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Otomycosis accounts for over 15% of cases of external otitis worldwide. It is

common in humid regions and Chinese cultures with ear-cleaning custom.

Aspergillus and Candida are the major pathogens causing long-term infection.

Early endoscopic and microbiological examinations, performed by otologists

and microbiologists, respectively, are important for the appropriate medical

treatment of otomycosis. The deep-learning model is a novel automatic

diagnostic program that provides quick and accurate diagnoses using a large

database of images acquired in clinical settings. The aim of the present study

was to introduce a machine-learning model to accurately and quickly diagnose

otomycosis caused by Aspergillus and Candida. We propose a computer-aided

decision-making system based on a deep-learning model comprising two

subsystems: Java web application and image classification. The web

application subsystem provides a user-friendly webpage to collect consulted

images and display the calculation results. The image classification subsystem

mainly trained neural network models for end-to-end data inference. The end

user uploads a few images obtained with the ear endoscope, and the system

returns the classification results to the user in the form of category probability

values. To accurately diagnose otomycosis, we used otoendoscopic images

and fungal culture secretion. Fungal fluorescence, culture, and DNA

sequencing were performed to confirm the pathogens Aspergillus or

Candida spp. In addition, impacted cerumen, external otitis, and normal

external auditory canal endoscopic images were retained for reference. We

merged these four types of images into an otoendoscopic image gallery. To

achieve better accuracy and generalization abilities after model-training, we

selected 2,182 of approximately 4,000 ear endoscopic images as training

samples and 475 as validation samples. After selecting the deep neural

network models, we tested the ResNet, SENet, and EfficientNet neural

network models with different numbers of layers. Considering the accuracy

and operation speed, we finally chose the EfficientNetB6 model, and the

probability values of the four categories of otomycosis, impacted cerumen,

external otitis, and normal cases were outputted. After multiple model training

iterations, the average accuracy of the overall validation sample reached

92.42%. The results suggest that the system could be used as a reference

for general practitioners to obtain more accurate diagnoses of otomycosis.
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1 Introduction

The goal of machine learning is for machines to learn

automatically from training data and update their capabilities

(Shen et al., 2017). Deep learning is a field of machine learning

in which machine learning is implemented using deep neural

networks (Giger, 2018). For example, the deep convolutional

neural network (CNN) is used by machines to acquire image

data and identify the contents in the image (Kooi et al., 2017).

Deep learning, or deep neural networks, has been successfully

used in some medical fields. For example, in the field of

ophthalmology, machine learning can automatically detect

retinopathy in patients with diabetes (Horsch et al., 2011;

Chougrad et al., 2018).

Otomycosis externa, or fungal otitis externa, is a

superficial fungal infection of the external auditory canal

that occasionally invades the middle ear. The incidence of

otomycosis externa is high in hot and humid climates found

in tropical and subtropical regions (Li and He 2019). Patients

with this infection usually present with symptoms such as

itching, otorrhea, and hearing loss. Aspergillus and Candida

are the most common pathogens causing otomycosis (Kamali

Sarwestani et al., 2018). Although otomycosis is rarely fatal,

it is difficult to treat because of a long treatment period

and easy recurrence. Antifungal drugs show varying

sensitivity/resistance to pathogenic bacteria, often leading

to poor therapeutic effects (Li et al., 2020). The diagnosis of

otomycosis is mainly done clinically by

otorhinolaryngologists, and insufficient attention is paid to

mycological detection, particularly the subsequent

pathogen culture and drug sensitivity test results.

To date, the deep CNN model with various structures has

achieved good results in image classification and

recognition (Hapfelmeier and Horsch, 2011; Lee et al.,

2017). However, the tests were based on standard image

galleries and have not been applied in the field of

otoendoscopy.

The aim of this study was to establish a comprehensive

identification system for otomycosis by comparing the effects

of several typical deep CNN models using otoendoscopic

images and web applications and selecting three models with

the best recognition effects. To diagnose otomycosis

accurately, we used otoendoscopic images and fungal

culture secretions. The pathogen was identified as

Aspergillus or Candida by fungal fluorescence, culture, and

DNA sequencing. In addition, images of impacted cerumen,

external otitis, and normal external auditory canal were used

as reference to identify otomycosis. We combined these four

types of images into a gallery of otoendoscopic images.

2 Materials and methods

2.1 Design

Figure 1 summarizes the overall design of the web-based

computer-aided diagnosis system used in this study. The system

comprises three subsystems: front-end page subsystem based on

React, business logic subsystem based on SpringBoot, and image

classification subsystem based on PyTorch. React is a JavaScript

language library for building user interfaces, enabling

component-based user interaction pages for easy extension.

SpringBoot is a Java language-based framework for quickly

building standalone, production-level Java Web services

applications. PyTorch is an open-source framework for deep

learning based on Python and developed with support from

Facebook (Zhang et al., 2019).

According to manufacturer’s instructions, we uploaded a

batch of otoendoscopic RGB images up to four at a time to

the specific storage space of the server via the front-end

subsystem. Subsequently, the business logic subsystem verified

and cleaned the images. Finally, the image classification

subsystem predicted the images for otomycosis, impacted

cerumen, external otitis, and the normal external auditory

canal. At the end of the model calculation, each image was

assigned a percentage of the four categories, adding up to 100%,

with the value of each category indicating the probability that the

image belonged to that category. Finally, the data were delivered

to the front-end page via the business subsystem using web

services to provide users with diagnostic references. To classify

and predict RGB images, we used an end-to-end deep CNN

model (Esteva et al., 2017). To train weight parameters, we

inputted the classified and labeled training sample images to

the model.

2.2 Sample

The database used in our study was created at the

Department of Otolaryngology - Head and Neck Surgery,

Jingzhou Hospital Affiliated to Yangtze University. The study

protocol was approved by the Research Ethics Committee of

Jingzhou Hospital Affiliated to Yangtze University (protocol

number: 2021-093-01). Written informed consent was

obtained from patients and caregivers of patients under

18 years of age. All the procedures were carried out in

accordance with the tenets of the Declaration of Helsinki.

An otorhinolaryngologist evaluated the patients. Patient age

ranged from 5 to 72 years. Images with otomycosis, impacted

cerumen, external otitis, or the normal external auditory canal
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were preserved in the otoscopy room. Figures 2A–D shows the

representative images of all categories.

To obtain a better training result, we prepared two external

auditory canal image datasets: one comprising 2,652 external

auditory canal images used to train the model and the other

comprising 552 images that were not used to train the model but

to test the robustness and accuracy of the model.

2.3 Data preprocessing

First, we selected the otoendoscopic RGB image as the system

input. The key contents to be identified were in a circular area in

the image, while the other areas were black. Due to inter-user

differences in operation habits, the circular area varied in size,

with the center of the circular area often not coinciding with the

center of the image. To maximize the feature data to be

recognized by the model for training, we used Hough

transform to perform ring detection (Hough ring detection).

The center and radius of the circle were detected to calculate the

minimum rectangular coordinates. From the rectangular cutting

of the original image, excess black boxes were removed (Moses

et al., 2018).

Second, because the model was in the training process, the

dataset was reused in each iteration of the training. To enhance

the robustness of the model, we added the function of random

angle rotation to the dataset (Varma and Zisserman, 2009) such

that when each sample was removed, the image was rotated

randomly.

Third, data standardization was performed. To accelerate the

training process, the possibility of the model falling into the local

optimum during training was reduced. We treated the input data

for data standardization, i.e., according to the image color

channel for the unit, the mean and standard deviation values

of the training images were calculated. After normalization of

each image pixel value, the mean value was subtracted and

divided by the standard deviation value. The images with a

mean value of 0 and a standard deviation of one were

considered normally distributed (Shin et al., 2016). Due to

limited memory, 600 training sample otoendoscopic images

were randomly selected. The calculated mean value of the

RGB channel was [0.5317, 0.3899, 0.3003], while the standard

deviation was [0.3482, 0.2748, 0.2329]. The formula for the

standard deviation was as follows: X ’ � x−μ
σ

2.4 Deep CNN model

The deep CNNmodel was used in this study. It could analyze

the features in its “field of vision” (local receptive field) through

FIGURE 1
General scheme of the computer-aided system approach to assist the diagnosis of otomycosis.

Frontiers in Molecular Biosciences frontiersin.org03

Mao et al. 10.3389/fmolb.2022.951432

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.951432


FIGURE 2
(A) Images labeled “otomycosis”. (B) Images labeled “impacted cerumen”. (C) Images labeled “external otitis”. (D) Images labeled “normal case”.

Frontiers in Molecular Biosciences frontiersin.org04

Mao et al. 10.3389/fmolb.2022.951432

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.951432


neuronal learning of the hidden layer. To enable the CNNmodel

to learn better features from images, many deep CNN models

have been proposed (Spasov et al., 2018). We selected three CNN

models for training: ResNet, SENet, and EfficientNet (Lee et al.,

2020). The algorithm characteristics and design ideas of each

model are described below:

2.4.1 ResNet
The main design idea is to introduce a residual network

structure (cross-layer jump connection) to resolve SGD

optimization difficulties when the neural network model is

stacked to a deeper level, and the reverse derivative gradient

disappears or explodes, resulting in the deterioration of model

performance (Talo et al., 2019). Using the neural network model

with a residual structure, the network can be designed deeper,

and the training is faster. Because it does not introduce additional

parameters or computational complexities and only performs

simple addition operation, the computational power

consumption is negligible compared to convolution operation.

ResNet has designed floors of 18, 34, 50, 101, and 152. Regarding

efficiency and cost, ResNet of 101 was used in this study. Figure 3

shows the algorithm and design of this model.

2.4.2 SENet
This conventional CNN model aggregates information of

image space and feature dimension into a feature channel

through the convolution operation of multiple convolution

kernels in the local receptive field, and the data of each

feature channel are equal (Zhang et al., 2019). However, in

real settings, each image is a key feature area, and attention

should be paid to the channel data of this part of data conversion.

The SE module was designed by the makers of SENet to obtain

scaling coefficients (importance) of the channel data through a

series of fully connected activation operations of global average

pooling and 1 × 1 convolution kernels, which were then weighted

to previous features by multiplication. This completed the

recalibration of the original feature on the channel dimension.

The SE module and ResNet were combined to obtain SENet. In

this study, we used the 101-layer SENet. Figure 4 shows the

algorithm and design of this model.

2.4.3 EfficientNet
Scaling (model extension) improves the performance of

CNN models (Godinez et al., 2017). The expansion direction

of the model is mainly divided into the network width (channel,

number of convolution kernels), depth (number of layers), and

resolution (accuracy of input image); however, these expansions

consume abundant additional computing resources.

EfficientNetB0 is a simple baseline network with grid

structure search. Subsequently, a compound coefficient is used

to synthesize the aforementioned dimensions of model extension

such that additional consumption of computational power

resources can be optimized to improve accuracy. In this study,

we used EfficientNetB6.

2.5 Deep CNN model training process

2.5.1 Input and output
The size of otoendoscopic RGB images was 515 × 547 pixels,

and the standard input size of ResNet101 and SENet101 models

was 224 × 224 pixels. Therefore, we added a convolution layer in

FIGURE 3
ResNet model.

FIGURE 4
SENet model.
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front of the input layer of the standard ResNet101 and SENet101.

The kernel size was 7 × 7. The stride and padding were two and

three, respectively, such that the input size of the model became

448 × 448. The input size of the EfficientNetB6 model was 528 ×

528. Therefore, the image was scaled to the required size of the

model before training. To adapt the output of the model to the

objective of our study, the otoendoscopic images were classified

into four categories. We replaced the last full connection layer of

the standard ResNet101, SENet101, and EfficientNetB6 models

with a new full connection layer with four output nodes (Geras

et al., 2019).

2.5.2 Optimization of model training
To obtain better training results, we assigned a set of

hyperparameters, including whether or not to use pretraining

weights, whether or not to carry out center circle interception,

batch size, learning rate, and optimizer (Zhang and Suganthan,

2017).

Each time the model was trained, a value was randomly

selected from each item.We used the PyTorch framework on two

graphics processing units (RTX-2080Ti Gpus). After repeated

training of multiple models, we obtained the optimal

hyperparameters: using pretraining weight, using center circle

interception, batch size of 4, learning rate of 0.001, and SGD

optimizer.

2.6 Set classifier

Based on the accuracy of the test images, the best training

results from among the three models were selected. The average

highest accuracies of the ResNet101, SENet101, and

EfficientNetB6 models were 78.32, 87.16, and 88.21%,

respectively. Table 1 shows the highest accuracies for the four

categories. Table 2 shows the weighted mean values of the models

for the four categories. The set classifier was obtained by

multiplying each model by the weighted mean of each model

and category. Table 3 shows the highest accuracy of the final set

classifier.

The performance of the set classifier was measured using the

obfuscation matrix, precision, recall, precision–recall (PR) curve,

and receiver operating characteristic (ROC) curve (Tan et al.,

2017).

The confusion matrix represented the number of instances

corresponding to the predicted and actual classes. This

concept is often used for binary classifications but can be

extended to multiclass predictions, with the corresponding

class on the diagonal of the matrix and the misclassified class

outside the diagonal. We used the set classifier to conduct

prediction tests on the verification test set comprising

475 otoendoscopic images. Table 4 shows the confusion

matrix.

The accuracy refers to the number of predicted positive

sample results that are correctly classified. It is calculated

using the following formula: precision = true positive/(true

positive + false positive). Recall refers to the number of

positive sample results that are correctly classified. It is

calculated using the following formula: recall = true positive/

(true positive + false negative). Table 5 shows the results of the

precision and recall.

The PR curve is used to sort the samples according to the

predicted results of the classifier. The samples considered

“most likely” to be positive by the classifier were in the

front row, while those considered “least likely” to be

positive by the classifier were in the back row. In this

order, the samples were considered examples of positive

prediction, and the current recall and precision were

calculated each time. With accuracy as the vertical axis and

TABLE 1 Highest accuracies of the four categories of otoendoscopic images trained by three models.

Otomycosis (%) Impacted cerumen (%) External otitis (%) Normal case (%)

ResNet101 73.8 78.69 71.19 86.75

SENet101 89.25 78.69 83.33 89.82

EfficientNetB6 95.19 78.69 80.0 86.83

TABLE 2 Weighted mean values of the models for four categories of otoendoscopic images.

Weighted mean model Otomycosis Impacted cerumen External otitis Normal case

ResNet101 0.28578066 0.33333333 0.3035562 0.329347

SENet101 0.34560873 0.33333333 0.35532151 0.34100227

EfficientNetB6 0.3686106 0.33333333 0.3411223 0.32965073
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recall as the horizontal axis, the PR curve was drawn. With the

true-positive rate as the vertical axis and the false-positive rate

as the horizontal axis, the ROC curve was drawn. Figures 5A,B

show the results of the PR and ROC curves, respectively.

3 Results

We chose a deep CNN model to obtain a system that could

help doctors accurately diagnose otomycosis. Three CNNmodels

TABLE 3 Highest accuracies of four categories of otoendoscopic images by the ensemble classifier.

Otomycosis (%) Impacted cerumen (%) External otitis (%) Normal case (%) Average accuracy (%)

Set classifier 94.65 90.16 88.33 92.22 92.42

Evaluation index.

TABLE 4 Confounding matrix results of the test set verified on otoendoscopic images.

Prediction fact Otomycosis Impacted cerumen External otitis Normal case

Otomycosis 177 3 4 3

Impacted cerumen 2 55 0 4

External otitis 1 0 53 6

Normal case 5 1 7 154

TABLE 5 Accuracy and recall of the four categories of otoendoscopic images.

Indicators Category

Otomycosis (%) Impacted cerumen (%) External otitis (%) Normal case (%)

Precision 95.68 93.22 82.81 92.22

Recall 94.65 90.16 88.33 92.22

FIGURE 5
(A,B) Precision–recall and receiver operating characteristic curves of the four categories of otoendoscopic images.
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were selected for training, and the weighted mean of each model

produced the highest verification accuracy.

To obtain better accuracy and generalization ability after

model training, we selected 2,182 samples from approximately

4,000 otoendoscopic images as training samples and 475 samples

as verification samples (Table 6). To select the deep CNN model,

we tested the ResNet, SENet, and EfficientNet models with

different layers. The optimal training results among the three

models were selected. The average highest accuracies of

ResNet101, SENet101, and EfficientNetB6 models were 78.32,

87.16, and 88.21%, respectively (Table 1). Considering the

accuracy and speed of operation, we chose the

EfficientNetB6 model to output the probability values of four

types of otomycosis, impacted cerumen, external otitis, and the

normal external auditory canal. After multiple iterative model

training, the average accuracy of the overall validation sample

was 92.42% (Table 3). The results suggest that the system could

be used by doctors, or even patients, to better diagnose

otomycosis.

We proposed a computer-aided decision system based on a

deep learning model, which includes Java web application and

image classification subsystems. The web application subsystem

mainly provides a user-friendly page to collect images of

consultation and display the calculation results. The image

classification subsystem mainly uses a trained neural network

model to perform end-to-end data reasoning. Finally, on

TABLE 6 Data distribution in the classification test of otoendoscopic images.

Classification Training set Validation set Test set Total

Otomycosis 803 187 30 1,020

Impacted cerumen 264 61 30 355

External otitis 395 60 30 485

Normal case 720 167 30 917

FIGURE 6
Screenshot of the authentication results on the webpage.
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uploading a few otoendoscopic images, the system returns the

classification results to the user as the category probability value.

We released a beta web application at http://175.178.230.

136/. Guests can login with a username and password and upload

otoendoscopic images up to four at a time for diagnoses. The

image size should not exceed 2 MB, and the image should be in

the JPEG format. The “picture identification” button should be

clicked to obtain probability values of the four categories. The

uploaded image should be clicked to enlarge, read, and confirm

the identification. Figure 6 shows the screenshot of the

identification results on the website.

4 Discussion

Otomycosis is mainly diagnosed based on clinical

manifestations and mycological examination results. However,

differences in the pathogenic fungi species directly affects the

positive rate of direct microscopic examination results (Ali et al.,

2018). By culturing isolated specimens, further morphological

and molecular biological identifications can be carried out, and

the pathogenic species can be identified (Merad et al., 2021).

However, conventional identification methods are time-

consuming and prone to cross-contamination of specimens,

which often leads to failure of clinicians to select effective

antifungal drugs at a timely and early stage, affecting the

prognosis (Hagiwara et al., 2019). Otoendoscopy has the

advantages of a broad field of vision, close observation, and

less invasive injury and has been widely used in the diagnosis and

treatment of outer and middle ear diseases in recent years (Ulku,

2017). To treat otomycosis, we usually remove the fungal focus

under ear endoscopy and select the appropriate drug according

to the fungal culture results. Therefore, otoendoscopy and fungal

culture are required to diagnose otomycosis. In our study,

otoendoscopic images of impacted cerumen, external otitis,

and the normal external auditory canal were used

simultaneously. The established image library accumulated

sufficient data to diagnose otomycosis by deep learning of

otoendoscopic images.

We developed a computer-aided support system to assist

physicians in the diagnosis of otomycosis. To ensure a diagnostic

accuracy comparable to that of ear, nose, and throat specialists

and provide the best care to patients, the most appropriate

feature extraction methods and learning models were selected.

A neural network model with different layers was tested, and the

best training results of the three models was selected considering

the accuracy and operation speed. The performance of the

EfficientnetB6 model was found to be the highest. The

weighted mean values of the models in the four categories

were obtained. The result of each model was multiplied by the

weighted mean value of each model and classification to obtain

the average accuracy of the total validation sample of the set

classifier (Table 1, Table 2, and Table 3). Classical machine

learning techniques, such as SVM, K-NN, and decision tree,

provide high performances in classification tasks, particularly

with reasonably sized datasets (Van Gestel et al., 2002). These

techniques are easy to understand, simplifying model tuning and

calibration. Other more complex models, such as CNNs, can be

used to overcome the same challenges but must be trained with

larger database to achieve comparable performance.

The binary classification method of still color images of the

eardrum has been used to identify the normal ear and otitis

media, with accuracy rates of 73.1 and 68.3%, respectively (Tran

et al., 2018; Cai et al., 2021). In both cases, color information was

used to train the learningmodels. However, color alone cannot be

used to obtain an accurate classification. In a previous study,

classifying cases of normal ear and otitis media (Shie et al., 2014),

the color, texture, and geometric information were used to train

support vector machines with an accuracy exceeding 88.1%

achieved by previous authors. However, the system’s specific

ability to correctly identify healthy individuals was 79.9%. A

study implemented a system to distinguish the normal eardrum,

otitis media, and blocked ear canals with an accuracy of 86.8%

(Myburgh et al., 2018). Whether these results were obtained

through classification stages using validation or test sets remains

unclear. The evaluation index of the deep CNNmodel selected in

our studymainly depends on the performance of the set classifier,

which is measured using the obfuscation matrix, precision, recall,

and PR and ROC curves. The confusion matrix represents the

number of instances corresponding to the predicted and actual

classes (Table 4). To diagnose otomycosis, there were 187 images

of otomycosis, 177, three, four, and three images of which were

predicted to be of otomycosis, impacted cerumen, external otitis,

and normal external auditory canal, respectively. Table 5 shows

the statistics of the precision and recall. Figure 5 is drawn with the

precision ratio as the vertical axis and the recall ratio as the

horizontal axis to obtain the PR curve.

Previous studies on deep learning methods have distinguished

between normal or abnormal conditions of the eardrum (Senaras

et al., 2018). Two different deep learning architectures were used in

this study, with an accuracy of 84.4%, a sensitivity of 85.9%, and a

specificity of 82.8%. Another study proposed a diagnosis system

based on deep CNN, with an average accuracy of 93.6% (Cha et al.,

2019). The study divided ear diseases into five categories:

invagination of the eardrum, perforation of the tympanum,

tympanitis, external auditory canal tumors, and normal cases.

However, the model performance, i.e., accuracy, depends on the

number of images trained. If the number of images decreases, the

performance degrades. A common limitation of deep learning

approaches is the influence of database on the model (Zhang et

al., 2020). In addition, a large database, particularly in

otolaryngology, may be unavailable.

We introduced a novel beta web application, which is user-

friendly. After several iterations of sample training, the average

accuracy of the overall validation sample was 92.42%. Clinicians can

login on the website and upload otoendoscopic images to accurately
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diagnose otomycosis (Figure 6). In the future, doctors and patients

would be able to upload images to their smartphones or other

devices to obtain diagnoses by installing software. The web

application has a learning function. Therefore, the program can

learn the uploading of identification images for improved accuracy.

To create a database of images of otomycosis, we collected

otoendoscopic images of the external auditory canal obtained in

clinical practice. According to the clinical manifestations and

otoendoscopic images, otomycosis was considered, and

specimens from these patients were collected for fungal

species identification. The diagnostic system was relatively

easy to implement and could significantly impact primary

healthcare. Most blurred and unqualified images are deleted,

and a few blurred images can also be analyzed and processed by

artificial intelligence algorithms, thus increasing the diagnostic or

classification accuracy. Although we randomly selected a large

sample of cases, all possible imaging presentations of otomycosis

may not have been covered. Therefore, image selection will have

a potential bias. However, to avoid bias and improve accuracy,

our database includes images of different tympanic membranes

and external auditory canal projections.

Finally, we only evaluated four conditions that were presented

during endoscopy, while the diagnosis of external auditory canal

mycosis should include the differential diagnosis of other rare

diseases in clinical practice. Whether our method would show

reduced or improved accuracy if more conditions are included

remains unknown. Therefore, the characteristics of otoendoscopy

should be evaluated in detail in future studies. Nevertheless,

compared to previous studies, our study achieved greater

accuracy in the diagnosis of otomycosis in a real clinical setting

through conditions that had not been previously assessed.

In future studies, we aim to integrate other rare types of

otomycosis, although their diagnosis is a challenge even for

specialists. In addition, we would train deep CNNs for other

learning models, which may allow the integration of more

classifications to maintain high performance.
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