are
extracted according to the ground-truth localization. In
SHREC21, SOTA methods adopt the end-to-end pixel
classification–based model to obtain the class of
macromolecular structures. For macromolecules of large size,
the classification accuracy of FSCC is close to SOTA methods.
Even for macromolecules of small size such as 3qm1, FSCC
improves the classification performance by 0.31. This is
because FSCC classifies novel macromolecules according to the
statistic of macromolecules of the base class. In the base dataset,
1s3x is similar to 3qm1. Thus, the feature vectors of 1s3x are
similar to those of 3qm1, which leads FSCC to classify 3qm1 with
higher accuracy than SOTA.

3.3.2 Ablation Studies
FSCC contains two key components: contrastive learning
(Subsection 2.2) and distribution calibration (Subsection 2.3).
Here, we performed an ablation study on SHREC19 to explore the
contribution of each key component. In Table 4, there are four
CNNmodels tested in the ablation study. First, we tested the base
CNN model (Baseline) without contrastive learning and
distribution calibration. Second, we added distribution
calibration to the Baseline to test the contribution of
distributed calibration. Third, we added contrastive learning to
the Baseline to test the contribution of contrastive learning.
Compared to Baseline, distribution calibration improves by
5.65% on 5-way-1-shot classification tasks. The aim of the
distribution calibration is to calibrate the biased distribution
learned from very few labeled macromolecules of novel class.
Therefore, in the case of fewer labeled macromolecules, it is
reasonable that the distribution calibration can more significantly
improve the accuracy of image classification. The last model is
our FSCC model. These results show the contribution of
contrastive learning and distribution calibration to the few-
shot macromolecule classification.

In FSCC, we adopted cross-entropy loss and contrastive
learning loss in the pre-training stage. The total loss function
is shown in Eq. (1). Here, λ is a hyperparameter to control the
component of supervised contrastive learning loss LSCL. On the
SHREC19 and SHREC21 datasets, we test the relationship
between the classification performance and the value of λ
(Figure 6). To ensure that the cross-entropy loss and the
supervised contrastive loss are of the same order of
magnitude, the λ is set to 0.01, 0.05, 0.07, and 0.1. The results
show that except for 5-way-1-shot on SHREC19, λ = 0.05 has the
best test accuracy across all experimental settings. The test
accuracy for the 5-way-1-shot task on SHREC19 differs byT
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1.29% when λ equals 0.01 and 0.05. According to all
hyperparameter experiments of λ, we recommend that the λ
can be set as 0.05.

3.4 Results on Real Data
Here, we tested FSCC on two real datasets. Table 5 shows the
classification performance and training macromolecules of FSCC
and baseline models (Baseline and Baseline++) on Dataset1 and
Dataset2. The classification performance is represented by the mean
and variance of the classification accuracy of randomly constructed
100 few-shot classification tasks. As the real datasets only cover a few
classes of macromolecular structures and hundreds of
macromolecules per class, the stability of the feature extractor of
all pre-trained models is poor. This results in a variance of
classification accuracy greater than 1%. In addition, the
insufficient labeled macromolecules of the base class lead to poor
generalization ability of Baseline and Baseline++. Thus, the
classification performance of Baseline and Baseline++ is poor to
novel macromolecules. Compared with Baseline methods, for

Dataset1, FSCC significantly improves classification accuracy by
16.84% on 3-way-1-shot classification tasks and 5.96% on 3-way-
5-shot classification tasks. ForDataset2, FSCC significantly improves
classification accuracy by 13.1% on 2-way-1-shot classification tasks
and 7.76% on 2-way-5-shot classification tasks.

4 DISCUSSION AND CONCLUSION

The classification of subtomograms is a key step to recover
macromolecular structures captured by cryo-ET. Although
supervised deep learning–based methods have improved the
classification accuracy, they have limited ability to classify novel
macromolecules. To adapt the model to a novel class of
macromolecules, the trained model needed to be re-trained with
massive labeled macromolecules of the novel class. However, it is
inefficient and undesirable in practice as labeling the sample is time-
consuming and laborious. In this work, we proposed a few-shot
learning-based macromolecule classification method named FSCC.

TABLE 4 | Ablation study on 5-way-5-shot and 5-way-1-shot classification tasks with SHREC19.

Calibrated distribution Contrastive learning 5-Way-5-Shot 5-Way-1-Shot

No No 73.14 ± 0.47% 65.12 ± 0.74%
Yes No 75.97 ± 0.89% 70.77 ± 0.19%
No Yes 74.32 ± 0.12% 68.44 ± 0.14%
Yes Yes 77.12 ± 0.21% 70.59 ± 0.61%

FIGURE 6 | Relationship between classification accuracy with the weight value λ of the supervised contrastive loss LSCL.

TABLE 5 | Classification performance of FSCC on real datasets. The classification performance is measured by classification accuracy, followed by the number of labeled
training macromolecules in parentheses.

Dataset1 Dataset2

3-Way-5-Shot 3-Way-1-Shot 2-Way-5-Shot 2-Way-1-Shot

Baseline 69.96 ± 1.41%(50) 64.44 ± 1.91%(10) 67.60 ± 0.94%(50) 65.27 ± 0.95%(10)
Baseline++ 69.22 ± 1.33%(50) 65.44 ± 0.85%(10) 68.17 ± 1.06%(50) 66.93 ± 1.74%(10)
FSCC 86.80 ± 1.27% (5) 70.40 ± 1.82% (1) 80.70 ± 1.28% (5) 73.03 ± 1.49% (1)
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Different from the existing supervised deep learning–basedmethods,
FSCC can classify novel macromolecules with very few labeled
macromolecules. Based on a two-step training strategy, FSCC
first pre-trained the model with supervised contrastive learning
on the base dataset with a sufficient number of labeled
macromolecules. Supervised contrastive learning can help
enhance the generalization ability and stability of the model.
Then, FSCC re-trains the classifier with distribution calibration to
enable the model to classify novel macromolecules. The results on
synthetic datasets demonstrate that compared to SOTA of
supervised deep learning–based methods, FSCC can achieve
competitive performance given only five labeled macromolecules
per novel class. However, the SOTA method needs 1100 ~ 1500
labeled training macromolecules per novel class. On the synthetic
dataset SHREC19 (SNR = 0.02), compared to the popular fine-
tuning–based few-shot classification method, FSCC improves
classification accuracy by 3.89% on 5-way-5-shot tasks and by
5.44% on 5-way-1-shot tasks. On real datasets, compared to
popular fine-tuning–based few-shot classification methods, FSCC
improves classification accuracy by 5% ~ 7% when there are five
labeled macromolecules per class of novel macromolecules. FSCC
significantly improves classification accuracy by 13% ~ 16% when
there is only one labeled sample per class of novel macromolecules.
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