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RNA is the key player in many cellular processes such as signal transduction,

replication, transport, cell division, transcription, and translation. These diverse

functions are accomplished through interactions of RNA with proteins.

However, protein–RNA interactions are still poorly understood in contrast to

protein–protein and protein–DNA interactions. This knowledge gap can be

attributed to the limited availability of protein-RNA structures along with the

experimental difficulties in studying these complexes. Recent progress in

computational resources has expanded the number of tools available for

studying protein-RNA interactions at various molecular levels. These include

tools for predicting interacting residues from primary sequences, modelling of

protein-RNA complexes, predicting hotspots in these complexes and insights into

understanding in the dynamics of their interactions. Each of these tools has its

strengths and limitations, which makes it significant to select an optimal approach

for the question of interest. Here we present a mini review of computational tools

to study different aspects of protein-RNA interactions, with focus on overall

application, development of the field and the future perspectives.
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1 Introduction

The roles of RNA, as coding and non-coding RNA in transcription, translation, gene

regulation, transport, catalysis, cell division and many other processes continues to

expand with advancement in methods to study them (Crick, 1970; Pyle, 1993; Moore and

Steitz, 2002; Sugiura et al., 2011; Barbieri and Kouzarides, 2020; Christopoulou and

Granneman, 2022; Perez et al., 2022; Song et al., 2022). The growing repertoire of non-

coding RNA types (ncRNA: ribosomal RNA, transfer RNA, miRNA, snRNA/small

nuclear RNA, piRNA, catalytic RNA, small nucleolar RNA, etc.) shows their

tremendous diversity in sequence, structure, subcellular localization, and function.

Central to their role in fundamental biological processes are RNA-protein interactions

(RPI) that primarily involve modular RNA-binding proteins (RBP), although exceptions

exist (Castello et al., 2012). Typically, this recognition is effected through an RNA-binding

domain (RBD) such as RNA recognition motif (RRM), hnRNP K homology (KH)
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domain, DEAD box helicase domain (DDX), pumilio homology

domain (PUM-HD) etc. and may involve recognition of specific

sequence motifs on RNA or such sequences in specific structural

contexts (Jolma et al., 2020). Alternatively, this recognition is

based on structures adopted by RNA such as in G-quadruplexes

(Kharel et al., 2020). RBPs are also known to bind RNA through

intrinsically disordered regions (IDRs), resulting in extended

interaction interfaces and higher order assemblies (Calabretta

and Richard, 2015). More recently, RNA interactome captures

(Gerstberger et al., 2014; Hentze et al., 2018) have revealed that

up to 10% of the entire proteome may be bound to RNA

emphasizing their importance in function. Indeed, such

studies are contributing to excellent resources for cataloguing

the complete set of protein-RNA interactions (RPI) across

various cell types and whole organisms (Baltz et al., 2012;

Castello et al., 2012; Kwon et al., 2013; Mitchell et al., 2013;

Beckmann et al., 2015; Matia-González et al., 2015; Liepelt et al.,

2016; Sysoev et al., 2016; Wessels et al., 2016; Hentze et al., 2018;

Trendel et al., 2019; Urdaneta et al., 2019). Perturbations of

RNA-RBP interactions are known to result in cellular

dysfunction and have been implicated in many diseases

(Allerson et al., 1999; Batista and Chang, 2013). It is,

therefore, important to characterize RNA-proteins interactions.

Several experimental approaches are available to study the

physical association between individual proteins and RNA

molecules and these have been described in excellent reviews

(Darnell, 2010; Ramanathan et al., 2019; Licatalosi et al., 2020;

Cozzolino et al., 2021; Gräwe et al., 2021). Broadly, these

approaches are grouped into RNA-centric or protein-centric

approaches. While the former attempts to study proteins that

associate with an entire population of RNA or an RNA that is

expressed in a specific cell type or tissue (Campbell andWickens,

FIGURE 1
Figure summarizes the tools that are available to study protein-RNA interactions that have been classified based on their function. (A).
Computational tools for predicting amino acid residues in protein-RNA interactions using protein sequence (2.1.1) (B). Computational tools for
predicting nucleotides in protein-RNA interactions using RNA sequence (2.1.2) (C). Computational tools for predicting amino acid residues and
nucleotides in protein-RNA interactions using sequence information. (2.1.3) (D). Computational tools for predicting amino acid residues in
protein-RNA interactions using protein structural information (2.2.1) (E). Computational tools for predicting nucleotides in protein-RNA interactions
using RNA structural information (2.2.2) (F). Computational tools for predicting amino acid residues and nucleotides in protein-RNA interactions
using protein, RNA structural and sequence information (2.2.3) (G). Computational tools formodelling/docking of protein-RNA complexes (2.3) (H).1.
Computational tools for analysis of protein-RNA complexes (2.4) (H).2 Computational tools for prediction of hotspots in protein-RNA complexes
(2.5) (H).3. Computational tools to study dynamics using RNA-protein complex structure as input (2.6) (I). Databases (2.7). Pie-chart showsmain areas
in RNA-protein interactionmethods. From the figure, it is evident that majority of the tools were developed for prediction of amino acid residues and
very few tools for modelling protein-RNA interactions. Nearly, 30% of the tools are for predicting interactions in the protein-RNA complexes given a
protein query sequence.
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2015; Cook et al., 2015; Gerber, 2021), the latter aims to pull

down all RNA that specifically interacts with a protein. These

methods may involve antibody-based immunoprecipitation of

RBP and interacting RNA or involve crosslinking between

protein and RNA (Ramanathan et al., 2019). RNA associated

with the protein is then isolated and further analysed by

microarray, sequencing, hybridization or polymerase chain

reaction-based methods. Here, not only can the actual RNA

sequence be determined, but also its abundance in the

immunoprecipitated sample can be estimated and this is

useful to map the binding site of the RBP of interest to the

RNAmolecule (Gagliardi andMatarazzo, 2016). A definitive way

to identify RNA-binding residues or study RNA-protein

interfaces (i.e., amino acid residues that directly contact RNA)

is to extract them from a high-resolution experimental structure

of a protein–RNA complex. However, structures of more than

80% of the protein-RNA complexes are unknown (Bienert et al.,

2017; Dimitrova-Paternoga et al., 2020) owing to challenges in

biophysical techniques such as complicated measurement

process, time, resolution limits, cost-intensive steps etc. (Ke

and Doudna, 2004; Scott et al., 2008; Pai et al., 2017). Added

challenges in the determination of structures of protein-RNA

complexes include the recognition of RNA sequences of optimal

size that will bind the protein specifically and stably and the

inherent flexibility of such regions which can affect structural

stability and structure determination efforts. The inherent

diversity of RNA structures and proteins and the presence of

intrinsically disordered regions presents an enormous challenge

to the area as well (Dyson, 2012; Ottoz and Berchowitz, 2020;

Vandelli et al., 2022). The cost and effort to experimentally

capture and measure strengths of all biologically important

RNA–protein complexes is challenging due to these unique

complexities. Although many experimental methods are now

available to characterize protein-RNA interactions, mechanistic

details of these reactions are still unknown. However, the

availability of protein–RNA complex data from diverse

experiments serve as ideal candidates for computational data

analysis that can develop knowledge-based trends and rules to

characterize such interactions. Indeed, several reliable

computational methods that have derived patterns from the

analysis of large ensembles of data have gained traction in

predicting protein–RNA interaction (RPI) sites. Such methods

when complemented with experimental data have been useful to

analyze large datasets, to generate various hypothesis on

interactions that can be tested again through experiment

(Jiang et al., 2020; Teimouri and Maali, 2020; Zhang et al.,

2021a). Some of the promising outcomes include prediction of

the potential RNA binding sites in SARS-CoV-2 nucleocapsid

protein revealing potential drug targeting sites (Cubuk et al.,

2021), or a more detailed understanding of the catalytic core

formation through studies of spliceosomes and the role of

allostery in mRNA interaction with ribosomes (Bao et al.,

2018; Bheemireddy et al., 2021).

In this mini review, we provide an overview of existing

computational methods to accurately predict RPI and analyze

such interfaces. Our review broadly categorises these tools into

sequence-based predictions, that tap into features in protein or

RNA sequence, and structure-based computational methods that

derive from available crystal structures of protein-RNA

complexes and enable prediction of protein-RNA interactions.

We have broadly classified these approaches based on their

application and relevance in specific analysis and briefly

describe and highlight well cited methods in each sub-section.

These subsections are grouped based on the nature of input data

used for the various analyses and enable a new user to choose an

appropriate tool, that is relevant to their specific application

interests.

2 Computational methods to predict
protein-RNA interactions

Over the past decade, computational methods to predict RPI

have been developed using either protein/ RNA sequence

features (such as residue identity or physicochemical

properties) and structure-based methods that use structure-

derived features (such as solvent-accessible surface area or

secondary structure) to make predictions. Walia et al., have

reviewed tools for sequence-based methods (Walia et al.,

2017) while structure-based methods that use secondary and

tertiary structure of RNA have been described elsewhere (Zhang

et al., 2015). With the availability of diverse experimental data

there is tremendous interest and increase in development of

methods that can learn trends from the data and arrive at

predictive models. Computational tools to predict RPI vary in

complexity and are based on either a combination of a few

features or involve the application of network-based approaches/

machine learning (ML)-based methods such as deep learning,

that capture hierarchical representations of intrinsically hidden

data features. Collectively, these independent approaches have

significantly prompted the development of a variety of tools that

(Figure 1) can be classified based on their applications and

aspects of RPI that they predict. In the following sections, we

have grouped these tools into broad functional categories based

on the input data and present the major tools to computationally

infer RPI (Supplementary Table S1).

2.1 Methods that predict protein-RNA
interactions using sequence information

2.1.1 Protein sequence as input
Available experimental datasets enable the mapping of

sequence motifs to binding scores. This, in turn, results in

large volumes of such labelled and training data from diverse

experiments and acts as an appropriate input for deep learning
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methods such as Alipanahi et al., 2015, that can derive patterns

and build predictive models based on the training dataset. The

input data used for training are obtained from various high-

throughput experiments such as protein-binding microarrays,

RNAcompete assays, ChIP-seq and HT-SELEX. The method has

been shown to efficiently predict binding specificities of in vivo

data and to identify deleterious genomic variants. With over

2000 citations, this scalable and modular pattern discovery

method is a popular application of ML-based learning

methods with important applications in predicting protein-

RNA interactions (Supplementary Table S1). PPrint (Kumar

et al., 2008) is another notable application that uses support

vector machines to predict such interactions. Prediction models

in these studies were trained on RNA-binding protein chains that

were extracted from available crystal structures of RNA-protein

complexes. An added advantage is the inclusion of evolutionary

information through position-specific scoring matrices (PSSMs)

derived for the sequence homologues of the training dataset.

Other platforms, such as RStrucfam (Ghosh et al., 2016) use

Hidden Markov Models (HMM) of RNA binding protein

families (derived from sequence and structure databases) to

recognize such properties of a protein query starting from

mere sequence information. Another popular method employs

convolutional neural networks and an extreme learning machine

(ELM) classifier, to extract features from RNA and protein

interaction datasets that are obtained from structures of

known complexes of proteins and ncRNA. Representations of

such datasets through numerical matrices and application of a

learning classifier have been shown to effectively predict RPI in

model organisms (Wang et al., 2020).

2.1.2 RNA sequence as input
Just as the sequence features of proteins in RBP have

contributed to the development of several methods to

recognize such signatures in proteins, several methods are

available to predict regions involved in such interactions in

RNA as well. These motifs have been identified as targets of

RBPs through experimental methods such as

immunoprecipitation or cross-linking methods. Several tools

have been developed to recognize RNA motifs/ sequences that

bind proteins (Supplementary Table S1) by determining the short

RNA sequence motifs that are known to occur at the interface of

known protein-RNA complexes. Approaches such as RBPmap

(Paz et al., 2014) allow the users to select motifs from a database

of experimentally characterized motifs, that have been extracted

from literature as a PSSM and use a Weighted-Rank (WR)

approach to predict binding sites in query RNA sequences. A

match score is computed for the motif per each position in the

sequence in overlapping windows and its significance is evaluated

taking into consideration the genome of interest. Properties of

the motif environment, including the clustering propensity of

binding sites and the overall tendency of such regions to be

conserved provide additional advantages. Further, background

model scores are employed to capture the significance of a match

in the context that they occur in, in splice sites, 5′ and 3’ UTRs,

non-coding RNAs and mid-intron/intergenic regions. RNApin

(Panwar and Raghava, 2015) predicts such interaction sites using

the trinucleotide composition profile of RNA and features

extracted from RNA sequences using support vector machine

(SVM). The method achieves accurate prediction and mapping

of RBP binding sites on any input RNA sequence(s), provided by

the users. While developed for organisms such as Drosophila,

human and mouse, predictions can be made for other organisms

as well.

The amount of experimentally verified RBP binding sites

using CLIP-seq has exploded in recent times. Although variable

between experiments, these data can serve as training set for

machine learning models to predict missing RBP binding sites

that may not be detected in some experiments. Methods such as

Deepboost (Li et al., 2017) use a machine learning approach,

called DeBooster, to accurately model the binding sequence

preferences and identify the corresponding binding targets of

RBPs from CLIP-seq data. ideepE (Pan and Shen, 2018) and

ideepS (Pan et al., 2018) use a convolutional neural network-

based approach that is trained on experimentally verified binding

motifs from CLIP-seq data to identify RBP binding nucelotides.

Here, known motifs were split into fixed length subsequences or

padded into fixed length groups. These were employed to train

convolutional neural networks (CNNs), to learn and extract

high-level features that can identify sequence and structure

binding motifs. Such methods were shown to achieve high

accuracy to the order of 0.85.

Methods such as DFPin (Zhao et al., 2022) use the cascade

structure of deep forest methods to extract key features based on

RNA mono-nucleotide composition. Others such as EDCNN

(Wang et al., 2022) address the issues of high-dimensionality,

data sparsity and low model performance by combining

evolutionary algorithms and different gradient descent models

to optimize RNA-binding predictions. Integrated web servers

such as RBPsuite (Pan et al., 2020) make use of deep learning, to

predict nucleotides involved in protein-RNA interactions both in

linear and circular RNA. Updates in the programs or training

data are addressed at the server end. Such servers are not only

useful to expand our knowledge of RBP-binding RNAs, but also,

to investigate the effect of mutations on binding RBPs in RNA

sequences, since they provide a binding score for a predicted

interaction. Typically, these tools achieve an accuracy of 0.7–0.85.

2.1.3 Protein and RNA sequence as input
Apart from the above-mentioned tools, there are few tools

which consider both amino-acid and RNA sequence

information, to predict residues involved in RNA-protein

interactions. catRAPIDomics (Armaos et al., 2021), which can

be used for large scale data analysis, uses a HMM-based

algorithm to combine secondary structure, hydrogen bonding

and van der Waals contributions and predicts protein-RNA

Frontiers in Molecular Biosciences frontiersin.org04

Bheemireddy et al. 10.3389/fmolb.2022.954926

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.954926


associations with great accuracy. RPISeq (Muppirala et al., 2011)

is another method that employs machine learning classifiers for

predicting such interactions using sequence information. Here,

in addition to predicting if a protein and RNA interact, added

functionalities of the web-based application include predictions

of interactions between a protein sequence and up to 100 RNA

user-provided sequences or an RNA sequence and up to

100 protein sequences provided by the user. Further, the

server may also be probed to query RPIntDB (Muppirala

et al., 2011), a database of known RNA-protein interactions,

using a protein query sequence. Another method is PS-PRIP

(Muppirala et al., 2016), a sequence motif-based method for

“partner-specific” interfacial residue prediction. Here, short

strings of amino acids or ribonucleotides that are composed

of interacting residues are extracted as n-mer motifs from a

dataset of 1,408 protein-RNA complex structures from the

Protein Data Bank (PDB). These are stored in a look-up table

that is scanned to identify such motifs in query protein or RNA

sequences.

Many methods have been developed to predict residues

involved in RNA interaction given an amino acid sequence

(Figure 1, Supplementary Table S1). Of these, methods that

focus on interface residue prediction use properties such as

charge, amino acid composition, van der Waals volume,

polarity, etc. These methods extract various features from

amino acid residues and use them as the input to train the

machine-learning models for classification. Several algorithms

like SVM (Cai et al., 2003; Kumar et al., 2008; Murakami et al.,

2010; Wang et al., 2010; Walia et al., 2014; Yang et al., 2015a;

Bressin et al., 2019; Su et al., 2019; Qiu et al., 2020), neural

networks (Alipanahi et al., 2015; Peng et al., 2017; Yan and

Kurgan, 2017; Deng et al., 2018; Zhao and Du, 2020; Zhang et al.,

2021b; Sun et al., 2021; Li and Liu, 2022; Zhang et al., 2022), naive

bayes classifier (Sharan et al., 2017; Deng et al., 2021; Li et al.,

2022) etc, as listed in Supplementary Table S1, have been

successfully implemented. A common limitation faced by such

ML-based methods is that the extracted features may be poorly

representative of the physicochemical and environmental

properties of amino acid residues, or their simplistic

combination may introduce redundancy and affect overall

prediction power of the approaches.

Structure-based methods to predict such residues are also

popular and have benefitted from the availability of detailed

structural information for more than 1,000 RNA-protein

complexes in the PDB (Berman et al., 2000). In parallel,

methods that address the partner prediction problem are also

available (Muppirala et al., 2011). Such approaches derive from

limited information on RNA-protein interaction partners in

primary resources such as the PDB (Berman et al., 2000) and

nucleic acid database/ NDB (Coimbatore Narayanan et al., 2014),

and secondary resources such as PRIDB (Protein-RNA interface

database) (Lewis et al., 2011) and BIPA (Biological Interaction

database for Protein-nucleic Acid) (Lee and Blundell, 2009).

They also use experimental data from in vivo or in vitro

cross-linking studies that are focused on individual proteins or

high-throughput RNA-binding microarray data, stored in

repositories such as NPInter (noncoding RNAs and protein

related biomacromolecules interaction database) (Wu et al.,

2006; Teng et al., 2020), CLIPZ (database of post-

transcriptional regulatory elements (RNA-binding proteins)

built from cross-linking and immunoprecipitation data)

(Khorshid et al., 2011) and RBPDB (database of RNA-binding

protein specificities) (Cook et al., 2011). Other methods such as

RBRIdent (identification of RNA-binding residues) (Xiong et al.,

2015) use a genetic algorithm and integrate sequence and

structure features by statistical analysis of interaction

preferences between amino acid residues and their RNA

partners from structure databases.

Tools like RBind (Binding sites on RNA) (Wang et al., 2018;

Wang and Zhao, 2020), NAPS (network analysis of protein

structures) (Chakrabarty et al., 2019) and PRIdictor (Protein-

RNA Interaction predictor) (Tuvshinjargal et al., 2016) use a

structural network approach for predicting such interactions.

These methods tackle the challenge to predict not only RNA

binding sites in proteins but also protein-binding sites in RNA.

Several servers such as omiXcore (Armaos et al., 2017) use

available CLIP data to predict amino acid residues. Here, a

non-linear algorithm is trained on pooled RNA-protein

interactions and accepts the proteins and large RNAs with a

size between 500 and 20,000 as inputs. PRIP (protein-RNA

interface predictor) uses a novel sequence semantics-based

method to predict RPI (Li et al., 2022). Integrated classical

machine and deep learning classifiers in methods such as RPI-

MDLStack (RNA–protein interactions through deep learning

with stacking strategy and LASSO) (Yu et al., 2022) have

shown improved and robust performance in predicting such

interactions. The accuracies of these programs range from

0.75 to 0.98.

2.2 Methods that predict protein-RNA
interactions using structure information

Protein-RNA interactions can be predicted using structure-

based information. These methods became possible as the

number of protein-RNA complex structures deposited in the

PDB increased in numbers. Here, either the availability of

structures or structure predictions of protein, RNA or both as

a complex have been employed to develop several approaches.

2.2.1 Protein structure as input
16% of the tools to predict RPI have been developed based on

the structure of a protein (Figure 1). Initially, many combinations

of either sequence-based or structure-based features were applied

to obtain predictions of protein-RNA interaction residues. These

included physicochemical features, side-chain environment,
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sequence conservation score, position-specific scoring matrices

(PSSMs), relative accessible surface area (RASA), secondary

structure (SS), interaction propensity and so on. PredRBR

(Liu et al., 2017) is one of the noteworthy approaches that

employs 189 features which are extracted from sequence,

structural and energetic characteristics, as also two categories

of Euclidian and Voronoi neighborhood features that are derived

from protein-RNA complexes in the RBP170 dataset compiled by

Lewis et al., 2010 (Lewis et al., 2011). It employs an mRMR-IFS

(maximal relevance minimal redundancy) approach to select an

optimal subset of 177 optimal features and a gradient tree

boosting algorithm for regression and classification to derive a

model, that is useful to predict such interaction sites in datasets

that were not employed in the training of the algorithm. The use

of such approaches was found to reduce the computational time

and improve the performance overall. The results also highlight

the benefits of basing RNA-binding residue prediction method

on the Gradient tree boosting (GTB) algorithm and structural

neighborhood characteristics (Euclidian and Voronoi).

Another popular method is PRNA (Liu et al., 2010) which

employs a random forest method for predicting RNA binding

sites in proteins, using features that have been extracted from

representative protein-RNA complex structures derived from

RsiteDB (Shulman-Peleg et al., 2009) (listed in Supplementary

Table S1). The strength of the method is that these features are a

combination of sequence and structure features. The authors

have developed a method by considering the neighborhood of

amino acids in the interaction sites since amino acids with

different neighborhoods or in different local structures often

exhibit preferences for their RNA partners. A combination of

interaction propensity feature between the amino acid and its

interacting nucleotides that considers neighborhood and

individual residue properties defined by six descriptors

including physicochemical characteristics, hydrophobic index,

relative accessible surface area, secondary structure, sequence

conservation score and side-chain environment was found to be a

powerful combination and resulted in high accuracy in

prediction of known and annotated protein-RNA interaction

sites. Another method by Go and co-workers examines amino

acid singlet and doublet residue propensity at known protein-

RNA interfaces obtained from the (protein quaternary structure)

PQS server (Kim et al., 2006) and PSSMs from homologous

sequences to make predictions. Such approaches aim to capture

not only the pairing preference of amino acid types through

propensity calculations but also shed light on the co-operative

contribution of various interactions that are known to lie at such

interfaces (Kim et al., 2006). Trends such as the high preference

for Arg, Lys or aromatic residues such as Tyr to occur at the

interface and favoring interactions with RNA were gleaned

through these studies. Prediction accuracy of these methods,

while reasonably sensitive, would benefit extensively with the

inclusion of more structures of such complexes as and when

solved, since their analysis is primarily statistical in nature. Such

methods can be applied to predict protein–RNA interface

residues for query protein structures without biochemical or

functional data. Other approaches include PST-PRNA (Li and

Liu, 2022) that employs protein surface topography (PST),

physicochemical characteristics, structural information, PSSM

features and a deep residual network approach, SNB-PSSM (Liu

et al., 2021a) that uses a spatial neighbor–based PSSM for

extraction of evolutionary information and an SVM as a

classifier, NABind (Sun et al., 2016) that includes novel

features such as residue electrostatic surface potential and

triplet interface propensity in a random forest algorithm.

Other ML-based methods include RBscore and NBench (Miao

and Westhof, 2016), RBRDetector (Yang et al., 2014), DR_bind1

(Chen et al., 2014), aPRBind (Liu et al., 2021b) and aaRNA (Li

et al., 2014).

2.2.2 RNA structure as input
The shape and geometry of RNA can significantly influence

RBP binding. Zhang and co-workers developed DeepNet-RBP

(Zhang et al., 2015) which uses a deep learning framework to

integrate RNA sequence, secondary and tertiary structural

profiles, and constructs a unified representation to extract

hidden structural features of RBP targets. The three main

phases in their development include a data encoding phase of

RNA sequences from CLIP-based experiments that were

subjected to secondary structure prediction. Likewise, probable

tertiary structural motifs were also derived for the sequences and

encoded. In the training phase, a multimodal deep belief network

(DBN) was employed to integrate the encoded sequence and

structural profiles for available CLIP-seq datasets. The primary

sequence and secondary structure automatically extract effective

hidden structural features from the encoded raw sequence and

structural profiles to predict RPI. Applications of this method

were shown to effectively detect novel RBP binding sites on

genomes and predict RBP binding sites in polypyrimidine tract-

binding protein (PTB) and in internal ribosome entry site (IRES)

segments and achieved an accuracy of 0.8–0.9. RBind and

RBindS (Wang et al., 2018; Wang and Zhao, 2020) uses a

network approach and RPI-net (Yan et al., 2021) which

makes use of graph neural networks, are other powerful

methods. NABS (Jiang et al., 2022) uses an integrative

framework with both machine learning and template-based

classifiers to predict binding nucleotides.

2.2.3 Prediction using both RNA and protein
structures as input

GraphProt (Maticzka et al., 2014) is a flexible machine

learning framework that is capable of deriving learning

models of RBP binding preferences from high throughput

experimental data such as CLIP-seq and RNAcompete (Ray

et al., 2009). Here, RNAshapes (Steffen et al., 2006) tool is

employed to predict the secondary structure of the bound

RNA. This input is used to encode the bound RNA sequence
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and structure in a graph that preserves base-pairing information,

which is fed into a support vector machine to classify RBP bound

sites from unbound sites using efficient graph kernels (Maticzka

et al., 2014). When applied, both sequence and structure logos

can be derived for an input query or to predict novel RBP sites.

GraphProt can detect the binding sequence and structure

preference of RBPs and further predict the RBP binding sites

on any input RNAs. The machine leaning-based methods are

trained in an RBP-specific manner since RBPs have different

binding preferences. One of the main applications of this

approach is the computational ability to detect targets of an

RBP. Indeed, a user case scenario presented by the authors

derives a model based on CLIP-seq data from kidney cells to

identify potential targets in the entire transcriptome. Further, if

affinity data from RNAcompete experiments are available,

GraphProt can apply a regression approach that can

distinguish target sites according to their binding strength as

well. DLPRB (Ben-Bassat et al., 2018) uses both CNN and

recurrent neural network (RNN) to predict protein-RNA

interactions and could achieve area under curve (AUC) of

0.81. RCK (Orenstein et al., 2016) is an extension of

RNAcontext by a k-mer sequence- and structure-based

binding model (Luo et al., 2017). RPI-BIND (Luo et al., 2017)

analyses solved RNA-protein structural complexes and employs

protein local conformations (PLCs) and 12 classes of RNA local

conformations (RLCs), to train a model and predict such

interactions. PRIME-3D2D (Xie et al., 2020) is another tool

that can predict protein-RNA complex structure and is

amenable to genome-scale binding site prediction of proteins

on RNA. It uses an alignment-based approach involving TM-

align (Zhang and Skolnick, 2005) and LocARNA (multiple

alignment of RNA) (Will et al., 2007), to model the protein-

RNA complex from which interactions are inferred.

2.3 Tools for modelling or docking of
Protein-RNA complexes

The availability of protein-RNA complex structure is

important for an understanding of the function of the

complex at a molecular level. As of 2022,

4300 macromolecular complexes containing both protein and

RNA (excluding RNA/DNA hybrids) were available in the

Protein Data Bank (PDB) (Berman et al., 2000). However, due

to the inherent limitations of experimental techniques, this is

only a small fraction of all the structures deposited in PDB and all

identified protein-RNA interactions. Computational modelling

of protein-RNA complexes is one of the approaches by which

complex structure can be predicted and employed further to

study intermolecular interactions. Nithin and coworkers provide

a detailed review on available bioinformatic tools for protein-

RNA docking (Nithin et al., 2018). As in the modelling of

protein-protein interactions, protein-RNA complexes also

involve structural and physicochemical complementarity and

have borrowed from existing protein-protein docking methods

such as HDock, GRAMM, ZDock, RosettaDock etc.

(Tovchigrechko and Vakser, 2006; Guilhot-Gaudeffroy et al.,

2014; Pierce et al., 2014; Yan et al., 2017). Both template-

based modelling and free docking are employed to predict

binding modes of interactions in protein-RNA complexes. A

recent study has highlighted some of the available tools for

modelling such complexes (Madan et al., 2016). PRIME

(Zheng et al., 2016) is a template-based comparative

modelling program for protein-RNA interaction modelling in

which TMalign (protein structural alignment) and RMalign

(RNA structural alignment) are both employed for identifying

a template for the protein and RNA sequence of interest. The

output of the program is the modelled protein RNA-complex

structure which is ranked based on a score like TMscore. A

limitation faced by this approach is the inability to build a model

in the absence of a reliable template. Further, the scoring function

of the RNA alignment algorithm in PRIME is size-dependent,

which limits its ability to detect good templates in some cases.

The authors report that, unlike protein-protein complexes, the

correlation of protein-RNA structural similarity with the binding

mode is poorer on account of greater RNA flexibility. RStrucfam

also offers three-dimensional models, once there is an association

with a family of RBP (Ghosh et al., 2016).

An approach to model protein-RNA complexes in the

absence of a structural template of the complex is to model

the protein and RNA components individually and then perform

docking and is referred to as free docking, as implemented in

3dRPC (Huang et al., 2018). Here, the docking method

RPDOCK, a protein-RNA rigid docking protocol considers

geometric and electrostatic factors such as atom packing,

residue preferences, stacking interactions between bases and

aromatic residues in generating the decoy poses that are

evaluated using a specific scoring function. Despite these

strengths, the inherent flexibility of RNA and the selection of

the appropriate model from the large number of generated

docking poses can present a computational challenge for the

approach (Huang et al., 2013; Xie et al., 2020). One of the most

cited methods for protein- RNA docking is HDOCK (Kim et al.,

2014) which employs a hybrid docking algorithm of template-

based modelling and free docking based on iterative knowledge-

based scoring function. Here, both protein sequence and

structure are accepted as inputs while for RNA only structure

input is accepted due to inherent challenges in modelling RNA. If

binding site information is available, this may be submitted prior

to the analysis. A sequence similarity search is performed to find

an ideal template from the PDB database using HHsearch (Fidler

et al., 2016) for the protein sequence while FASTA is employed to

find homologues for the RNA sequence. If the template identified

is the same, the model for protein and RNA are derived using the

template complex structure, else they are built individually based

on different templates using Modeller (Šali and Blundell, 1993).
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A hierarchical Fast Fourier transform (FFT)-based docking

program, HDOCKlite is then employed to sample binding

orientations between the two models that are scored using a

shape-based pairwise scoring function and over 100 binding

models are generated for the user. The method may face

limitations when the search algorithm is unable to find a

suitable homolog. Details on popular methods employed in

docking are listed in Supplementary Table S1.

One of the challenges faced by rigid-docking methods

involving RNA is the requirement for a suitable template.

Several methods have become available to predict RNA 3D

structure over the past few decades (Supplementary Table

S1). Like proteins, 3D structure of RNA is also conserved and

predictable. Therefore, alignment of RNA with previously

determined RNA structures will help to predict their 3D

structures and identify motifs that are significant for

functions like ligand binding and active site. A popular

method is EvoClustRNA (Magnus et al., 2019) which

applies a multi-step modelling process and considers that

RNA sequences from the same RNA family fold into similar

and conserved structures. Such homologs are identified

through searches in the Rfam database (Kalvari et al.,

2021). Independent folding simulations are then

performed, and the model selection is based on the most

common structural arrangement of the common helical

fragments. Current RNA folding algorithms can predict

RNA structures of short to very long RNA sequences.

Structure-based prediction algorithms (Das and Baker,

2007; Das et al., 2008; Parisien and Major, 2008; Das

et al., 2010; Cao and Chen, 2011; Zhao et al., 2012;

Magnus et al., 2019; Andrikos et al., 2022) achieve the

highest accuracy with efficient alignments. A part of a

well-aligned structure can be extracted and used as a

fragment and many such fragments can be assembled on a

template to form a 3D structure. Indeed, such methods aim

to overcome limitations of template-based modelling which

do not consider the flexibility of the RNA molecules, and the

number of known RNA structures. Ab-initio tools (Das and

Baker, 2007; Jossinet et al., 2010; Magnus et al., 2014; Xu

et al., 2014; Mallet et al., 2022), on the other hand, face

challenges such as the length of RNA, conformational

sampling, evaluation of energies for the tertiary contacts,

and knowledge-based energy functions. Coarse-grained

approaches (Wang et al., 1999; Cao and Chen, 2005; Tan

et al., 2006; Ding et al., 2008; Sharma et al., 2008; Jonikas

et al., 2009; Pasquali and Derreumaux, 2010; Xia et al., 2010;

Izzo et al., 2011; Xia et al., 2013; Kim et al., 2014; Shi et al.,

2014; Oliver et al., 2022) model entire RNA structure using

beads and these models are subjected to energy

minimization, molecular dynamics and/or Monte Carlo

simulations. These methods offer a way to understand

RNA folding and show improved efficiency in prediction

of lengthy RNA molecules. Coarse-grained models, however,

face limitations in entropy calculations and long-range

tertiary interactions.

Future improvements in methods to model Protein-RNA

complexes could focus on combinations of free docking and

template-based algorithms because using either approach

independently has a reduced accuracy of prediction.

2.4 Tools for studying and analysing
protein-RNA interfaces

Evaluation of phenotypic impact of sequence variations

is very important to understand function. There are various

tools for analysing the effect of mutations in protein-RNA

complexes. ENTANGLE (Allers and Shamoo, 2001) is a

structure-based analysis program, to analyze protein-RNA

interactions that allows users to examine protein-RNA

interactions in an available three-dimensional structure or

model. Users can choose from a range of ways to study

protein-RNA interactions and can examine the

interactions through a graphics interface. In addition, the

tool has been employed to build a protein-RNA interaction

database that catalogs the various types of characteristic

interactions of these complexes and considers

electrostatic, hydrogen bonding and stacking interactions.

Such studies and databases have provided useful insights to

distinguish protein-RNA binding from other protein-DNA

binding. mCSM-NA (Pires et al., 2017), DeepCLIP

(Bjørnholt Grønning et al., 2020) and PremPRI (Zhang

et al., 2020) are a few examples of tools which use

machine learning to calculate binding affinity changes in a

protein complex upon mutation. mCSM-NA employs graph-

based signatures to represent protein-nucleic acid complexes

and models the distance patterns in wild type proteins from

the ProNIT database (Prabakaran et al., 2000). Residues in

the vicinity of the mutated protein are labelled based on

pharmacophore modelling which describes the geometry and

physicochemical properties of the residue environment. A

machine learning based model is then trained on the effects

of such mutations to arrive at models that can predict

changes in nucleic acid binding affinities. Input for the

server is a protein-RNA complex structure and up to a

maximum list of 20 single point mutations. The output

includes predicted changes in binding affinity in Kcal/mol,

the relative residue solvent accessibility of the mutated

residue, predicted change in binding affinity and protein

stability. Limited success of these techniques can be

attributed to the intramolecular interactions and various

conformations that are not considered in the physical

models. Accurate prediction of RNA–protein binding

affinities is very challenging, and a complete prediction

framework for RNA–protein complexes is yet to be

developed. Supplementary Table S1 lists and highlights
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features of various tools that are available to study

interactions in these interfaces.

2.5 Tools for analysing hotspots in
protein-RNA complexes

Conserved residues in binding sites that contribute to the

strength of binding, and whose substitution to Alanine leads to

an increase in the binding free energy (ΔG) of at least

2.0 kcal mol─1, are defined as hotspot residues (Clackson and

Wells, 1995). Given the complex structure, many tools are

available to predict hotspots in protein-RNA interfaces and

predict the quantitative changes in free energy or a probability

score for a hotspot residue. All these tools are built on

thermodynamics data. PrabHot (Krüger et al., 2018),

XGBPRH (Deng et al., 2019) and SREPRHot (Zhou et al.,

2022) use ML algorithms and structural information to

predict hotspot residues. Input for PrabHot, a webserver, is a

protein-RNA complex structure. The method is based on

47 protein-RNA complexes from which various features such

as network, exposure, sequence and structure determinants are

extracted. An ensemble approach is employed to integrate SVM

(Support Vector Machine), GTB (Gradient Tree Boosting) and

ERT (Extremely Randomized Trees) based classification to

predict the effect of mutations. Other methods include SPHot

(Zhang et al., 2019) and iPNHOT (Zhu et al., 2020) that are based

on SVM analyses of hotspot residues from protein sequences

(Supplementary Table S1). SPHot uses only sequence

information for the prediction. Although many tools are

available, this area still has many limitations and challenges.

These include lack of thermodynamic data, experimentally

verified data sets and structural data. In future, we can expect

that these tools can be improved to include the multiple

conformational nature of protein-RNA complexes.

2.6 Tools for studying the structural
dynamics of protein-RNA complexes

Functions of protein-RNA complexes are intimately linked to

their dynamics. Long-timescale molecular dynamics (MD)

simulations have been successfully used to characterize

complex conformational transitions in proteins. In principle,

MD simulation is a powerful tool for characterizing such

conformational changes in RNA molecules, which depends on

force-field parameters. AMBER force field (Tan et al., 2018) uses

a combination of ab initio and empirical methods, modified

electrostatic, van der Waals (vdW), and torsional parameters to

accurately reproduce the energetics of nucleobase stacking, base

pairing, and key torsional conformers. CHARMM modified its

forcefield parameters to make it suitable for nucleic acids (Xu

et al., 2016). OPLS-AA force field made changes in potential

energy surfaces of the backbone α- and γ dihedral angles, for

modelling of RNA (Robertson et al., 2019). Apart from this there

are advanced quantum mechanics/molecular mechanics (QM/

MM) computations which could be used to indirectly rationalize

problems seen in MM-based MD simulations of protein–RNA

complexes (Pokorná et al., 2018). Martini force field (Monticelli

et al., 2008) helps in coarse-grained representation of protein-

RNA complexes, and these models can be applied in MD

simulations. Elastic network representation of protein-RNA

(Pinamonti et al., 2015) complex can be employed in normal

mode analysis which can be used to track flexibility and dynamics

of a complex.

2.7 Databases for protein-RNA
interactions

Various databases provide comprehensive repositories of RNA-

protein interaction data that have been gathered from experiments,

literature and other databases and computational predictions. PRD

(Fujimori et al., 2012), NPInter (Wu et al., 2006; Teng et al., 2020),

RNAct (Lang et al., 2019) and RAID (Zhang et al., 2014) help us

integrate data from various platforms. CLIPdb (Yang et al., 2015b)

and RPI- PRED RNA (Suresh et al., 2015) curate experimental

information from literature and capture this in a table. PRIDB

(Lewis et al., 2011) and RBPDB (Cook et al., 2011) characterize

and provide data with the help of existing structural information.

Protein family databases such as PFAM also contain RNA binding

domain families. Nearly 3909 domain families are associated with the

keyword RNA-binding. Such domain families that are represented as

Hidden Markov models (HMM) are useful in sequence-based

association of RNA binding function in a query protein sequence,

using HMMPFAM (SR Eddy, 2004). There are also specialized

databases, such as EcRBPOME (Ghosh et al., 2019) which offer

putative RNA binding proteins in a genome-wide scale in around

600E. coli strains. Among the above databases,NPInter, PRD,RNAct,

CLIPdb and RBPDB provide and extract information from

experimental techniques. In future, an exhaustive interaction

database which could store detailed and multi-dimensional

information about an interaction entry, such as a binding region/

motif, structure detection method, interactions, etc. would add more

value to such efforts. Furthermore, the ability to predict potential RPI

is based on availability of such catalogued information, making such

databases necessary and valuable.

3 Conclusion

This review provides a comprehensive survey of

computational tools for the analysis of protein-RNA

interactions. The availability of mathematical models and

profiles, together with sensitive search algorithms, enable

effective association of new genes into pre-existing families of
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RNA-binding proteins from mere sequence information.

Repositories such as protein sequence families (PFAM) (Finn

et al., 2016; Mistry et al., 2021) and in-built databases in servers

such as RStrucFam (Ghosh et al., 2016) make focused searches

easier. As seen in the pie-chart (Figure 1), majority of the tools

that have been developed predict amino acid residues and very

few tools are available for modelling protein-RNA interactions.

Nearly 30% of the tools are for predicting interactions in the

protein-RNA complexes given a protein query sequence. There is

still room for better methods and approaches to evolve. In this

section, we discuss some of the inherent challenges and

outstanding issues.

RBPs are modular and may possess more than one RBD that

are connected with flexible linkers or may occur as isoforms.

Automatic tools are not available to provide accurate assignment

of domain boundaries and nomenclature. Which of these

domains bear sequence signatures of functionally important

residues, how they co-operate in exhibiting function and their

relative affinity for RNA still are open questions. Several proteins

that contain RNA-binding domains also contain substantial

stretches of disordered regions. Their structural and functional

regulation are hard to capture and remain a treasure-house of

unknowns. Despite the choice of objective mathematical models,

presence of spatial motifs of RNA-binding residues or RNA that

acquire three-dimensional structure might escape detection.

Some RBPs are known to bind both DNA and RNA and this

might cause sufficient confusion in prediction since the results

may be viewed as false positives.

The success of computational algorithms is usually measured

using statistical parameters such as accuracy, sensitivity and

specificity. The performance of algorithms to recognize RNA-

binding proteins is challenged by the absence of a comprehensive

and reliable gold-standard to look upon. It is now accepted that

different databases of RNA-binding proteins that use different

high-throughput experimental approaches and platforms do not

agree very well with each other (Ghosh and Sowdhamini, 2016).

It would be desirable to arrive at an unified experimental

approach for the identification of RNA-binding proteins.

Finally, RNA-binding proteins play important roles in

diverse biological roles such as developmental processes and

ageing. They are also amenable to functional regulation such as

phosphorylation switches and expression levels. In future, meta-

analyses are required to assimilate such functional information.
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Glossary

ncRNA non-coding RNA

miRNA microRNA

piRNA Piwi-interacting RNAl

ChIP-seq Chip sequencing

HT-SELEX High throughput systematic evolution of ligands by

exponential enrichment

PPrint Prediction of Protein RNA-Interaction

CLIP cross-linking immunoprecipitation

RBPmap mapping binding sites of RNA-binding proteins

RNApin Protein Interacting Nucleotides (PINs) in RNA

sequences

EDCNN Evolutionary Deep Convolutional Neural Network

catRAPIDomics computation of protein–RNA interaction

propensities at the transcriptome-and RNA-binding proteome

RPISeq RNA-Protein Interaction Prediction

RPIntDB database of known RNA-protein interactions

PS-PRIP partner specific protein RNA interaction prediction

PredRBR predict RNA-binding residues

mRMR-IFS Minimum Redundancy Maximal Relevance

(mRMR) method followed by incremental feature selection (IFS)

PRNA Promoter-associated RNAs

RsiteDB RNA binding sites database

PST-PRNA predicting RNA-binding sites (PRNA) based on

protein surface topography (PST)

RBscore RNA-/DNA-binding residues in proteins and visualizes

the prediction scores

NBench Name of a benchmark database

RBRDetector RNA-Binding Residue Detector

DR_bind1 a web server for predicting DNA-binding residues

from the protein structure based on electrostatics, evolution and

geometry

aPRBind ab initio algorithm ab initio Protein–RNA Binding site

prediction

DeepNet-RBP An algorithm using Deep belief network (DBN)

to predict RBP binding sites

aaRNA aaRNA is an RNA binding site predictor

RBind A computational network method to predict RNA

binding sites

RBindS A user-friendly server for RNA binding site prediction

RPI-net RNA Protein Interaction prediction using Neural

Networks

NABS An algorithm for Nucleic Acid Binding Site prediction

GraphProt a flexible machine-learning framework for learning

models of RBP binding preferences

RNAcompete RNA compete is an in vitro protein-centric

method used to analyze RNA-protein interactions

RNAshapes an integrated RNA analysis package based on

abstract shapes

DLPRB A Deep Learning Approach for Predicting Protein-RNA

Binding

RPI-BIND a structure-based method for accurate identification

of RNA-protein binding sites

HDock Protein-protein and protein-DNA/RNA docking based

on a hybrid algorithm of template-based modeling and ab initio

free docking

HDOCKlite Another version of HDock

GRAMM The Global RAnge Molecular Matching

ZDock An initial-stage protein-docking algorithm

RosettaDock Docking algorithm developed as a part of Rosetta

platform

PRIME Protein-RNA Interaction ModElling program

RStrucfam a web server to associate structure and cognate RNA

for RNA-binding proteins from sequence information

3dRPC 3-D RNA_protein structure prediction

HHsearch profile-profile tool that explicitly weights a proportion

of an alignment to aligned (predicted) secondary structure. MSAs

can be built by either PSI-BLAST or HHblits

EvoClustRNA A clustering routine of evolutionary conserved

regions (helical regions) for RNA fold prediction

Rfam an RNA family database

ENTANGLE a JAVA program that classifies and sorts potential

protein-nucleic acid interactions

mCSM-NAmutation Cutoff Scanning Matrix applied to Nucleic

Acids

DeepCLIP predicting the effect of mutations on protein–RNA

binding with deep learning

PremPRI Predicting the Effects of Missense Mutations on

Protein-RNA Interactions

ProNIT A database for protein nucleic acid interactions

PrabHot Prediction of Protein-RNA Binding Energy Hot Spots

XGBPRH an eXtreme Gradient Boosting (XGBoost) algorithm

for Protein-RNA Hotspot prediction

SREPRHot a SMOTE and Random grouping strategies-based

Ensemble learning model for Protein-RNA binding Hotspot

prediction

SPHot Sequence-based Prediction of RNA-binding Hot Spots

iPNHOT identifying protein-nucleic acid interaction hot spots

AMBER Assisted Model Building with Energy Refinement
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CHARMM Chemistry at Harvard Macromolecular Mechanics

PRD A protein-RNA interaction database

NPInter the noncoding RNAs and protein related

biomacromolecules interaction database

RNAct protein–RNA interactome

RAID RNA-associated (RNA–RNA/RNA–protein) interaction

Database

CLIPdb a CLIP-seq database for protein-RNA interactions

RPI PRED RNA—Another version of RNA-protein interaction

prediction algorithm

PRIDB a protein—RNA interface database

RBPDB RNA-Binding Protein DataBase
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