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Background: The prognostic roles of ferroptosis-related mRNAs (FG) and

lncRNAs (FL) in pediatric acute myeloid leukemia (P-AML) patients remain

unclear.

Methods: RNA-seq and clinical data of P-AML patients were downloaded from

the TARGET project. Cox and LASSO regression analyses were performed to

identify FG, FL, and FGL (combination of FG and FL) prognosticmodels, and their

performances were compared. Tumor microenvironment, functional

enrichment, mutation landscape, and anticancer drug sensitivity were analyzed.

Results: An FGL model of 22 ferroptosis-related signatures was identified as an

independent parameter, and it showed performance better than FG, FL, and

four additional public prognostic models. The FGLmodel divided patients in the

discovery cohort (N = 145), validation cohort (N = 111), combination cohort (N =

256), and intermediate-risk group (N = 103) defined by the 2017 European

LeukemiaNet (ELN) classification system into two groups with distinct survival.

The high-risk group was enriched in apoptosis, hypoxia, TNFA signaling via

NFKB, reactive oxygen species pathway, oxidative phosphorylation, and

p53 pathway and associated with low immunity, while patients in the low-

risk group may benefit from anti-TIM3 antibodies. In addition, patients within

the FGL high-risk group might benefit from treatment using

SB505124_1194 and JAK_8517_1739.

Conclusion:Our established FGL model may refine and provide a reference for

clinical prognosis judgment and immunotherapies for P-AML patients.
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Introduction

Acute myeloid leukemia (AML) encompasses a high

heterogeneity hematologic malignancy, characterized by

uncontrolled proliferation of myeloid blasts or

progranulocytes, leading to suppression of the normal

hematopoietic function of bone marrow (Newell and Cook,

2021). Its heterogeneity is related to clinical behavior,

morphology, immunophenotyping, germline and somatic

genetic abnormalities, and epigenetic anomalies, as well as

patient outcomes (Creutzig et al., 2012).

The 2017 European LeukemiaNet (ELN) classification

system integrated karyotypic abnormalities and genetic

mutations to classify AML patients into three genetic risk

groups: favorable, intermediate, and adverse, and subsequently

found widespread adoption in clinical practice (Döhner et al.,

2017). However, around 50% of AML patients are still classified

as the intermediate-risk subgroup, and their survival is highly

heterogeneous (Wang et al., 2017), implying the need for

integrating additional prognostic factors to improve risk

stratification power.

Pediatric acute myeloid leukemia (P-AML), despite constant

treatment improvements over the past decades, remains a

catastrophic disease with 3-year relapse rates up to 30% and

5-year survival rates below 75% (Unis et al., 2021). Since most of

the genetic investigations are based on adult AML patients,

distinct molecular genetic landscapes have been mapped out

between pediatric and adult AML patients (Bolouri et al., 2018;

Marceau-Renaut et al., 2018). It is important to define a better

description of the pattern of molecular aberrations in P-AML in

order to refine prognostication and develop age-specific therapies

in such patients.

Ferroptosis is a new mode of regulated cell death, which is

usually accompanied by iron accumulation and lipid

peroxidation during the cell death process and is involved in

the development of many critical diseases, such as tumors,

ischemic tissue damage, kidney injury, neurodegeneration, and

blood diseases (Li et al., 2020), especially recent research has

shown that ferroptosis-inducing agents and genetic modulators

of ferroptosis resulted in a synergistic effect on the promotion of

early death of AML cells and increasing the sensitivity of

leukemia cells to chemotherapeutic agents (Yu et al., 2015;

Birsen et al., 2021). Thus, we reasonably hypothesize that

ferroptosis is involved in the pathobiology of AML including

pediatric patients. In addition, emerging evidence has proven

that high-complexity links between N6-methyladenosine (m6A)

and different types of programmed cell death pathways might be

closely associated with the initiation, progression, and resistance

of cancer (Liu et al., 2022). An intriguing study investigated the

mechanisms underlying the oncogenic role of m6A demethylase

FTO in AML and found that a bio-imprinted nanoplatform

targeting the FTO/m6A pathway can selectively target leukemic

stem cells (LSCs) and induce ferroptosis (Cao et al., 2022),

implying the clinical potential of targeting “m6A

modification–ferroptosis axis” as a treatment strategy

against AML.

Currently, a few studies indicated that abnormalities in

mRNAs or long non-coding RNAs (lncRNAs) of ferroptosis

were closely correlated with cancer patient outcomes (Lelièvre

et al., 2020). However, no study has been performed to discover

ferroptosis-related prognostic signatures and predict P-AML

outcomes.

Here, the main aim of the present study was to explore the

prognostic roles of ferroptosis-related mRNAs and lncRNAs for

P-AML patients, construct three prognostic models based on the

RNA sequencing data of pediatric samples from the TARGET

AML cohort (Downing et al., 2012), compare their predictive

efficiency among three models to obtain the best one, and

investigate the potential benefits of immune therapy. Second,

we explored whether the incorporation of the best ferroptosis-

related signatures could further improve the prognostic

prediction for the intermediate-risk subgroup of the 2017 ELN

risk classification system.

Materials and methods

Samples and datasets

RNA-seq data and clinical information of 256 P-AML

samples were collected at the first presentation/diagnosis from

the Therapeutically Applicable Research to Generate Effective

Treatment (TARGET) AML program and were available from

NCI’s data portal (collected on 18/September/2021). Out of these

256 samples, 145 have been harmonized by the NCI’s Genomic

Data Commons (GDC) (Zhang et al., 2021). Raw expression

counts of these 145 AML patients were extracted TARGET-AML

program of GDC (collected on 18/August/2021), as the

TARGET-discovery cohort. The remaining 111 cases were

used as a validation cohort and raw expression counts were

gathered from the (NCI)’s data portal (TARGET-validation

cohort). For model validation in the adult AML cohort, RNA-

Sequencing data of 151 adult patients with AML and the

corresponding clinical information were extracted from the

The Cancer Genome Atlas (TCGA)-LAML program of GDC.

The “DESeq2” package based on the negative binomial

distribution was used to normalize the raw count expression

data (Love et al., 2014). Detailed clinical information about the

data cohorts is provided in Table 1, and the workflow is briefly

depicted in Figure 1.

Ferroptosis-related mRNAs and lncRNAs

We obtained 259 ferroptosis-related genes from the FerrDb

database (http://www.zhounan.org/ferrdb, collected on 16/
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TABLE 1 Summary of P-AML patient clinical information from TARGET-Discovery and validation databases.

TARGET-GDC TARGET-111 TAREGT-combined p-value

Patients, n 145 111 256

Gender 0.62

Female 71 (48.97%) 50 (45.05%) 121 (47.27%)

Male 74 (51.03%) 61 (54.95%) 135 (52.73%)

Age at diagnosis in days

Mean ± SD 3,364.50 ± 2,210.76 3,776.92 ± 1980.25 3,543.32 ± 2,119.79 0.12

Median [min-max] 3,438.00 [137.00,8231.00] 4,183.00 [10.00,7442.00] 3,831.00 [10.00,8231.00]

Cytogenetic abnormality, carriers (%)

t (8; 21) 21 (14.48%) 23 (20.72%) 44 (17.19%) 0.42

t (6; 9) 1 (0.69%) 2 (1.80%) 3 (1.17%) 0.71

t (3; 5) (q25; q34) 2 (1.38%) 1 (0.90%) 3 (1.17%) 0.92

t (6; 11) (q27; q23) 2 (1.38%) 2 (1.80%) 4 (1.56%) 0.95

t (9; 11) (p22; q23) 13 (8.97%) 5 (4.50%) 18 (7.03%) 0.37

t (10; 11) (p11.2; q23) 4 (2.76%) 2 (1.80%) 6 (2.34%) 0.86

t (11:19) (q23:p13.1) 5 (3.45%) 0 5 (1.95%) 0.14

inv (16) 28 (19.31%) 14 (12.61%) 42 (16.41%) 0.34

del5q 1 (0.69%) 0 1 (0.39%) 0.67

del7q 4 (2.76%) 5 (4.50%) 9 (3.52%) 0.75

del9q 5 (3.45%) 5 (4.50%) 10 (3.91%) 0.90

trisomy 8 9 (6.21%) 9 (8.11%) 18 (7.03%) 0.83

trisomy 21 4 (2.76%) 1 (0.90%) 5 (1.95%) 0.21

Minus Y 6 (4.14%) 5 (4.50%) 11 (4.30%) 0.97

Minus X 6 (4.14%) 4 (3.60%) 10 (3.91%) 0.96

FLT3_ITD_positive 11 (7.59%) 29 (26.13%) 40 (15.63%) <0.001

AML with biallelic mutations of CEBPA 7 (4.86%) 9 (8.33%) 16 (6.25%) 0.41

AML with mutated WT1 8 (5.67%) 9 (8.33%) 17 (6.64%) 0.83

AML with mutated NPM1 5 (3.45%) 13 (12.26%) 18 (7.03%) 0.07

Median WBC count (range), 3×109/L 45.30 [1.30,519.00] 42.80 [0.90,432.00] 44.75 [0.90,519.00] 0.36

Median percentage of BM blasts (range) 74.80 [14.00,100.00] 72.00 [25.00,98.00] 73.00 [14.00,100.00] 0.41

Median percentage of PB (range) 61.00 [0.0e+0,97.00] 61.00 [0.0e+0,97.00] 61.00 [0.0e+0,97.00] 0.28

2017 ELN classification system, n (%) <0.001

Favorable 60 (41.38%) 52 (46.85%) 112 (43.75%)

Intermediate 69 (47.59%) 34 (30.63%) 103 (40.23%)

Adverse 8 (5.52%) 20 (18.02%) 28 (10.94%)

Unknown 8 (5.52%) 5 (4.50%) 13 (5.08%)

FAB subtype 0.15

M0 3 (2.07%) 3 (1.17%)

M1 17 (11.72%) 16 (14.41%) 33 (12.89%)

M2 35 (24.14%) 31 (27.93%) 66 (25.78%)

M4 36 (24.83%) 26 (23.42%) 62 (24.22%)

M5 30 (20.69%) 19 (17.12%) 49 (19.14%)

M6 2 (1.38%) 1 (0.90%) 3 (1.17%)

M7 7 (4.83%) 6 (5.41%) 7 (2.73%)

NOS 8 (5.52%) 12 (10.81%) 14 (5.47%)

Unknown 7 (4.83%) 16 (14.41%) 19 (7.42%)

CNS disease 0.70

No 135 (93.10%) 101 (90.99%) 236 (92.19%)

Yes 10 (6.90%) 10 (9.01%) 20 (7.81%)

(Continued on following page)
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November/2021), the first manually curated resource for

regulators and markers of ferroptosis, which was released in

January 2020 (Zhou and Bao, 2020) (Supplementary Table S1).

LncRNAs were extracted by the GENCODE v20 annotation

(http://www.gencodegenes.org) (Derrien et al., 2012).

Ferroptosis-related lncRNAs co-expressed with ferroptosis-

related genes were identified according to Pearson’s

correlation analysis by the correlation test function of R

(correlation coefficient Cor >0.8, p < 0.001).

Prognostic model construction and
validation

Univariate Cox regression was applied to screen prognosis-

related mRNAs and lncRNAs in the discovery cohort, using p <
0.05 as the cutoff. Then, model-making procedures were conducted

for three lists of prognostic ferroptosis-related signatures separately,

ferroptosis-related mRNA genes (FG), ferroptosis-related lncRNAs

(FL), and ferroptosis-related mRNA genes combined with

ferroptosis-related lncRNAs (FGL), and consisted of the

following steps. Step 1, the least absolute shrinkage and selection

operator (LASSO) Cox regression analysis was conducted on the

prognosis-related signatures, and the optimal penalty parameter “λ”
was selected by the 10-fold cross-validation method. Step 2, the

prognostic risk score formula was established as follows: risk score =

expression of gene 1×Coef1+expression of gene 2 × Coef 2+ /

+expression of gene n × Coefn. Coef indicates the regression

coefficients of each signature selected from the LASSO regression

analysis. According to the risk model, samples in the discovery

cohort were given a risk score and then divided into high- and low-

risk groups using the median score as the cutoff. The survival curves

of the patients in the high- and low-risk groups were drawn with the

R-package “Survival,” and the survival time of the two groups was

compared by log-rank test. The receiver operating characteristic

(ROC) curves were drawn using the R package “survival ROC” for

validation of the riskmodel and the AUC values of 1-, 3-, and 5-year

survival were calculated. The best prognostic model identified with

prognostic significance was selected for further analysis and the

same algorithm was performed in the TARGET-validation cohort,

TARGET-combined cohort, and TCGA-LAML cohort (151 adult

patients), with the same coefficients derived for the discovery

dataset.

Tumor immune microenvironment
analysis

Tumor microenvironment, immune, and stroma scores were

calculated based on the gene expression data using ESTIMATE

TABLE 1 (Continued) Summary of P-AML patient clinical information from TARGET-Discovery and validation databases.

TARGET-GDC TARGET-111 TAREGT-combined p-value

Chloroma 0.03

No 134 (93.06%) 92 (82.88%) 226 (88.28%)

Yes 10 (6.94%) 19 (17.12%) 29 (11.33%)

Unknown 1 (0.69%) 1 (0.39%)

MRD at the end of course 1 0.14

No 83 (75.45%) 52 (46.85%) 135 (52.73%)

Yes 27 (24.55%) 20 (18.02%) 47 (18.36%)

Unknown 35 (13.67%) 39 (35.13%) 74 (28.91%)

HSCT, n 0.06

No 131 (90.34%) 89 (80.18%) 220 (85.94%)

Yes 13 (8.97%) 19 (17.11%) 32 (12.50%)

Yes 1 (0.69%) 3 (2.71%) 4 (1.56%)

Event-free survival time in days

Mean ± SD 954.70 ± 972.36 1,058.67 ± 1,022.27 999.78 ± 993.67 0.41

Median [min-max] 458.00 [77.00,3630.00] 506.00 [2.00,4037.00] 461.00 [2.00,4037.00]

Overall Survival Time in days

Mean ± SD 1,577.18 ± 1,064.78 1,446.80 ± 1,008.87 1,520.65 ± 1,040.91 0.32

Median [min-max] 1,464.00 [112.00,4022.00] 1,532.00 [2.00,4037.00] 1,523.50 [2.00,4037.00]

Vital Status 0.24

Alive 77 (53.10%) 68 (61.26%) 145 (56.64%)

Dead 68 (46.90%) 43 (38.74%) 111 (43.36%)

Notes: WBC, white blood cell; BM, bone marrow; PB, peripheral blast; ELN, European LeukemiaNet; FAB, French–American–British; NOS, not otherwise specified; CNS, central nervous

system; MRD, measurable residual disease; HSCT, hematopoietic stem-cell transplantation; SD, standard deviation.
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(Yoshihara et al., 2013) and xCell (https://xcell.ucsf.edu) tool

(Aran et al., 2017). Estimating the proportion of immune and

cancer cells (EPIC) was applied to estimate the infiltration ratio

of eight types of immune cells (Racle et al., 2017). Furthermore,

based on the review of relevant literature (Gong et al., 2018;

Rowshanravan et al., 2018; Qin et al., 2019; Wang et al., 2020), we

explored the difference in the expression of 10 potential immune

checkpoint genes between groups. Detailed information is

provided in Supplementary Note S1.

Functional and pathway enrichment
analysis

Gene set enrichment analysis (GSEA) on the 50 hallmark

gene sets was used to identify the potential molecular

mechanisms or potential functional pathways that involve the

prognostic model (Liberzon et al., 2015). Significant gene sets

were based on the following parameters: normalized enrichment

score (NES) | >1, nominal p-value < 0.05, and false discovery rate

(FDR) q-value < 0.05. Furthermore, 19 m6A-related genes and

regulators based on Juan Xu’s research (Li et al., 2019) were

further screened and investigated in high- and low-risk groups.

Sensitivity analysis of common
chemotherapeutic drugs

To evaluate the potential of FGL models in clinical practice

for P-AML treatment, the half-maximal inhibitory concentration

(IC50) of commonly administered chemotherapeutic drugs in the

TARGET-combined cohort was calculated using the algorithm R

package “oncoPredict” (Maeser et al., 2021). The algorithm

predicts the clinical drug response value (IC50) in patients

based on gene expression data in tumor, which is derived

from the ridge regression model based on drug sensitivity

FIGURE 1
Workflow of this study.
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data from the Genomics of Drug Sensitivity in Cancer (GDSC)

database.

Statistical analysis

Kaplan–Meier curves were plotted to estimate overall

survival (OS) time and event-free survival (EFS) time, and the

data were statistically compared with the log-rank test.

Univariate and multivariate analyses were performed by the

Cox proportional hazard model. The ROC curve was

established, and the area under the curve (AUC) was

calculated to determine the predictive value of the prognostic

model. Five-fold cross-validation was applied for model

evaluation (Supplementary Note S2). All statistical analyses

were carried out using R (3.5.2) software and p < 0.05 was

taken as being statistically significant. The Wilcoxon test was

used to compare the immune scores, immune infiltrate, and

expression of genes between groups.

Results

Prognostic ferroptosis-related signatures
are identified

Normalized gene expression data of the TARGET-discovery

cohort included 244 ferroptosis-related genes. Univariate Cox

regression analysis revealed 39 ferroptosis-related genes with

significant prognostic value for P-AML (p < 0.05)

(Supplementary Table S2). By ferroptosis-related lncRNA co-

expression analysis and univariate Cox regression analysis, we

identified 8 prognostic ferroptosis-related lncRNAs out of

2,734 co-expressed lncRNAs (Supplementary Table S2). These

39 ferroptosis-related genes and 8 lncRNAs and merged lists

were served as candidate lists for LASSO Cox regression analysis,

respectively. After optimal parameter (lambda) selection in the

LASSO regression, three prognostic ferroptosis-related signature

models with 20 FG components, 6 FL components, and 22 FGL

components were built, respectively (Supplementary Figure S1;

Supplementary Table S3). The expression level of each gene and

LASSO regression coefficient (β) were integrated to calculate the

FG, FL, and FGL risk score for each patient (Supplementary

Table S4).

Prognostic ferroptosis-related models are
established and optimized

In the TARGET-discovery cohort, patients were stratified

into high- and low-risk groups using the median risk score as the

cutoff value. Statistical differences in overall-survival probability

have been identified for the patient groups stratified by the cutoff

point of FG, FL, and FGL risk scores, and the survival rate of

P-AML patients in the low-risk group of the three models was

significantly higher than that in the high-risk group (all p < 0.05)

(Figures 2A–C). However, only the FGL model was validated in

both the TARGET-validation cohort (p = 0.04, Figures 2D-F) and

the TARGET-combined cohort (p < 0.001, Figure 3A), with

significant differences in the survival rate between the two risk

groups. The same results have been found for the event-free

survival rate (EFS) (Supplementary Figure S2). Thus, the FGL

risk score was selected for all subsequent analyses. The

distribution and status of OS of the TARGET-combined

cohort were then analyzed by ranking the risk scores

(Figure 3B). The results showed that patients with higher FGL

risk scores had a worse prognosis. Expression profiles of the

22 ferroptosis-related signatures are listed in the heatmap of

Figure 3B. The AUC corresponding to 1-, 3- and 5-year OS in the

TARGET-combined cohort were 0.70, 0.68, and 0.70,

respectively, indicating that the predictive efficiency of the

model was good (Figure 3C).

Increasing FGL risk score is an
independent predictor for poorer OS

FLT3_ITD_positive, WT1 mutation, 2017 ELN classification

system, and FGL risk score were considered significant risk

parameters in the univariate analysis (p < 0.05) (Figure 4A),

and further multivariate Cox analysis indicated that the FGL risk

score was the only independent risk parameter in the discovery

cohort (HR = 3.772, 95% CI = 2.529–5.625) (Figure 4B). In the

TARGET-combined cohort, the results indicated that the higher

FGL risk score was also the only independent poor

prognosticator for OS (HR = 1.515, 95% CI = 1.344–1.708)

(Figures 4C,D). Several prognostic models have been

established or validated in the TARGET cohort recently:

LSC17 (Duployez et al., 2019), LSC6 (Elsayed et al., 2020),

yang_10_genes (Yang et al., 2020), docking_16_genes

(Docking et al., 2021), and cai_3_genes (Cai et al., 2021). Risk

scores were further calculated based on the coefficient defined in

these studies and used further for correlation analysis with FGL

risk score. FGL risk score was negatively correlated with

LSC17 risk score and positively correlated with the

docking_16_genes model and cai_3_genes model (Figures

5A,B). FGL risk model demonstrated the best predictive

performance compared with previous prognostic models,

2017 ELN classification system, and other prognostic

molecular characteristics in TARGET-discovery and

-combined cohort, respectively (Figures 5C,D). The five-fold

cross-validation method was applied to give a robust

estimation of the performance of the FGL model. As shown

in Supplementary Table S5, in the testing stage, the AUC of the

FGL model ranged from 0.693 to 0.741 in the TARGET-

discovery cohort and 0.693 to 0.741 in the combined cohort.
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Collectively, the risk score calculated according to the

22 ferroptosis-related signatures could serve as an

independent and stable prognostic parameter for P-AML

patients. However, we further explored the predictive ability

of the FGL prognostic model for prognosis in adult AML

patients. OS was not significantly different in the high-risk

and low-risk groups of the TCGA-LAML cohort (p = 0.37,

Supplementary Figure S3).

Evaluation of the relationship between
clinicopathological and molecular
characteristics and the ferroptosis-related
signature

We next investigated the clinical, molecular, and immune

features of the low- and high-risk groups in the TARGET-

combined cohort, considering the sample size. The results

identified a significant difference between the two groups with

respect to the distribution of inv (16) mutation,

WT1 mutation, 2017 ELN classification system, and FAB

subtype (all p < 0.05, Table 2). Of the 42 patients with inv

(16), 7.14% (3/42) were in the high-risk group and 92.86% (39/

42) were in the low-risk group (p < 0.001) (Figure 6A);

WT1 mutation occurs in 6.85% (17/256) of AML patients

and 13 of them were in the high-risk group (p = 0.04)

(Figure 6A). Consistent with expectations, the number of

people identified as adverse-risk by the 2017 ELN

classification system was significantly higher in the high-

risk group than that of the low-risk group (14.06 vs.

7.81%), while the number of people identified as favorable-

risk was on the contrary (27.34 vs. 60.16%). The

morphological subtypes in order of frequency among

P-AML cases were M2 (66/256, 25.78%), M4 (62/256,

24.22%), M5 (49/256, 19.14%), M1 (33/256, 12.89%), M7

(7/256, 2.73%), and M0 and M6 (3/256 and 1.17%). No

M3 case was identified in the present study. M4 subtype

was more common in the low-risk group than in the high-

risk group (35.16 vs. 13.28%) (Figure 6B). The mutation

landscapes in the FGL high- and low-risk groups showed

top mutated genes with a frequency above 5%, and NARS

mutation was the predominant alteration in both the high-

and low-risk groups. The second highest mutation rate

(30.49%) was found for KIT in the high-risk group, while

FIGURE 2
Predictive ability of the FG, FL, and FGL prognostic model for the prognosis of P-AML. Based on the median risk score of (A,D) FG, (B,E) FL, and
(C,F) FGL models, patients were divided into the high-risk group and the low-risk group. (A,B,C) Kaplan–Meier curve of the high-risk and low-risk
groups of the TARGET-discovery cohort. (D,F) Kaplan–Meier curve of the high-risk and low-risk groups of the TARGET-validation cohort.
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the mutation rate is 5.19% in the low-risk group (p < 0.001)

(Figures 6C,D).

Association of FGL risk score with the
intermediate-risk subgroup of 2017 ELN is
defined

We identified 112 (43.75%), 103 (40.23%), and 28 (10.94%)

patients in the TARGET-combined cohort classified as favorable-

, intermediate-, and adverse-risk groups, respectively, according

to the 2017 ELN classification system. Our results validated the

prognostic significance of the revised 2017 ELN classification

system in the TARGET-combined cohort (p < 0.001) (Figures

7A,B). Individuals in the favorable group defined by the

2017 ELN classification system had significantly better OS.

However, no significant prognostic difference between the

intermediate and adverse groups was found (p = 0.76 for OS;

p = 0.96 for EFS). Then, in the 2017 ELN intermediate-risk

subgroup of the TARGET-combined cohort (N = 103), we found

70 patients grouped with a high FGL risk score and 33 patients

grouped with a low FGL risk score, which could be well risk-

stratified by the FGL scoring system (p = 0.003 for OS; p =

0.0047 for EFS, Figures 7C,D).

Functional analysis and immune
characteristics of high-risk and low-risk
groups

Examining themolecular trends of divergence across two risk

groups using GSEA revealed 8 hallmark gene sets significantly

perturbed (Figure 8A, and detailed results for 50 hallmark gene

sets are shown in Supplementary Table S6). Six tumor-related

hallmarks, apoptosis, hypoxia, TNFA signaling via NFKB,

reactive oxygen species pathway, oxidative phosphorylation,

and p53 pathway, were significantly enriched in the low-risk

group, while bile acid (BA) metabolism pathway and

spermatogenesis were found significantly enriched in the high-

risk group.

To determine whether the FGL risk score was related to

tumor immunity, we next evaluated the correlation between FGL

risk and immune score and immune cell infiltration. We

observed significantly higher immune score,

microenvironment score, stromal score, and ESTIMATE score

in the low-risk group (Figure 8B and Figure 8C; all p < 0.05).

Strong relationship between infiltration levels of several immune

cells and FGL risk score has also been established. As shown in

Figure 8D, infiltration levels of cancer-associated fibroblasts

(CAFs), CD4_T cells, and endothelial were significantly

FIGURE 3
Characteristics of the patients in the TARGET-combined cohort based on the constructed FGL model. (A) Kaplan–Meier curve of the high-risk
and low-risk groups of the combination set showed differences in survival rate. (B) Distribution of risk score, survival status of each patient, and
heatmap expression of 22 ferroptosis-related signatures in high-risk and low-risk groups were presented. (C) Receiver operating characteristic
(ROC) curves of 1-year, 3-year, and 5-year overall survival for P-AML patients of the TARGET-combined cohort based on the FGL prognostic
model.
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FIGURE 4
Evaluation of the FGL model in the TARGET-discovery and -combined cohort. Independent prognostic effects of the risk score model were
assessed by (A,C) univariate Cox regression analysis and (B,D) multivariate Cox regression analysis.

FIGURE 5
Heatmap showing the correlations between FGL risk score and other prognostic models identified or validated in the TARGET cohort (A,B). FGL
prognostic model had the best AUC value in TARGET-discovery cohort (C) and -combined cohort (D).
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TABLE 2 Clinicopathological Characteristics for high and low FGL risk score subgroups.

High-risk group Low-risk group TAREGT-combined p-value

Patients, n 128 128 256

Gender 0.620

Female 63 (49.22%) 58 (45.31%) 121 (47.27%)

Male 65 (50.78%) 70 (54.69%) 135 (52.73%)

Age at diagnosis in days 0.882

Mean ± SD 3,563.05 ± 2094.95 3,523.59 ± 2,152.39 3,543.32 ± 2,119.79

Median [min-max] 3,810.50 [10.00,7442.00] 3,871.50 [113.00,8231.00] 3,831.00 [10.00,8231.00]

Cytogenetic abnormality

t (8; 21) carriers (%) 17 (13.28%) 27 (21.09%) 44 (17.19%) 0.16

t (6; 9) 3 (2.34%) 0 3 (1.17%) 0.17

t (3; 5) (q25; q34) 3 (2.34%) 0 3 (1.17%) 0.17

t (6; 11) (q27; q23) 3 (2.34%) 1 (0.78%) 4 (1.56%) 0.46

t (9; 11) (p22; q23) 10 (7.81%) 8 (6.25%) 18 (7.03%) 0.70

t (10; 11) (p11.2; q23) 4 (3.13%) 2 (1.56%) 6 (2.34%) 0.55

t (11:19) (q23:p13.1) 4 (3.13%) 1 (0.78%) 5 (1.95%) 0.31

inv (16) 3 (2.34%) 39 (30.47%) 42 (16.41%) <0.001

del5q 1 (0.78%) 0 1 (0.39%) 0.46

del7q 3 (2.34%) 6 (4.69%) 9 (3.52%) 0.43

del9q 4 (3.13%) 6 (4.69%) 10 (3.91%) 0.59

trisomy 8 12 (9.38%) 6 (4.69%) 18 (7.03%) 0.28

trisomy 21 5 (3.91%) 0 5 (1.95%) 0.06

Minus Y 3 (2.34%) 8 (6.25%) 11 (4.30%) 0.21

Minus X 5 (3.91%) 5 (3.91%) 10 (3.91%) 0.75

FLT3_ITD_positive 25 (19.53%) 15 (11.72%) 40 (15.63%) 0.12

AML with biallelic mutations of CEBPA 8 (6.40%) 8 (6.25%) 16 (6.35%) 1.00

AML with mutated WT1 13 (10.57%) 4 (3.20%) 17 (6.85%) 0.04

AML with mutated NPM1 11 (9.02%) 7 (5.65%) 18 (7.32%) 0.44

Median WBC count (range), 3×109/L 30.25 [0.90,519.00] 56.45 [1.60,405.50] 44.75 [0.90,519.00] 0.24

Median percentage of BM blasts (range) 72.00 [14.00,100.00] 74.30 [21.00,100.00] 73.00 [14.00,100.00] 0.38

Median percentage of PB (range) 61.00 [0.0e+0,97.00] 61.00 [0.0e+0,97.00] 61.00 [0.0e+0,97.00] 0.06

2017 ELN classification system, n (%) <0.001

Favorable 35 (27.34%) 77 (60.16%) 112 (43.75%)

Intermediate 70 (54.69%) 33 (25.78%) 103 (40.23%)

Adverse 18 (14.06%) 10 (7.81%) 28 (10.94%)

Unknown 5 (3.91%) 8 (6.25%) 13 (5.08%)

FAB subtype <0.001

M0 3 (2.34%) 0 3 (1.17%)

M1 23 (17.97%) 10 (7.81%) 33 (12.89%)

M2 33 (25.78%) 33 (25.78%) 66 (25.78%)

M4 17 (13.28%) 45 (35.16%) 62 (24.22%)

M5 27 (21.09%) 22 (17.19%) 49 (19.14%)

M6 2 (1.56%) 1 (0.78%) 3 (1.17%)

M7 7 (5.47%) 0 7 (2.73%)

NOS 6 (4.69%) 8 (6.25%) 14 (5.47%)

Unknown 10 (7.81%) 9 (7.03%) 19 (7.42%)

CNS disease 0.10

No 122 (95.31%) 114 (89.06%) 236 (92.19%)

Yes 6 (4.69%) 14 (10.94%) 20 (7.81%)

(Continued on following page)

Frontiers in Molecular Biosciences frontiersin.org10

Tao et al. 10.3389/fmolb.2022.954524

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.954524


upregulated in the high-risk group, while infiltration levels of

B cells, macrophages, and other cells were significantly

upregulated in the low-risk group (all p < 0.05). Notably, we

observed a statistically significant difference between the two

groups in terms of the expression of several important immune

checkpoint genes. The expression of PDL1, CTLA4, TIGIT, and

PDL2 were more highly expressed in the high-risk group (all p <
0.05). However, a substantial increase in the expression of TIM3

was found in the low-risk group (p < 0.0001) (Figure 8E).

In addition, we investigated the expression of m6A-related

genes between the two risk groups, and the results showed that

most of them were more highly expressed in the high-risk group

(all p < 0.05) (Figure 8F). Significant correlations were also

identified for the expression levels of the 22 ferroptosis-related

signatures and m6A-related genes (Supplementary Figure S4).

According to m6A2Target, a comprehensive database for the

target gene of writers, erasers, and readers (WERs) of m6A

modification in a cancer cell line (Deng et al., 2021), 13 out of

the 22 ferroptosis-related signatures in the FGL model were

potential target genes of WERs of m6A modification in the

leukemia cell line (Supplementary Table S7).

Anticancer drug sensitivity analysis

Sensitivity to 198 anticancer drugs was compared between

the high- and low-risk groups to provide potential treatment

guidance for P-AML patients. The results for 153 drugs were not

considered for differences analysis because more than 20% of the

samples were missing from the predicted IC50 values. Since the

predicted values of the samples differ significantly, differences

analysis was applied after the removal of potential outliers

(extremely high IC50 values). ROUT method was used for

outlier identification (setting Q to 5%) (Motulsky and Brown,

2006). The results demonstrated that the IC50 values of

SB505124_1194 and JAK_8517_1739 were significantly lower

in patients within the FGL high-risk group, which implies that

patients within the FGL high-risk group might benefit from

TABLE 2 (Continued) Clinicopathological Characteristics for high and low FGL risk score subgroups.

High-risk group Low-risk group TAREGT-combined p-value

Chloroma 0.71

No 114 (89.76%) 112 (87.50%) 226 (88.63%)

Yes 13 (10.24%) 16 (12.50%) 29 (11.37%)

Unknown 1 (0.39%)

MRD 0.11

No 63 (49.22%) 72 (56.25%) 135 (52.73%)

Yes 30 (23.44%) 17 (13.28%) 47 (18.36%)

Unknown 35 (27.34%) 39 (30.47%) 74 (28.91%)

HSCT, n 0.11

No 110 (85.94%) 110 (85.94%) 220 (85.94%)

Yes 14 (10.94%) 18 (14.06%) 32 (12.50%)

Unknown 4 (3.13%) 0 4 (1.56%)

Event-free survival time in days 0.001

Mean ± SD 800.63 ± 895.12 1,198.93 ± 1,049.46 999.78 ± 993.67

Median [min-max] 379.50 [2.00,3632.00] 653.00 [80.00,4037.00] 461.00 [2.00,4037.00]

Overall survival time in days <0.001

Mean ± SD 1,228.48 ± 962.09 1812.81 ± 1,038.19 1,520.65 ± 1,040.91

Median [min-max] 824.50 [2.00,3632.00] 1940.00 [80.00,4037.00] 1,523.50 [2.00,4037.00]

Vital status <0.001

Alive 55 (42.97%) 90 (70.31%) 145 (56.64%)

Dead 73 (57.03%) 38 (29.69%) 111 (43.36%)

FG risk score <0.001

Mean ± SD 1.91 ± 1.20 -0.57 ± 1.10 0.67 ± 1.69

Median [min-max] 1.64 [0.59,7.31] -0.21 [-5.77,0.59] 0.59 [-5.77,7.31]

Notes: WBC, white blood cell; BM, bone marrow; PB, peripheral blast; ELN, European LeukemiaNet; FAB, French–American–British; NOS, not otherwise specified; CNS, central nervous

system; MRD, measurable residual disease; HSCT, hematopoietic stem-cell transplantation; SD, standard deviation.
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treatment using SB505124_1194 and JAK_8517_1739

(Figure 8G).

Discussion

Development of a reliable and applicable prognostic model

for long-term survival prediction, risk stratification, and helping

with therapeutic decision-making in AML is a far-reaching event,

especially for pediatric AML patients.

In our study, we explored the role of ferroptosis-related

signatures, which includes ferroptosis-related mRNAs and

correlated lncRNAs in P-AML. A new model for prognosis

prediction of P-AML was established with 22 signatures

associated with ferroptosis in the discovery cohort of the

TARGET AML program and further validated in the

validation cohort and TARGET-combined cohort (all p <
0.05). Additionally, the FGL prognostic model was identified

as the only independent prognostic factor for P-AML,

irrespective of the well-known 2017 ELN classification system

FIGURE 6
Relationship between clinicopathological and molecular characteristics and the ferroptosis-related signature. Sankey diagram describing the
relative flow of subgroups of (A) inv (16) mutation, WT1 mutation, (B) FAB category, and 2017 ELN classification system according to the FGL risk
group. Comparison of the mutation landscape between groups with (C) high and (D) low FGL risk scores.
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and other AML-related cytogenetic changes and gene mutations.

Furthermore, substantial differences in the TME, functionally

enriched pathways, expression profiles of immune checkpoint

genes, and m6A-associated genes were identified between the

low- and high-risk groups. To our knowledge, this is the first

study to elucidate the prognostic impact of ferroptosis-related

signatures on pediatric AML patients and suggest the great

potential roles of ferroptosis in P-AML.

A question that cannot be ignored now is whether this FGL

risk model provides additional prognosis value, or it contradicts

the existing molecular risk factor or risk classification system.We

found that low-risk factors (inv (16) mutation, FAB M4 subtype,

and favorable subtype of the 2017 ELN classification system)

(Thomas et al., 2009) were associated with low FGL risk, and

similarly, high-risk factors (WT1 mutation, adverse subtype of

the 2017 ELN classification system) (Rampal and Figueroa, 2016)

were associated with high-risk scores. In our study, 2017 ELN

classification system showed great prognostic significance in

pediatric patients with AML and assigned 40.23% of

individuals to the intermediate-risk group, consistent with the

previously reported number of 50% (Grimwade et al., 2010;

Wang et al., 2017), further supporting the need for

subsequent stratification for this subgroup. The novelty

introduced by our work is that the FGL prognostic model

could well dichotomize the 2017 ELN intermediate-risk

subgroup into two groups with distinct prognoses. At the

same time, our model presented with the highest AUC value

compared with other prognostic models established or validated

in the TARGET cohort. Collectively, our FGL risk model had

greater prognostic value and could be an important supplement

to the application of the 2017 ELN classification system in

P-AML.

There are also numerous existing models for adult AML early

prediction or risk stratification, which have been compared to the

FGL model corresponding to different aspects of modeling

(Supplementary Table S8). For the immune risk score model

proposed for adult AML (Wang Y. et al., 2021), we did not

succeed in validating it in the TARGET dataset (data not shown).

The inconsistency might be induced by the differences in the

immune microenvironment of AML tumors between adults and

children. A gene mutation-based model proposed additional

genetic markers that might refine the current ELN

classification (Eisfeld et al., 2020), which was quite promising

since somatic mutations are more stable relative to RNA levels.

We expect to see further internal and external validation of this

model. Two outstanding models were also presented in 2018 for

early prediction of AML, which had fundamental clinical

prevention value for predicting AML in healthy people over

FIGURE 7
Incorporation of the FGL prognostic model in the 2017 ELN risk classification system. (A,B) Kaplan–Meier survival curves for OS and EFS of
P-AML patients in the TARGET-combined cohort stratified according to the 2017 ELN classification system. (C,D) Patients in the 2017 ELN
intermediate-risk subgroup could be well risk-stratified by the FGL risk score.
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65 (Abelson et al., 2018). Considering the low prevalence of AML

in children (Puumala et al., 2013), risk prediction might be more

important than disease prediction for P-AML patients.

Recent results reveal that the immune system may function

in part through ferroptosis to prevent tumorigenesis (Wang et al.,

2019). According to the immune score analysis, the low-risk

group was consistent with a longer OS rate and higher immune

score, suggesting that high immune-related activity might result

in a better prognosis in P-AML. This finding is consistent with a

previous study on adult AML (Zeng et al., 2021). CD4_T cells can

differentiate into a multitude of effector cells depending on the

antigens present within the microenvironment (Zhu et al., 2010).

CD4_T regulatory cells (Tregs) are a major subset of

CD4_T cells, which have been reported to suppress anti-

tumor immune effector responses in the TME and may be

recruited and exploited by leukemic cells to evade immune

surveillance (Ustun et al., 2011; Tay et al., 2021). Immune

infiltration analysis indicated the high-risk group expressed

significant enrichment of CD4_T cells. It provides further

evidence that an immune suppressive environment presenting

with a low immune score might correlate with poor prognosis in

the high-risk group.

In the past few years, major efforts have been made to

develop immune therapies for the treatment of AML patients.

Several clinical trials with the aim to improve the survival of AML

patients are ongoing, with immune-based therapeutic modalities

such as monoclonal antibodies, T cell engagers, adoptive T-cell

therapy, adoptive-NK therapy, checkpoint blockade via PD-1/

PD-L1, CTLA4, and newer target such as TIM3 (Isidori et al.,

2021). Considering the inhibition of the PD-1/PD-L1 axis

demonstrated antileukemic activity and wide-spread

expression of PDL1 (Giannopoulos, 2019), patients in the

high-risk group with higher levels of PDL1, PDL2, and

TIGHT might be more suitable for treatment using anti-PD-

L1 immune checkpoint inhibitor (ICI) approved in multiple solid

tumors, Avelumab for example (Saxena et al., 2021). TIM3 (T cell

immunoglobulin and mucin domain-3) is an ideal target for

selectively killing LSCs but not normal hematopoietic stem cells

FIGURE 8
Estimation of functional and immune statuses in the high- and low-risk group using expression data in the TARGET-combined cohort. (A)Gene
set enrichment analysis for ferroptosis-associated signatures. Violin plots of tumor purity for the low- and high-risk groups according to the (B)
ESTIMATE and (C) xCell tool. (D) Violin plots of immune cell abundance in the high-risk and low-risk groups of P-AML patients using the EPIC tool. (E)
Violin plots of the expression of immune checkpoints between the high- and low-risk groups. (F) Violin plots of the expression of m6A-
associated genes in the high- and low-risk groups. (G) Violin plots of the predicted IC50 to SB505124_1194 and JAK_8517_1739 in the high- and low-
risk groups.
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(HSCs) in most human AML cells, and it was significantly

upregulated in the low-risk group, suggesting that patients in

the low-risk group might benefit from anti-TIM3 antibodies

(Wang Z. et al., 2021). In addition, providing potential

immune therapy guidance, we also identified the correlation

relationship between FGL risk score and anticancer drug

sensitivity. However, the present finding was based on the

predicted algorithm in cell lines, further validation with

preclinical studies is warranted. In our study, the expression

of identified FGL-related signatures was found significantly

correlated with many m6A-regulator genes, and 13 out of

them were identified as potential target genes of WERs of

m6A modification in a leukemia cell line, this is in line with

previous analysis showing that a wide-ranging connection was

found between m6A methylation and ferroptosis using 31 cancer

type-specific datasets in TCGA (Zhang, 2021). Moreover, the

majority of m6A-regulator genes were found with higher

expression in the high-risk group than those in the low-risk

group, implying that a combination strategy of RNA epigenetics

and ferroptosis therapies might benefit more with comprehensive

consideration of the expression pattern of the specific m6A-

regulator.

GSEA analysis indicated that the low-risk group might be

protected from a high level of ferroptosis, or apoptosis-induced

cancer cell death or through the function of NOX1 and ZEB1 in

the p53 and ROS pathway. Bile acids (BAs) are well known as

chemical chaperones to reduce endoplasmic reticulum stress in

hematopoietic stem cells (Oguro, 2019). Recently, BA was

reported to play a key role in the reconstitution of

hematopoiesis and BA levels in the blood of pediatric cancer

patients and mice treated with chemotherapeutic agents were

increased in synchrony with an early proliferation of bone

marrow cells and recovery from myelosuppression (Sigurdsson

et al., 2020). BA metabolism pathway was found significantly

enriched in the high-risk group, proving further evidence that

dysregulated cholesterol homeostasis might result in ferroptosis

resistance and promote tumorigenicity and metastasis in cancer

(Liu et al., 2021).

Furthermore, several limitations of the FGL prognostic

model need to be noticed. This model is generated from

bioinformatics analysis and has been validated by limited

additional cohorts. Furthermore, external validations with a

large patient population are certainly warranted in the near

future. SLC7A11 (solute carrier family 7 member 11) gene in

the model was found as the direct protein target of ferroptosis

agonists (erastin) according to experimental evidence from The

Cancer Therapeutics Response Portal (CTRP) database (http://

portals.broadinstitute.org/ctrp/) (Rees et al., 2016). However,

molecular mechanisms and potential for therapeutic targets of

the ferroptosis-related signatures on P-AML need further study.

In conclusion, we established a concise prognostic model

composed of 22 ferroptosis-related signatures for predicting the

prognosis of P-AML patients. The high-risk score was an

independent poor prognostic parameter and influences the

immune status, expression level of immune checkpoint genes,

and enriched tumor-related pathways, thereby providing new

evidence for immune therapy for P-AML. Furthermore, the FGL

risk score further refines the predicted clinical outcomes of the

2017 ELN risk system by sub-dividing the intermediate-risk

patients.
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