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We present the software package transformato for the setup of large-scale

relative binding free energy calculations. Transformato is written in Python as an

open source project (https://github.com/wiederm/transformato); in contrast to

comparable tools, it is not closely tied to a particularmolecular dynamics engine

to carry out the underlying simulations. Instead of alchemically transforming a

ligand L1 directly into another L2, the two ligands are mutated to a common

core. Thus, while dummy atoms are required at intermediate states, in particular

at the common core state, none are present at the physical endstates. To

validate the method, we calculated 76 relative binding free energy differences

ΔΔGbind
L1 → L2

for five protein–ligand systems. The overall root mean squared error

to experimental binding free energies is 1.17 kcal/mol with a Pearson correlation

coefficient of 0.73. For selected cases, we checked that the relative binding free

energy differences between pairs of ligands do not depend on the choice of the

intermediate common core structure. Additionally, we report results with and

without hydrogen mass reweighting. The code currently supports OpenMM,

CHARMM, and CHARMM/OpenMM directly. Since the program logic to choose

and construct alchemical transformation paths is separated from the generation

of input and topology/parameter files, extending transformato to support

additional molecular dynamics engines is straightforward.
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1 Introduction

The accurate prediction of relative protein–ligand binding affinities is one of the

major tasks in computer-aided drug design projects, especially during lead optimization.

A group of methods often referred to as alchemical free energy simulations has become a

versatile tool in this area, e.g., (Deflorian et al., 2020; Majellaro et al., 2020; Mortier et al.,

2020; Schindler et al., 2020; Zhang C.-H. et al., 2021). While relative binding free energy

(RBFE) simulations have been successful in reproducing and predicting experimental
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results, their application in drug design projects is still far from

routine. They require significant computing resources and are

comparatively slow; setting up the simulations and analysis

procedures is difficult and tedious, even for experts. To make

their utilization easier, several front ends to biomolecular

simulation packages have been developed to help set up RBFE

simulations (Seeliger and de Groot, 2010; Gapsys et al., 2015;

Loeffler et al., 2015; Wang et al., 2015; Zhang H. et al., 2021;

Petrov, 2021). Here, we present a related tool, transformato,

which, in contrast to most other tools, is not dependent on a

particular simulation program. Transformato is a Python

package that automates the setup and calculation of relative

solvation and binding free energy calculations using the common

core/serial-atom-insertion (CC/SAI) approach (Wieder et al.,

2022). The CC/SAI approach avoids the need for special-

purpose code (mixing of energy terms, soft-core potentials,

etc.), making it possible to carry out RBFE calculations with

standard molecular dynamics (MD) engines. Specifically,

transformato is not restricted to a specific MD program; the

code currently supports CHARMM and OpenMM.

1.1 Introduction to transformato—the
common core/serial-atom-insertion
approach

Figure 1 illustrates the traditional and the CC/SAI approach,

implemented in transformato, to compute the RBFE difference

FIGURE 1
(A) Comparison of alchemical paths used in traditional setups (dotted, horizontal arrows) and in the CC/SAI approach (thick, horizontal arrows)
implemented in transformato to compute relative binding free energy differences. Free energies are calculated relative to non-physical intermediate
states, the common core [DLi]-RCC (i = 1, 2), connecting the two ligands (L1, L2). Here [DLi] represents the atoms of each ligand not in the CC region
and RCC indicates the CC region itself. (B) The mutation path for calculating ΔΔGbind

L1 → L2
between a pair of ligands taken from the CDK2 dataset.

The atoms that differ between the two ligands and, thus, are not present in the CC, are highlighted in color; these are transformed into dummy atoms
(reddish circles). The common core is indicated by the green circles.
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between two ligands L1 and L2. In both cases, one avoids the

direct calculation of the binding free energies ΔGbind
L1 and

ΔGbind
L2 (vertical dashed arrows in Figure 1A) and considers

instead the alchemical transformation of L1 into L2, which is

carried out for the free ligand in water (ΔGligand
L1 → L2 ) and for the

ligand in complex with the receptor (ΔGcomplex
L1 → L2 ). Since the free

energy is a state function, the quantity of interest, the RBFE

difference ΔΔGbind
L1 → L2

� ΔGbind
L2 − ΔGbind

L1, can also be

calculated as ΔΔGbind
L1 → L2

� ΔGcomplex
L1 → L2 − ΔGligand

L1 → L2 (Tembre and

McCammon, 1984).

In the traditional approach, indicated by the dotted arrows in

Figure 1A, this is done in a single transformation. The ligand L1 is

“morphed” into L2 by gradually scaling the force field parameters

associated with all atoms that are different in the two ligands

along a non-physical coordinate—the so-called coupling

parameter λ. For each environment (the ligand in aqueous

solution, protein–ligand complex in aqueous solution), several

simulations, typically 10–20, are performed at different values of

λ. Such transformations can be set up using either the single

topology or dual topology paradigm (Pearlman, 1994). One

important practical detail is that the number of atoms must

not change. Since in most cases the two ligands do not consist of

exactly the same number of atoms, so-called dummy atoms need

to be introduced along the alchemical paths (single topology). In

dual topology, all groups are present simultaneously and

interactions with the remainder of the system are turned on/

off as needed. Dummy atoms (single topology), as well as atoms

in non-interacting groups (dual topology), are particles that stay

connected to the physical molecule by bonded terms, but do not

take part in any Lennard-Jones (LJ) or Coulomb interactions

(Mey et al., 2020; Fleck et al., 2021). One can show that the

presence of dummy atoms has no influence on double free energy

differences, such as the RBFE differences considered here, but

some care concerning their treatment is required (Fleck et al.,

2021). The correct handling of dummy atoms or non-interacting

groups in an automated manner is one of the challenges in large-

scale FES.

In the common core (CC) approach, rather than alchemically

transforming L1 into L2 directly, one defines a suitable common

substructure present in both ligands, which we refer to as the CC.

It is not necessary that the CC corresponds to a physical molecule

(Wieder et al., 2022). The atoms of a ligand that are not part of

the CC, are mutated to dummy atoms (hereafter, referred to as

non-CC atoms). Starting from each of the physical endstates L =

{L1, L2}, we compute the free energy difference between the

ligand and the common core [DL]-RCC, as indicated in

Figure 1A. Here [DL] indicates the non-CC atoms

transformed into dummy atoms at the CC state, and RCC

denotes the interacting atoms belonging to the CC. This is

done for the free ligand solvated in water ΔGligand
L→[DL]−RCC

, as

well as for the protein–ligand complex ΔGcomplex
L→[DL]−RCC

. Thus,

for each of the ligands, we can compute a RBFE difference

with respect to a CC:

ΔΔGbind
L→ DL[ ]−RCC

� ΔGcomplex
L→ DL[ ]−RCC

− ΔGligand
L→ DL[ ]−RCC

(1)

When mutating the non-CC atoms of two ligands to dummy

atoms, the CCs reached from L1 and L2, respectively, are not

necessarily identical. Most importantly, if the physical endstates

L1 and L2 consist of different numbers of atoms, then the

corresponding CCs will contain different numbers of dummy

atoms. However, if these dummy atoms are treated correctly,

they do not influence double free energy differences (Fleck et al.,

2021); in other words, ΔΔGbind
L→[DL]−RCC

of Eq. 1 is not affected by

the number of dummy atoms present at the CC endpoint.

Provided that the remaining differences between the CCs, if

any, are accounted for (see below and Section 2.4 for further

details), the RBFE difference ΔΔGbind
L1 → L2

between the two ligands

in the CC framework is obtained as:

ΔΔGbind
L1 → L2

� ΔΔGbind
L1 → DL1[ ]−RCC

− ΔΔGbind
L2 → DL2[ ]−RCC

(2)

The approach just outlined can of course be extended to

more than two ligands. If a suitable CC is chosen, then all

pairwise RBFE differences between N ligands can be obtained

from just N calculations of ΔΔGbind
Li → [DLi]−RCC

(cf. Eq. 1).

In Figure 1B we show a specific alchemical transformation

studied in this work to illustrate these general considerations. The

two ligands (L1, L2) are shown on the left and right-hand side,

respectively. The black (non-colored) parts of the structures

represent the CCs. The regions that are different between the

two ligands are drawn in color, with their atoms labeled in

boldface. For L1, there are six non-CC atoms that need to be

transformed into dummy atoms, while for L2, only a single

hydrogen atom needs to be mutated. The electrostatic and LJ

interactions of the non-CC atoms with the environment (solvent

and/or protein) and the atoms belonging to the CC are turned off

using the serial atom insertion (SAI) approach (Boresch and

Bruckner, 2011; Wieder et al., 2022). The detailed methodology

and sequence of steps used are described in full detail in Methods

(Section 2.4). Although the different number of dummy atoms has

no influence on ΔΔGbind
L1 → L2

as computed according to Eq. 2 (cf.

above), some other force field parameters of the 2 CCs are different.

In order to make the CCs identical and to close the thermodynamic

cycle, additional modifications need to be applied to one of the

ligands, specifically its CC, during a final stage. In the example

shown in Figure 1B, the partial charges of the atoms in the phenyl

ring, to which the dummy atom(s) are connected, are slightly

different since the charge distribution in the physical ligands

differs. A more detailed description of the modifications needed

to ensure that the CCs are identical is given in Section 2.4.

1.2 Goals of this work

We recently used transformato to compute relative solvation

free energy differences and demonstrated that one can obtain
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high accuracy and precision with the CC/SAI approach (Wieder

et al., 2022). In this work we report first results of RBFE

calculations obtained with transformato as the setup tool.

Specifically, we carried out 76 pairwise mutations from well

established datasets (Homeyer and Gohlke, 2013; Wang et al.,

2015; Gapsys et al., 2020) and compare our results both to the

experimental reference data, as well as to the earlier

computational results obtained by other groups. We either

directly compare ΔΔGbind values for pairs of ligands, or, by

using one of the experimental binding affinities, express our

results as absolute binding free energies, as was done in some of

the reference studies (Wang et al., 2015; Hu et al., 2016; Song

et al., 2019). In addition to the overall performance of

transformato, we also investigated a number of additional

aspects. First, for selected ligand pairs we computed RBFE

differences using different CCs, thus proving the self-

consistency of the CC/SAI approach. Second, while we used

OpenMM (Eastman et al., 2017) as the underlying MD program

in all of our calculations, we repeated a subset of alchemical

transformations with CHARMM as the computational backend

(Brooks et al., 2009). Third, we achieve computational efficiency

by the consequent use of hydrogen mass reweighting (HMR)

(Hopkins et al., 2015) in the underlying MD simulations. The use

of HMR for RBFE simulations was recently studied and discussed

by Zhang H. et al. (2021). To validate that HMR can be safely

used in FES, we report results obtained with and without HMR

for the same subset of alchemical transformations used in the

OpenMM to CHARMM comparison. Finally, while we use the

CHARMM family of force fields (see Methods), in one case we

explored the effect of using different charge models.

2 Methods

2.1 Choice of datasets

To validate the CC/SAI approach as implemented in

transformato for RBFE calculations, we selected five

benchmark applications for which experimental binding

affinities are known and that have been studied extensively in

previous work. Three of these were taken from Wang et al.

(2015), i.e., JNK1 (Supplementary Figure S1), CDK2

(Supplementary Figure S2), and TYK2 (Supplementary Figure

S3). In addition, we investigated the FXa system (Supplementary

Figure S4), first studied by Homeyer and Gohlke (2013) and

reevaluated by Hu et al. (2016). Finally, we chose a set of

inhibitors of galactin-3 (GAL3, Supplementary Figure S5)

studied by Gapsys et al. (2020) and earlier by Manzoni and

Ryde (2018). For these five protein–ligand datasets, we compare

our results to the experimentally determined ΔGbind values, as

well as to calculated values reported in the respective literature.

For the JNK1, FXa and GAL3 datasets we calculated ΔΔGbind
L1 → L2

for the ligand pairs used in the original studies (Wang et al., 2015;

Hu et al., 2016; Gapsys et al., 2020). For the CDK2 and

TYK2 dataset, we employed a different approach and mutated

each ligand to a CC resembling the respective smallest ligand.

Thus, for JNK1, FXa, GAL3 multiple CCs were required to

compute the specific RBFE differences, whereas in the second

case (CDK2, TYK2) only a single CC was needed. All

comparisons to the study by Gapsys et al. (2020) are based on

their results obtained with the CHARMMGeneralized force field

(CGenFF), the force field used in this work (see below); we

indicate this by the abbreviation pmx/CGenFF. An overview of

the systems studied and the previous computational results we

compare to is shown in Table 1.

2.2 Dataset preparation

For CDK2, TYK2, and JNK1 structural information for the

protein and the ligands was taken from the supporting

information of Wang et al. (2015). Similarly, protein structure

files for the GAL3 dataset were obtained from Gapsys et al.

(2020). In both cases we used Maestro (Release 2021-3,

Schrödinger, LLC, New York, NY, 2021) to prepare starting

coordinates for the protein–ligand complexes.

The protein–ligand structures for the FXa system were

generated as described by Homeyer and Gohlke (2013) by

starting from the high resolution crystal structure of the

Factor Xa-L51a complex (PDB code: 2RA0). The ligand

present in this PDB entry (l51a) served as the template to

model structures for the other ligands of the series

(l51b–l51k). We used the protonation state of the ligands

suggested by Hu et al. (2016). For each modelled FXa

protein–ligand structure we performed a short minimization

of the ligand in the binding site with the built-in minimizer of

Maestro.

No attempts were made to optimize the protonation state of

the proteins. All Asp, Glu, Lys and Arg residues were assumed to

be in their charged state, and all histidines were set to neutral with

the proton on the δ-nitrogen.

2.3 CHARMM-GUI preparation

The PDB files of the ligand and of the protein–ligand

complexes were uploaded to the Solution Builder functionality

of CHARMM-GUI (Jo et al., 2008; Lee et al., 2016) to create input

files for the ligand in water (“ligand”) and for the ligand bound to

the protein (“complex”). This is the first step of the workflow

depicted in Figure 2B. All systems were made electrically neutral

by adding a suitable number of potassium and chloride ions

(JNK1, GAL3, CDK2, and TYK2) or calcium and chloride ions

for FXa, see Hu et al. (2016). Ligand parameters were generated

with CGenFF (v2.5) (Vanommeslaeghe et al., 2010;

Vanommeslaeghe et al., 2012; Vanommeslaeghe and
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MacKerell, 2012; Yu et al., 2012; Gutiérrez et al., 2016). The

CHARMM36m force field (Huang et al., 2016) was used for the

proteins, and TIP3P was employed as the water model

(Jorgensen et al., 1983). Furthermore, during setup with

CHARMM-GUI we prepared the systems for HMR.

Following Hopkins et al. (2015), hydrogen masses were

multiplied by a factor of 3 while the masses of the heavy

atoms they are bound to were lowered accordingly to maintain

a constant molecular mass. This allowed us to use a time-step

of 4 fs (all bond lengths to hydrogens constrained), thus

considerably lowering the computational cost of the

subsequent MD simulations. A subset of mutations was

repeated without HMR; here a time-step of 1 fs was used

and the ligands were fully flexible.

At the end of the preparatory steps with CHARMM-GUI just

outlined, one obtains two folders for each protein–ligand system;

one for the ligand, one for the protein–complex. Each contains all

input and parameter files to runMD simulations of the respective

system. Each set of initial coordinates was equilibrated for 125 ps

under NVT conditions with weak position restraints applied to

the heavy atoms of the protein [force constant of 400 kJ/mol/nm2

on the protein backbone atoms and 40 kJ/mol/nm2 on atoms in

TABLE 1 Overview of systems and previous computational studies.

System PDB ID No. of Program Force field (+ charge assignment) References

ligands ligand protein

JNK1 2GMX 21 FEP+ OPLS2.1 OPLS2.1 Wang et al. (2015)

AMBER-TI RESP charges/GAFF 1.8 ff14SB Song et al. (2019)

pmx/CGenFF CGenFF v3.0.1 (v4.1) CHARMM36m Gapsys et al. (2020)

FXa 2RA0 11 AMBER-TI AM1-BCC/GAFF ff12SB Hu et al. (2016)

GAL3 5E89 8 pmx/CGenFF CGenFF v3.0.1 (v4.1) CHARMM36m Gapsys et al. (2020)

CDK2 1H1Q 14 FEP+ OPLS2.1 OPLS2.1 Wang et al. (2015)

AMBER-TI RESP charges/GAFF 1.8 ff14SB He et al. (2020)

pmx/CGenFF CGenFF v3.0.1 (v4.1) CHARMM36m Gapsys et al. (2020)

TYK2 4GIH 15 FEP+ OPLS2.1 OPLS2.1 Wang et al. (2015)

AMBER-TI RESP charges/GAFF 1.8 ff14SB Song et al. (2019)

pmx/CGenFF CGenFF v3.0.1 (v4.1) CHARMM36m Gapsys et al. (2020)

FIGURE 2
(A) Details of the mutation path from L1 shown in Figure 1B) to its CC to compute ΔΔGbind

L1 → [DL1]−RCC
: (I) electrostatic interactions of the non-CC

atoms are scaled to zero (three steps; step 1 in the diagram is the native, fully interacting ligand), (II) LJ interactions of the non-CC hydrogen atoms are
turned off (one step), (III) LJ interactions of the three non-CC heavy atoms are turned off on an atom-by-atom basis (three steps), (IV) the last non-CC
heavy atom is changed to the “junction” atom type X (one step), (V) the CC reached from L1 (Rcc1) is adjusted to the one reached from L2 (cf.
Figure 1B), in five steps. (B) Overview of the workflow when computing free energy differences with transformato.

Frontiers in Molecular Biosciences frontiersin.org05

Karwounopoulos et al. 10.3389/fmolb.2022.954638

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.954638


the protein side-chain; these are the CHARMM-GUI

recommended defaults (Lee et al., 2016)]. These inputs and

coordinate files for the native systems serve as the basis from

which transformato constructs the mutations paths between

pairs of ligands and input files for the simulation of

intermediate states (see Figure 2B).

2.4 Practical aspects of transformato

For the mutation of L1 to L2, transformato first identifies the

maximum common substructure, which forms the basis for the

CCs [DLi]-RCC of Figure 1A. For each ligand transformato

constructs an alchemical path along which the atoms not

belonging to the maximum common substructure are mutated

to dummy atoms using the SAI approach. At this point, however,

the CCs reached from L1 and L2, respectively, are not necessarily

identical (cf. the Introduction). Thus, for one of the ligands

transformato generates the required, additional steps for the

transformation [DL1] − RCC1 → [DL1] − RCC2. For each

intermediate step along the alchemical path Li → [DLi]-RCC
(i = 1, 2), transformato creates all necessary files for running the

MD simulations; thus, each of these states can be sampled

independently. During the MD simulations coordinates are

saved to disk; from these trajectories the energies at the

respective other states, needed by the (multi-state) Bennett

acceptance ratio method (MBAR) (Shirts and Chodera, 2008),

are extracted in a post-processing step (see below).

We illustrate the above by describing in detail the steps

required to transform L1 shown in Figure 1B to its CC. All

steps are illustrated in Figure 2A. The exact number and sequence

of intermediate steps needed for this particular transformation is

depicted; in general, it depends on the details of the mutation (see

below). During the first stage (I) the electrostatic interaction of

the non-CC atoms are scaled linearly to zero. In all

transformations considered in this work, three intermediate

states were used. Based on our experience, depending on the

polarity and number of atoms, up to five intermediates may be

necessary. To ensure that the overall charge of the system

remains unchanged as the charges of the non-CC atoms are

turned off, a compensating partial charge is added to the real

atom of the CC to which the non-CC atoms are connected. While

this stage corresponds to a linear dependence of the partial

charges on a continuous coupling parameter λ as in

traditional approaches, transformato, nevertheless, generates

self-contained input files for each intermediate state.

Next, the LJ interactions of the non-CC atoms are turned off

using the SAI approach (Boresch and Bruckner, 2011). First

(stage II), the LJ interactions of all non-CC hydrogen atoms are

turned off. in a single step. For this stage, a single step is always

sufficient, regardless of the number of hydrogen atoms. Then

(stage III), the LJ interactions of the non-CC heavy atoms are

turned off atom-by-atom. In this work, cf. Figure 2, in each step

the LJ interaction of only a single heavy atom was turned off. We

strongly advise against turning off the interactions of more than

two heavy atoms simultaneously to ensure sufficient overlap

between neighboring states. The treatment of the “last” non-

CC heavy atom (stage IV), i.e., the atom directly connected to an

atom in the CC region, is special; cf. Wieder et al. (2022). Rather

than mutating it to a dummy atom (no LJ interactions), this

“junction” atom X retains some LJ-interactions (note, though,

that its partial charge is zero). By means of this junction atom, all

dummy atoms are attached to the CC via a “terminal junction.”

Fleck et al. (2021) demonstrated that this guarantees that any

contributions from dummy atoms cancel from the double free

energy differences of interest. Transformato ensures that in any

transformation from L1 to L2, the junction atoms X of the CCs

have identical parameters. Since state (IV) is only a change in LJ

interactions, one intermediate step is always sufficient.

Finally (V), the parameters of the CC of L1 are modified so

that they become identical to the parameters of the CC reached

from L2. In the specific example (see Figure 1B), two types of

parameter changes are required: 1) since the charge distributions

in the phenyl rings of the two ligands are not the same in the real

molecules, these need to be made identical at the CC endpoint. 2)

The parameters of the bond between the junction atom X and the

physical CC-atom it is connected to have to be made identical. At

the end of stage (IV), in L1 the C-X bond is described by the

parameters of the C-S bond of the native ligand, whereas in L2,

the parameters are those of a C-H bond. During stage V, the

partial charges and bonded parameters involving X of the CC

reached from L1 are simultaneously modified linearly in five steps

(see Figure 2A). The number of intermediate states is rather

system dependent; the most critical factor affecting convergence

is the change of the equilibrium bond-length from the last

physical atom to the junction atom X; the change in bond-

length per step should be ≤ 0.125 Å. During stage (V) there is a
strict one to one correspondence between interacting atoms; all

alchemical changes are carried out in the single topology

paradigm by parameter mixing. As during all earlier stages,

transformato writes a complete set of input/parameter files for

each of these intermediate states.

More extensive differences between the CCs of L1 and L2 are

permitted. The main requirement for the CCs, as used by

transformato, is that there needs to be an unambiguous

correspondence between each of the atoms. If, e.g., the

common substructure search is based on element identity, then

two atoms are considered to correspond to each other if they have

the same element, even if they have different hybridization states or

atom types. In this case, additional parameter changes need to be

applied during stage (V) that are essential to ensure the validity of

Eq. 2. For a given ligand pair, stages (I)–(IV) need to be carried out

for each of the ligands, whereas stage (V) is only required for one of

them. In our specific example (Figure 1B), the CC reached from L2
is considered the endstate that must be also reached starting from

L1 to close the thermodynamic cycle.
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2.5 Details of the MD simulations

As shown in Figure 2B and described in the previous section,

transformato generates all necessary input files to perform MD

simulations for each intermediate state, both for the ligand in

solution, as well as for the full protein–ligand complex. All

simulations were performed using the OpenMM software package

(version 7.5) (Eastman et al., 2017). A subset of the mutations was

also carried out using CHARMM/OpenMM (version c47a1) (Brooks

et al., 2009). For each intermediate state a Langevin dynamics

simulation of 5 ns length was carried out at 303.15 K; the friction

coefficient was set to 1/ps. All simulations, except the short

equilibration runs with position restraints described earlier, were

carried out under constant pressure conditions. The pressure was

controlled using a Monte Carlo barostat (Chow and Ferguson, 1995;

Åqvist et al., 2004).Waters were kept rigid throughout the simulation

using the SETTLE (Miyamoto and Kollman, 1992) (OpenMM) or

SHAKE algorithm (Ryckaert et al., 1977) (CHARMM/OpenMM).

Coulomb interactions were calculated using the particle-mesh Ewald

(PME) method (Essmann et al., 1995). LJ interactions were switched

smoothly to zero between 10 Å and 12 Å using the CHARMM force-

switching function (Steinbach and Brooks, 1994). Production runs

for each of the intermediate states were started from the respective

restart file generated during the equilibration (see Section 2.3). Prior

to each production run, the coordinates were optimized using the

L-BFGS algorithm in OpenMM or the steepest descent and adopted

basis Newton-Raphson minimizer in CHARMM/OpenMM.

Simulations of each state were repeated three times with different

random initial velocities.

2.6 Calculation of relative binding free
energy differences (ΔΔGbind

L1 → L2
)

During each of the MD simulations described in the previous

section, coordinates were written to disk every 250 steps. Using

HMR and a time-step of 4 fs, each trajectory, therefore, contained

5,000 frames. The first 25% of each trajectory were considered as

equilibration and discarded; the remaining coordinate sets were

used to recompute the energies at all other intermediate states.

All scripts for this post-processing are generated by transformato,

which then invokes the MBAR functionality of pymbar (Shirts

and Chodera, 2008) to compute the free energy differences

ΔGligand
Li → [DLi]−RCC

and ΔGcomplex
Li → [DLi]−RCC

(i = 1, 2). For each

intermediate state λ and each configuration sample x, the

reduced potential u (x,λ) was computed to form the N × K

matrix of inputs, where N is the number of snapshots used and K

is the number of alchemical states λk for a given transformation.

Finally, for both ligands L1 and L2 we obtained ΔΔGbind
Li → [DLi]−RCC

,

from which we computed the RBFE difference ΔΔGbind
L1 → L2

according to Eq. 2. Since each set of simulations was repeated

three times, using different independent initial velocities (cf.

above), we obtained three statistically independent free energy

differences. We used these to estimate the statistical error; when

the directly computed free energy differences were combined/

processed further (see below), Gaussian error propagation

was used.

2.7 Expressing the results as absolute
binding free energies (ΔGbind)

To validate a tool such as transformato, one needs to

compare both to other computational methods, as well as to

experimental data. Transformato leads directly to RBFE

differences ΔΔGbind
L1 → L2

. These can be compared across

different computational methods easily only for identical pairs

of ligands. As described in Section 2.1, for three model

applications (JNK1, FXa and GAL3) we computed exactly the

same RBFE differences for which results were reported by others.

Comparison of the results obtained with different methods and,

in particular, comparison to experimental data, is much easier using

absolute binding free energy differences ΔGbind. For this reason, in

the past several authors have expressed results of RBFE calculations

in terms of ΔGbind (Wang et al., 2015; Song et al., 2019; He et al.,

2020). There are several options for post-processing ΔΔGbind
L1 → L2

,

such as the “cycle closure” (Wang et al., 2015) or “centered RMSE”

(Gathiaka et al., 2016) approaches, which attempt to improve the

overall results and make the corresponding RMSE and MAE lower

(Song et al., 2019). In this work we used the simplest possible

approach: for each system we chose one ligand L1 and considered its

experimental ΔGbind
L1

as the reference value. With the help of this

reference ligand/value, we computed the “absolute” binding free

energiesΔGbind
i (i = 2, . . . n, with n being the total number of ligands

considered for this system) for all other ligands according to

ΔGbind
Li

� ΔΔGbind
Li → L1

− ΔGbind
L1

. If there is no direct connection

between L1 and some Li, the free energy can be calculated

relative to another ligand Lj, for which ΔGbind
Lj

could be derived

directly, according to ΔGbind
Li

� ΔΔGbind
Li → Lj

− ΔGbind
Lj

. In such cases,

we always picked the shortest path available. If there were

several equivalent, shortest paths, we calculated the average

value along all of them. Following these steps, we re-expressed

our results as ΔGbind for all ligands of the five model

applications.

Two computational studies (Hu et al., 2016; Gapsys et al., 2020)

to which we compare to did not report ΔGbind values. In these cases,

we utilized their tabulated RBFE differences to obtain absolute

binding free energy differences as just outlined. For the JNK1,

FXa and GAL3 systems we computed RBFE differences for

exactly the ligand pairs described in the literature; therefore, we

could re-compute anymissingΔGbind values exactly as we did for our

own results. The absolute binding free energy differences computed

in this manner, together with the path used to obtain them, are listed

in Supplementary Tables S1–S3. For CDK2 and TYK2, on the other

hand, we used a single CC, so our results cannot be directly

compared to those reported by Gapsys et al. (2020). In this case,
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we processed the RBFE differences reported by Gapsys et al.

(2020) using exactly the same procedure outlined above for our

own results: we searched for the shortest path connecting the

reference ligand (and its experimental ΔGbind) to all other

ligands (see Supplementary Tables S4, S5 for full details).

For the results of transformato we do not need to search for

shortest pathways since all RBFE differences are calculated with

respect to the same ligand (we were using a single CC) which

was chosen as the reference ligand L1 (see Supplementary

Tables S6, S7).

3 Results and discussion

3.1 Overview of results for all systems

In total, we computed 76 RBFE differences ΔΔGbind
Li→Lj,

which we also re-expressed as ΔGbind
Li. All values, together

with the corresponding free energy differences from the

earlier studies we compare to (Wang et al., 2015; Hu et al., 2016;

Song et al., 2019; Gapsys et al., 2020; He et al., 2020), can be found

machine-readable form in the files summary_ddG.csv and

summary_dG.csv provided in the SI. The statistical analyses of

these data can be found in the Jupyter notebook

RBFE_transformato_workbook. ipynb available as SI. A summary

of the results is shown in Table 2.

As listed in Table 2, the RMSE (ΔΔGbind) of all

76 ΔΔGbind
L1 → L2

results compared to the experimental

binding affinities reported by Wang et al. (2015) is

1.18 kcal/mol and the MAE (ΔΔGbind) 0.87 kcal/mol. The

Pearsons’s correlation coefficient R using all data is 0.57,

while Spearman’s ρ is 0.48. Seven out of the total ΔΔGbind
L1 → L2

had an unsigned error (UE) greater than 2 kcal/mol (9.2%).

This number is in line with expectation, assuming an

underlying Gaussian distribution of the error with RMSE

(ΔΔGbind) = 1.18. For five mutations, the UE was between

TABLE 2 Comparison of a) relative and b) absolute binding free energy differences calculated with transformato, pmx/CGenFF, FEP+ and AMBER-TI
with experiment. The root mean squared error (RMSE), the mean absolute error (MAE), both in kcal/mol, as well as the Pearson’s correlation
coefficient R, and the Spearman’s rank correlation coefficient ρ are listed. For the ΔΔGbind results obtained with transformato in a) we also report
bootstrapped error estimates for RMSE, MAE, R and ρ.

a) ΔΔGbind

Transformato pmx/CGenFF a FEP + b AMBER-TI

system RMSE MAE R ρ RMSE MAE RMSE MAE RMSE MAE

overall 1.18 0.87 0.57 0.48

[0.98; 1.38] [0.72; 1.02] [0.36; 0.71] [0.29; 0.64]

JNK1 0.91 0.68 0.34 0.32 0.95 0.68 1.02 0.78 1.45 c 1.15 c

[0.64; 1.17] [0.51; 0.86] [-0.02; 0.66] [-0.02; 0.63]

FXa 1.23 1.01 0.83 0.71 1.11 d 0.72 d

[0.77; 1.69] [0.70; 1.41] [0.40; 0.95] [0.22; 0.99]

GAL3 0.58 0.50 0.76 0.57 0.61 0.54

[0.39; 0.73] [0.32; 0.68] [0.08; 0.94] [-0.17; 0.96]

CDK2 1.12 0.80 0.63 0.59 1.13 0.84 1.16 0.95 1.16 e 0.94 e

[0.69; 1.46] [0.46; 1.17] [0.28; 0.88] [0.08; 0.92]

TYK2 1.74 1.37 0.42 0.21 1.61 1.33 0.95 0.74 1.29 c 1.07 c

[1.26; 2.15] [0.95; 1.83] [-0.16; 0.72] [-0.02; 0.63]

b) ΔGbind

system Transformato pmx/CGenFF a FEP + b AMBER-TI

ΔG RMSE MAE R RMSE MAE R RMSE MAE R RMSE MAE R

overall 1.17 0.85 0.73

JNK1 0.81 0.57 0.60 0.81 0.57 0.66 1.14 1.06 0.85 1.45 c 1.07 c 0.22 c

FXa 1.04 0.92 0.76 0.96 d 0.66 d 0.83 d

GAL3 0.90 0.69 0.59 0.50 0.43 0.90

CDK2 1.12 0.80 0.61 1.14 0.89 0.41 0.95 0.82 0.52 0.84 e 0.72 e 0.74 e

TYK2 1.74 1.37 0.42 1.87 1.61 0.53 0.58 0.46 0.88 1.27 c 1.07 c 0.49 c

a Gapsys et al. (2020), b Wang et al. (2015), c Song et al. (2019), d Hu et al. (2016), e He et al. (2020).
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1.5 and 2.0 kcal/mol (6.6%), and in 15.8% of the cases the UE

was between 1.0 and 1.5 kcal/mol. Thus, 68.4% of the

computed RBFE differences were within ±1 kcal/mol of

their corresponding experimental value. Plots depicting

the correlation between computed and experimental

ΔΔGbind
L1 → L2

results for each of the five model systems are

shown in Supplementary Figure S6. Whenever ΔΔGbind
L1 → L2

results for the same alchemical transformations were

reported in previous computational work, the respective

data are also included Supplementary Figure S6.

For the absolute binding free energies ΔGbind (see Table 2),

the performance indicators are very similar to those

obtained for ΔΔGbind. The RMSE and MAE are almost

identical, with the correlation between the results

computed by transformato and experiment slightly better

(R = 0.73). Supplementary Figure S7; Supplementary Table

S8 in the SI provide an alternative viewpoint on the quality

of the overall results. Supplementary Figure S7 shows a

histogram of the deviations between computed and

experimental results ΔGbind
i, exp − ΔGbind

i. In

Supplementary Table S8 the percentage of cases falling

within selected ranges of maximal absolute deviation is

listed and compared to the expected values drawn from a

Gaussian distribution centered about zero (μ = 0,

i.e., assuming the absence of systematic deviations) with a

standard deviation σ = RMSE (ΔGbind) = 1.17 kcal/mol. The

plot of this Gaussian is superposed on the histogram

(orange, dashed line) in Supplementary Figure S7.

Overall, the bell curve fits the data reasonably well.

However, one can clearly discern that all results in poor

agreement with experiment (results with an UE > 2.5 kcal/

mol) are too negative (Supplementary Figure S7) and that

their occurrence is slightly higher than expected from a strict

Gaussian distribution of errors (Supplementary Table S8).

This observation is reflected by the second Gaussian

function (solid orange line) plotted in Supplementary

Figure S7. This curve was obtained from a fit of the

histogram data to a Gaussian; while σ remains mostly

unchanged, the value of μ obtained from the fit is

≈ − 0.4 kcal/mol. This suggests a small systematic

deviation of the computed free energy differences.

As one can see in Supplementary Figure S7 (black, hatched

histogram), a very similar trend can be discerned in the pmx/

CGenFF results by Gapsys et al. (2020). Since in both studies the

same force field was used, this may be indicative of errors

resulting from the parameterization. Further, as one can see

from the performance indicators (RMSE, MAE, R) in Table 2 for

each of the five systems, our results for TYK2 are much poorer

than for the other four. Indeed, most of the results in poor

agreement with experiment were obtained for TYK2 (see below).

This is also the case for the pmx/CGenFF results (Gapsys et al.,

2020).

3.2 Detailed ΔGbind results for each system

The agreement between computed [this work, pmx/CGenFF

(Gapsys et al., 2020), FEP+ (Wang et al., 2015), and AMBER-TI

(Hu et al., 2016; Song et al., 2019; He et al., 2020)] and

experimentally determined binding affinities is plotted in

Figure 3. The graphs complement the statistical descriptors in

Table 2.

3.2.1 JNK1
JNK1 is the first of three systems for which we closely

followed the transformation paths described in the literature

(Wang et al., 2015) to compute RBFE differences ΔΔGbind
L1 → L2

. In

terms of RMSE and MAE (see Table 2) the best results were

obtained with transformato and pmx/CGenFF. On the other

hand, the highest correlation was obtained with FEP+. Looking at

Figure 3, one easily discerns one transformato result which is in

very poor agreement with experiment. This is ligand 18652, and

the underlying ΔΔGbind
L1 → L2

calculation causing the error is the

transformation of 18631→ 18652 (cf. Supplementary Figure S1).

This is a relatively complicated mutation in which several large

functional groups need to be turned off to reach the CC state.

Specifically, this is an alchemical transformation which, in

general, we would try to avoid, but which we carried out to

follow the mutation paths used by Wang et al. (2015). Analyzing

the raw data, we noted that the phase space overlaps between

several intermediate states were poor when using the standard

protocol. We, therefore, repeated the full calculation with

10 instead of 5 ns of sampling per state. The longer

simulation protocol improved the result dramatically; the

ΔΔGbind
L1 → L2

for the transformation of 18631 → 18652 changed

from +1.6 ± 0.48 to −0.11 ± 0.32 kcal/mol, lowering the deviation

from experiment from −2.8 to −1.1 kcal/mol. If we include this

improved result, our correlation metrics increase (e.g., for

Pearson’s R from 0.34 to 0.5 for ΔΔGbind
L1 → L2

and from 0.6 to

0.74 for ΔGbind). However, our focus was on the quality of the

results that can be obtained with transformato using a

computationally affordable protocol. Furthermore, no other

alchemical transformation had a similarly poor overlap, so we

did not recompute any other ΔΔGbind
L1 → L2

values with the longer

simulation protocol.

3.2.2 FXa
FXa is one of two systems not studied by Wang et al. (2015).

We computed the ΔΔGbind
L1 → L2

values reported by Homeyer and

Gohlke (2013), but used the protonation states suggested by Hu

et al. (2016); hence, we only compare to the latter results. AMBER

has a slightly lower RMSE (ΔGbind) of 0.96 kcal/mol and a MAE

(ΔGbind) of 0.66 kcal/mol, compared to our values of 1.04 and

0.92 kcal/mol. Pearson’s R is also better, 0.83 (AMBER) vs. 0.76

(this work). Overall, however, the results of transformato for this

system are quite satisfactory. The FXa system was also used for

Frontiers in Molecular Biosciences frontiersin.org09

Karwounopoulos et al. 10.3389/fmolb.2022.954638

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.954638


experiments with different charge assignments; these results are

not included in Table 2 or Figure 3; see Section 3.4.1 below.

3.2.3 GAL3
The GAL3 system was first studied by Manzoni and Ryde

(2018); we followed the mutation paths described there, but

compare our results to those obtained with pmx/CGenFF

(Gapsys et al., 2020). Our RMSE (ΔGbind) = 0.90 kcal/mol and

MAE (ΔGbind) = 0.69 kcal/mol are quite good, but higher than

those for pmx/CGenFF. Further, Pearson’s R for pmx/CGenFF is

noticeably higher. However, for the ΔΔGbind
L1 → L2

results, the

performance of transformato and pmx/CGenFF is more

similar (see Table 2). This is also the case for Pearson’s R,

which for pmx/CGenFF is 0.82 (see

RBFE_transformato_workbook.ipynb in the SI) and 0.76 for

transformato (Table 2).

3.2.4 CDK2
As described in Methods, for CDK2 and TYK2 we

employed a single CC; i.e., we followed different mutation

paths than those used in the studies we compare to. For

CDK2 our CC was based on the smallest ligand of the set

(1h1q, see Supplementary Figure S2). Using transformato in

this manner takes advantage of the CC/SAI approach; in total

only 14 alchemical mutations were required for the 14 ligands

studied; this includes the minor changes required for 1h1q →
CC. For CDK2, the RMSE (ΔGbind) and MAE (ΔGbind) values

were reported by all methods (Table 2). The RMSE values lie

within a range of 0.3 kcal/mol across the different methods,

with the spread of the MAE (0.15 kcal/mol) being even

narrower. All methods also have an acceptable Pearson’s R.

The similarity in performance across all methods can also be

seen in Figure 3.

3.2.5 TYK2
As for CDK2, we used a single CC (ejm_31, Supplementary

Figure S3), again in contrast to the previously reported

approaches, in which more than one mutation path was

considered for most of the ligands. As one sees in Table 2

most programs perform relatively poorly for TYK2, the single

exception being FEP+ with an RMSE (ΔGbind) = 0.58 and MAE

(ΔGbind) = 0.46 kcal/mol. Transformato, pmx/CGenFF and

AMBER-TI perform significantly worse; the highest deviations

were obtained with transformato and pmx/CGenFF. The RMSE

(ΔGbind) for transformato is 1.74 kcal/mol and 1.87 kcal/mol for

pmx/CGenFF, and the MAE (ΔGbind) is also high: 1.37 kcal/mol

for transformato and 1.61 kcal/mol for pmx/CGenFF. AMBER-

TI performs better with an RMSE (ΔGbind) of 1.27 kcal/mol and

an MAE (ΔGbind) of 1.07 kcal/mol. This is reflected in Figure 3,

where one sees that for transformato, four ΔGbind values lie

outside the ±2 kcal/mol threshold; this is also the case for

pmx/CGenFF. By contrast, for FEP+, only one value lies

outside the ±1 kcal/mol threshold. As summarized in Section

3.1 above, only seven ΔΔGbind
L1 → L2

results deviated from the

experimental value by more than 2 kcal/mol; four of these

were obtained for TYK2. Clearly, for this system, our results

are inferior to those obtained with FEP+ (Wang et al., 2015).

However, since the performance of pmx/CGenFF for TYK2 is

FIGURE 3
ΔGbind calculated with transformato (blue triangles) compared to results obtained by pmx/CGenFF (for JNK1, GAL3, CDK2, TYK2) marked as
orange crosses, by FEP+ (for JNK1, CDK2, TYK2) marked as red stars, and by AMBER (FXa) marked as green triangles. The respective RMSE and MAE
values are listed in Table 2.
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similarly poor (Gapsys et al., 2020), the CGenFF force field used

in both cases might be a contributing factor. We return to the

potential role of parameterization in Section 3.4.2.

3.3 Additional validation

3.3.1 Use of alternative common cores
The results presented so far demonstrate the utility of

transformato to set up large-scale free energy simulations. To

validate the CC/SAI approach further, we calculated two

RBFE differences for the FXa model system (l51c → l51d,

l51e → l51f) with very different choices for the CCs. The

details are shown in Figure 4. As one sees, the mutation

consists of either transforming a phenyl ring into a pyridyl

group (l51c → l51d), or changing the nitrogen position in a

pyridyl group relative to the other substituents (l51e → l51f).

Along path 1 (Figure 4, left), we include the aromatic ring in

the CC. Thus, only a single hydrogen needs to be transformed

into a dummy atom. However, the 2 CCs reached from the

two initial states are quite different. Thus, the final stage

(stage V, cf. Section 2.4 and Figure 2), transforming the CC

reached from one initial state into the other, is involved: the

atom types of C and N need to be swapped, which entails the

changes of the force field parameters of all associated bonded

terms.

The alternative (path 2, Figure 4, center) consists in

transforming the full phenyl-/pyridyl ring to dummy atoms.

In this case, the dimethylammoniomethyl group present in all

four ligands needs to be switched off as well, since one cannot

have two disjunct CCs attached to a non-interacting dummy

region. Path 2 would be transformato′s default mode. However,

for the summary reported in Table 2, we used the results obtained

along path 1.

The comparison of the detailed results obtained with the two

transformations is shown in Table 3. The agreement of

ΔΔGbind
L1 → L2

along the two paths is quite good, although the

statistical error along path 2 is significantly larger. This is to

be expected, as for each transformation to the CC an aromatic

ring plus the dimethylammoniomethyl moiety needed to be

mutated to dummy atoms. In practical work with

transformato, one would avoid mutations such as those

needed for path 2; nevertheless, it is satisfying to see that

acceptable results can be obtained even along such a non-

optimal path.

3.3.2 Re-computation of selected results with
CHARMM/OpenMM and without HMR

All results reported so far were obtained with OpenMM as

the underlying MD engine and employing HMR. Recently,

Zhang H. et al. (2021) carried out free energy simulations with

different time-steps, and with and without HMR. Using

CHARMM-GUI’s Free Energy Calculator and AMBER-TI

as the free energy tool, they observed good agreement

between results obtained with all protocols. We

nevertheless wanted to validate these findings for the CC/

SAI approach, with a special focus on the correct usage of

constraints.

We chose nine ligand pairs from the JNK1, FXa, GAL3 and

CDK2 model systems and recomputed the respective ΔΔGbind
L1 → L2

values without HMR and with a “safe” time-step of 1 fs In

addition, we also computed these free energy differences using

CHARMM/OpenMM as the MD engine. Two of the ligand pairs

contain halogens, for which virtual sites (“lone-pairs”) are

FIGURE 4
The two pathways for calculating ΔΔGbind (l51c→ l51d) and ΔΔGbind (l51e→ l51f) of the FXa dataset. Path 1: only a single hydrogen is mutated into
a dummy atom (l51c, and l51e, l51f); then, as part ofmaking the CC equivalent, the carbon it is bound to becomes a nitrogen atom (l51d and l51f). Path
2: the dummy region encompasses the compete aromatic ring plus the dimethylammoniomethyl group.
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employed in the CGenFF force field (Gutiérrez et al., 2016).

While this poses no difficulty for OpenMM, the use of lone-pairs

(regardless of whether they are part of the mutation itself!) seems

not supported by CHARMM/OpenMM, so these two ΔΔGbind
L1 → L2

values could only be computed with OpenMM.

Two plots depicting the results and a detailed list of the

mutations studied are shown in Figure 5. We find excellent

agreement between the results obtained using OpenMM with

and without HMR, with an RMSE/MAE of 0.32/0.23 kcal/mol,

respectively. The same is the case for the results obtained with

CHARMM/OpenMM compared to the OpenMM results without

HMR; here, RMSE (ΔΔGbind) = 0.39 and

MAE(ΔΔGbind
L1 → L2

) � 0.35 kcal/mol. Thus, HMR is an excellent

tool to speed up free energy simulations, with our settings

increasing the throughput by a factor of four (time-step Δt =
4 fs rather than 1 fs; cf. Methods).

When using HMR with a 4 fs time-step, constraints on all

bonds containing hydrogen atoms are required to ensure stable

simulations. If the equilibrium bond length of a constrained bond

is changed during an alchemical mutation, the work exerted by

the constraint must be properly accounted for (Boresch and

Karplus, 1998). Zhang H. et al. (2021) correctly warn about this

difficulty. Presently, transformato avoids this pitfall as follows:

First, in the CC/SAI approach one rarely needs to change bond

lengths. Second, when such an alchemical mutation is needed, as

for the bonds to the junction atom X (cf. Methods), the special

atom types used for dummy atoms, as well as for X, are not

recognized by OpenMM as hydrogen atoms. For the CHARMM

TABLE 3 ΔΔGbind
L1 → L2

for the mutations l51c → l51d, l51e → l51f in the FXa model system along two different paths (see also Figure 4).

Mutation ΔΔGbind
L1 → L2

(path 1) ΔΔGbind
L1 → L2

(path 2) ΔΔGbind
L1 → L2

(exp)

l51c → l51d 4.03 ± 0.7 4.21 ± 1.1 3.36

l51e → l51f −0.87 ± 0.5 −0.79 ± 1.5 −2.32

FIGURE 5
Results for selected mutations recomputed without HMR, using OpenMM, as well as CHARMM/OpenMM as the underlying MD engine. The
reduced set consists of: GAL3, l4→ l3, l6→ l1; TYK2, jmc_28→ ejm_31, ejm_46→ ejm_31; FXa, l51a→ l51d, l51c→ l51bt; CDK2, 1h1s→ 1h1q, 22→
1h1q, 29→ 1h1q. (A) Plot of results calculatedwithout HMR (timestepΔt= 1 fs, no constraints on the ligand and protein) against results with HMR (Δt=
4 fs, constraints on all bonds involving hydrogen atoms). For the selected mutations RMSE (ΔΔGbind) = 0.30 kcal/mol, MAE (ΔΔGbind) = 0.21 kcal/
mol, Pearson’s R = 0.99, and Spearman’s ρ = 1.0. (B) Plot of the ΔΔGbind

L1 → L2
results for the mutations of the subset obtained with OpenMM with and

without HMR, as well as CHARMM/OpenMM (no HMR). For the results without HMR, using OpenMM and CHARMM/OpenMM as the backend,
respectively: RMSE (ΔΔGbind) = 0.39 kcal/mol, MAE (ΔΔGbind) = 0.35 kcal/mol, Pearson’s R = 0.98, and Spearman’s ρ = 1.0.
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backend, the same can be achieved through atom selections when

setting up constraints. Thus, for the currently supported use

cases, transformato handles constraints and changes of bond

lengths arising in alchemical mutations correctly.

3.4 Influences of force field and charge
assignment

3.4.1 Charge assignment and tautomerism
One of the ligands in the FXa dataset can exist in two

tautomeric forms, labelled l51b and l51bt by Hu et al. (2016).

The computed ΔΔGbind
L1 → L2

for the transformation l51a → l51b

deviated by nearly 3 kcal/mol from the experimental result,

whereas the computational result for l51a → l51bt agreed well

with experiment (Hu et al., 2016); see also Table 4. By contrast,

our calculations give very similar free energy differences for both

tautomeric states, −1.23 kcal/mol and −1.07 kcal/mol,

respectively, both in good agreement with the experimental

value of −1.45 kcal/mol (see Table 4).

Since on the one hand tautomers and ionization states are a

source of error in free energy simulations (Cournia et al., 2021)

and the disagreement between the two calculational results is

surprisingly large, we decided to investigate this further. It seems

reasonable to focus on electrostatic interactions. Therefore, we

made the partial charges of the ligand more similar to the

parameterization used by Hu et al. (2016), i.e., the AMBER

force field family, atomic charges prepared with the AM1-

BCC approach (Jakalian et al., 2000). We replaced the charges

from ParamChem/CGenFF with charges from the ACPYPE

server (Silva and Vranken, 2012). When repeating the RBFE

calculations for the two transformations (l51a → l51 b/t) with

these chimeric parameters (CGenFF force field, but AM1-BCC

charges), the results were much closer to the values reported by

Hu et al. (2016), with a positive sign for the mutation l51a→ l51b

and a negative one for the favored mutation l51a → l51bt (see

Table 4).

While mixing parameters as described above is not

recommended, the results make clear the origin of the rather

different free energy predictions obtained in this particular case

by transformato and AMBER (Hu et al., 2016), respectively. The

rather dissimilar results for the two charge models highlight the

difficulty in relying on additive force fields to predict the

preferred tautomeric state.

3.4.2 Observations concerning the influence of
the force field

The data in Table 2 and the plots shown in Figure 3

demonstrate the good overall agreement between results

obtained by transformato with results of previous studies in

the literature. For four out of five model applications, the

computed binding free energy differences are quite

comparable between different programs and force fields. As

already described in Sections 3.1 and 3.2, the single exception

are the results for TYK2. Here, transformato performed worse

than FEP+ (Wang et al., 2015), and our results showed high

deviations compared to experiment. However, TYK2 seems a

challenging system for computational methods. The results

obtained with AMBER-TI (Song et al., 2019) are already in

poorer agreement with experiment, with Pearson’s R = 0.49

compared to R = 0.88 for FEP+. The RMSE (ΔGbind) and

MAE (ΔGbind) of pmx/CGenFF are similarly high as the values

obtained with transformato (see Table 2). Recently, it was shown

that for TYK2 a refinement of alchemical free energy differences

by a physics-based machine learning potential improved the

agreement with experiment significantly (Rufa et al., 2020).

The comparable performance of transformato and of the

results by Gapsys et al. (2020) may indicate shortcomings in

the CGenFF parameters of the ligand in the case of the

TYK2 application, as this force field was used in both studies.

The ParamChem/CGenFF parameterization procedure

reports two “penalty scores,” one for the partial charges

assigned, and one for the bonded parameters. These scores

indicate the amount of analogy that could be established

during the parameter assignment. High values do not

automatically mean a poor quality of the parameters, but they

are a warning to the user that further inspection and optimization

may be needed.1 Looking at the penalty scores reported for the

sets of ligands used in this work, we find, e.g., for CDK2, a system

for which transformato’s agreement with experiment is very

TABLE 4 ΔΔGbind
L1 → L2

in kcal/mol for the alchemical transformations of l51a into the two tautomeric forms of ligand l51b/l51bt of the FXa dataset. TF
denotes results obtained with transformato. Values for ΔΔGAMBER

L1 → L2
and ΔΔGexp

L1 → L2
were taken from Hu et al. (2016).

Mutation ΔΔGTF
L1 → L2

ΔΔGAMBER
L1 → L2

ΔΔGexp
L1 → L2

l51a → l51b (CGenFF charges) −1.23 ± 0.3
1.44 ± 0.2

−1.45
l51a → l51b (AMBER charges) 0.76 ± 0.3

l51a → l51bt (CGenFF charges) −1.07 ± 0.3
−1.19 ± 0.1

l51a → l51bt (AMBER charges) −0.56 ± 0.1

1 See, e.g., the frequently asked questions at https://cgenff.umaryland.
edu/commonFiles/faq.php
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good, maximal charge penalties between 21 and 43, and maximal

bonded parameter penalties between 45 and 89. For TYK2, on the

other hand, the largest charge penalty is 142. Furthermore, for

the ligands containing a cyclopropyl moiety (ejm46, jmc23,

jmc27, jmc28, jmc30; see Supplementary Figure S3) the

maximal parameter penalties range from 114 to 225. These

are exactly the ligands for which we obtained the largest

deviations from the experimental binding free energy

differences (UE > 2.5 kcal/mol) and that contribute to the

systematic offset of ≈ − 0.4 kcal/mol for the average deviation

between results obtained with transformato and experiment (cf.

Section 3.1 and Supplementary Figure S7). While the penalty

scores for the three other systems, JNK1, FXa, and GAL3, are

higher than those for CDK2, they are lower than those for TYK2.

The cyclopropyl-containing ligands of the TYK2 dataset have

high parameter penalties, as just mentioned, but acceptable

charge penalties, in particular for the atoms of the cyclopropyl

moiety itself. This is not surprising, as cyclopropane is part of the

training set, so reference partial charges for this group are

available. However, the partial charges are exactly the same as

those for normal alkyl groups. According to the FreeSolv

database (Mobley and Guthrie, 2014), the solvation free

energies of propane and cyclopropane are +2.0 and

+0.75 kcal/mol, respectively. In previous work (Fleck et al.,

2021), we obtained +2.33 kcal/mol for the solvation free

energy of propane using the CGenFF parameters, a value in

good agreement with experiment. To probe the quality of the

cyclopropane parameters, we therefore computed its solvation

free energy difference, following the protocol by Fleck et al.

(2021), and obtained ΔGsolv = +2.17 ± 0.07 kcal/mol. Thus, the

CGenFF parameters make cyclopropane more hydrophobic than

it should be. We note in passing that the solvation free energies

using AMBER parameters reported in the FreeSolv database are

+2.50 and +2.48 kcal/mol for propane and cyclopropane,

respectively, i.e., quite comparable to the CHARMM results.

While all of the above is “circumstantial evidence,” the high

parameter penalties for the cyclopropyl-containing ligands,

combined with the rather poor agreement between the

computed and experimental solvation free energy of

cyclopropane itself, suggest that insufficiencies of the force

field may indeed at least partially responsible for the poor

performance observed for TYK2.

4 Concluding discussion

In the study introducing transformato (Wieder et al., 2022), we

demonstrated that one can achieve very high accuracy with the CC/

SAI approach for (relative) solvation free energy differences. Our

present results demonstrate that the approach can be extended to

large-scale RBFE calculations and that, overall, the agreement with

related approaches (Wang et al., 2015; Song et al., 2019; Gapsys et al.,

2020; He et al., 2020; Petrov, 2021) is good.

Transformato is developed as an open source project (see

Code and Data Availability below), and it has reached a state in

which it is possible for others to use/test it. Obviously, this is work

in progress and several aspects of transformato can and should be

improved. For JNK1, we found one mutation, for which phase

space overlaps between some neighboring states were low. While

in this particular case the best solution would be to avoid this

specific mutation path, such situations should be flagged

automatically. Some of our results, in particular those for the

TYK2 dataset, highlight the sensitivity of the accuracy of

RBFE calculations to the force field parameters. Other

sources of systematic errors that can arise in free energy

simulations of protein–ligand systems include, e.g.,

differences in binding modes of ligands not captured by

the simulations, handling of trapped waters and choosing

the correct ionization/tautomerization states; for additional

details we refer the reader to Mey et al. (2020) and Cournia

et al. (2021) and the references listed therein. One

methodological aspect more specific to the CC/SAI

approach is the following: Situations may arise in which

the CC is significantly smaller than the physical ligand;

hence, it may be bound much less tightly and move

around in the binding pocket. Complications resulting

from this unwanted flexibility can be prevented by adding

restraints to keep the CC in a position and orientation with

respect to the receptor that resembles the physical

protein–ligand complex. We did not detect indications of

such problems in the results reported here, but work towards

implementing such restraints is currently ongoing.

The CC/SAI approach is well suited for situations in which a

large portion of the ligands under consideration is identical and

when the structural differences are located in one or more

functional groups. Inefficiencies may arise if the CC is

significantly smaller than either of the two ligands. In such a

case, for both ligands, a large number of atoms needs to be

mutated into dummy atoms, which not only increases the

computational cost, but also lowers accuracy and precision.

Such is the situation encountered for path 2 in Section 3.3.1,

as reflected by the noticeably higher statistical uncertainty for the

results obtained along this route. The example, however, also

highlights that the automatic CC assignment of transformato can

be overridden, as was done along path 1. In such cases, stage (V)

(cf. Section 2.4) is more involved, but transformato supports the

necessary setup.

The CC/SAI approach implemented in transformato

completely separates the logistics of setting up the alchemical

mutation from the underlying MD simulations. One benefit of

this is performance; the plain MD simulations can use the fastest

available code paths. On average, using OpenMM, a full

calculation of ΔΔGbind
L1 → L2

took approximately 1 day on a single

mid-range, consumer grade GPU (NVIDIA RTX3070). As the

required MD simulations are completely independent, they can

be distributed between several computers with linear
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speedup. Further, adding support for additional MD programs

should not be difficult. Maybe even more important, the full

functionality of the underlying MD engine can be used. E.g.,

with OpenMM, we can use the CGenFF parameters that place

lone-pairs on the halogens (Gutiérrez et al., 2016)2. Further

extending transformato to the Drude polarizable force field,

given the existing support in OpenMM (Huang et al., 2018) and

CHARMM-GUI (Kognole et al., 2021), should be

straightforward.

Setting up alchemical transformations with transformato

relies on CHARMM-GUI (Jo et al., 2008; Lee et al., 2016); in

other words, in principle, RBFE differences can be computed for

any system that can be handled by CHARMM-GUI, such as

membrane proteins, etc. Thus, particularly for academic users,

transformato provides a low-cost/low-barrier entry to large-scale

RBFE calculations.

5 Code and data availability

• Python package used in this work (release v0.2): https://

github.com/wiederm/transformato.
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