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To develop a deep image segmentation model that automatically identifies and

delineates lesions of skeletal metastasis in bone scan images, facilitating clinical

diagnosis of lung cancer–caused bone metastasis by nuclear medicine

physicians. A semi-supervised segmentation model is proposed, comprising

the feature extraction subtask and pixel classification subtask. During the

feature extraction stage, cascaded layers which include the dilated residual

convolution, inception connection, and feature aggregation learn the hierarchal

representations of low-resolution bone scan images. During the pixel

classification stage, each pixel is first classified into categories in a semi-

supervised manner, and the boundary of pixels belonging to an individual

lesion is then delineated using a closed curve. Experimental evaluation

conducted on 2,280 augmented samples (112 original images) demonstrates

that the proposed model performs well for automated segmentation of

metastasis lesions, with a score of 0.692 for DSC if the model is trained

using 37% of the labeled samples. The self-defined semi-supervised

segmentation model can be utilized as an automated clinical tool to detect

and delineatemetastasis lesions in bone scan images, using only a fewmanually

labeled image samples. Nuclear medicine physicians need only attend to those

segmented lesions while ignoring the background when they diagnose bone

metastasis using low-resolution images. More images of patients frommultiple

centers are typically needed to further improve the scalability and performance

of the model viamitigating the impacts of variability in size, shape, and intensity

of bone metastasis lesions.
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1 Introduction

A bone scan (skeletal scintigraphy) with technetium-99

methylenediphosphonic acid (99mTc-MDP) is one of the most

commonly used clinical tools for screening bone metastasis

(Sderlund, 1996; Costelloe et al., 2009). When a primary solid

tumor invades into the bone tissue, there will be one or more

areas of increased radionuclide uptake in a 99mTc-MDP single-

photon emission computed tomography (99mTc-MDP SPECT)

image. Compared to positron emission tomography (PET)

imaging, a 99mTc-MDP SPECT bone scan is more available

and affordable for surveying skeletal metastases due to its

high sensitivity and low cost (Moon et al., 1998).

However, 99mTc-MDP SPECT imaging suffers from low

specificity typically caused by inferior spatial resolution,

accumulation of radiopharmaceuticals in the normal bones,

soft tissues or viscera, and uptake in benign processes

(Nathan et al., 2013). Low specificity combined with the

normal variation of uptake and technical artifacts often brings

misinterpretation to human experts when they manually

diagnose bone metastasis.

Automated analysis of 99mTc-MDP SPECT images is desired

for accurate and efficient diagnosis of bone metastasis.

Conventional machine learning algorithms have been adopted

to develop methods for identifying bone metastasis (Aslanta

et al., 2016; Elfarra et al., 2019; Mac et al., 2021; Sadik et al.,

2006; Sadik et al., 2008) or delineating metastasis lesions

(Cheimariotis et al., 2018; Thorwarth et al., 2013; Zhu et al.,

2008). However, the handcrafted image features often have

insufficient capability and unsatisfied performance for clinical

tasks (Shan et al., 2020).

Deep learning has been revolutionizing the field of machine

learning for the past decades. As a mainstream branch of deep

learning, convolutional neural networks (CNNs) have gained

huge success in computer vision due to their superiority in

automatically learning hierarchical features from images in an

optimal way. Several excellent review articles present a holistic

perspective on the recent progress of deep learning in medical

image segmentation (AsgariTaghanaki et al., 2021; Minaee et al.,

2022; Litjens et al., 2017; Lei et al., 2020). Semi-supervised

learning is becoming one of the hot research topics in this

field due to the reduced requirement of large-scale labeled

images (Christoph et al., 2017; Doulamis and Doulamis, 2014;

Tarvainen and Valpola, 2017).

There has recently been a substantial amount of CNN-based

work aimed at developing image classification methods for

automated detection or diagnosis of metastasis (Bochkovskiy

et al., 2020; Cheng et al., 2021a; Cheng et al., 2021b; Dang, 2016;

Guo et al., 2022; Lin et al., 2021a; Lin et al., 2021b; Lin et al.,

2021c; Li et al., 2022; Papandrianos et al., 2020a; Papandrianos

et al., 2020b; Papandrianos et al., 2020c; Pi et al., 2020; Redmon

and Farhadi, 2018; Zhao et al., 2020) by classifying 99mTc-MDP

SPECT images into categories. By contrast, segmenting 99mTc-

MDP SPECT images to detect and delineate metastasis lesions is

still in its infancy. Using the recurrent CNN (RCNN) (Liang and

Hu, 2015) as a backbone network, Chen and Frey (2020)

proposed a semi-supervised segmentation model to delineate

bone structures in the pelvis. Their model reported a score of

0.593 for the Dice metric on the simulated instead of real clinical

SPECT images. MaligNet (Apiparakoon et al., 2020) is a two-

stage network used for semi-supervised segmentation of chest

metastasis lesions, consisting of a feature extraction subnetwork

(ResNet-50) and feature classification subnetwork (ladder feature

pyramid network). Their proposed network achieved a mean

score of 0.848 for the F-1 score, without segmentation metrics

[e.g., Dice and IoU (intersection over union)] being reported.

Based on the classical networks U-Net (Ronneberger et al., 2015)

and R-CNN (He et al., 2020), we investigated supervised

segmentation of bone metastasis lesions in clinical 99mTc-MDP

SPECT images (Lin et al., 2020), obtaining a best score of

0.6103 for the IoU metric.

Using clinical 99mTc-MDP SPECT bone scans, we have

propose an RCNN-based method for segmenting bone

metastasis lesions in a semi-supervised way in this work. The

proposed segmentation method can automatically identify a

lesion and delineate its boundary using only few manually

labeled samples (i.e., semi-supervised learning). Our work is

based on the following observations.

First, image segmentation involving partitioning images into

multiple segments or objects (e.g., organs, tissues, and lesions) is

routinely conducted in clinical diagnosis. This thereby enables

the extraction of bone metastatic lesions and measurement of

lesion volumes. Second, 2D bone scan is characterized by inferior

spatial resolution. The size of a whole-body image is 256

(width) × 1024 (height). This brings a huge challenge to

manual analysis by nuclear medicine physicians. Lastly, the

lack of large labeled data sets of bone scan images is an

especially prevalent challenge in supervised image

segmentation because it is very time-consuming, laborious,

and subjective to manually labeling lesions in large-sized low-

resolution 99mTc-MDP SPECT images. On the contrary, CNN-

based semi-supervised segmentation has the potential to

automatically divide an image into regions of concerns with

only a small number of partially labeled samples.

Given that the spine and ribs are the common areas where

primary tumors frequently invade , a whole-body SPECT image

was first cropped to extract the thoracic region in this work. With

the extracted regional images, an end-to-end semi-supervised

segmentation network was built to learn the hierarchal

representations of 99mTc-MDP SPECT images and classify all

pixels into categories (i.e., the lesion and background). The pixels

falling into each lesion were then surrounded by an irregular

closed curve. The delineated lesions could help the human expert

focus on bone metastasis lesions while ignoring the background

area, thereby enabling to improve the accuracy and efficiency of

the diagnosis.
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The main contributions of this work are first, we define the

research problem of segmenting metastasis lesions in 99mTc-

MDP SPECT images in a semi-supervised way. Second, we

propose a semi-supervised segmentation method consisting of

image feature extraction and pixel classification. Last, we utilize a

set of clinical 99mTc-MDP SPECT images to evaluate the

proposed method. The experimental results show that our

method performs well in the automated segmentation of bone

metastasis lesions with only few manually labeled samples

being used.

The remaining part of this article is organized as follows: the

proposed semi-supervised segmentation method is detailed in

Section 2. Experimental evaluation conducted on clinical data is

provided in Section 3. A brief discussion is presented in Section 4.

We have concluded this work and pointed out the future research

directions in Section 5.

2 Methodology

An overview of the proposed semi-supervised segmentation

framework is depicted in Figure 1A, comprising two stages,

namely, image feature extraction (Figure 1B) and pixel

classification (Figure 1C). During the feature extraction stage,

a set of cascaded layers is used to learn low-to-high

representations of low-resolution images, enabling us to

extract features of bone metastasis lesions as much as possible.

During the pixel classification stage, the pixels within an image

are classified into categories with the partially labeled samples

(semi-supervised) and the boundary of pixels belonging to a

lesion is delineated.

2.1 Image cropping

Whole-body SPECT bone scanning outputs large images

with a size of 256 pixels × 1024 pixels. This brings a heavy

computational burden to the pixel-level classification task. On

the other hand, the thoracic region that covers the sternum,

clavicles, scapulae, and ribs is the most common site of

metastases in a variety of solid cancers (Nathan et al., 2013).

Focusing on the automated segmentation of bone metastasis

lesions in the thoracic skeleton, an empirical image-cropping

method (Li et al., 2022) is used to extract the thoracic region from

the whole-body images. The cropping method contains three

main steps: “whole-body image → body area,” “body area →
upper body,” and “upper body → thoracic region.” A cropped

regional image has the size of 256 × 256. Each “pixel” in this

image is a 16-bit unsigned integer, representing the detected

count of the radiotracer’s uptake.

A regional image can be viewed as a count matrix CM, which

can be formally represented as

CM � (ci,j)
∣∣∣∣1≤ i, j≤ 256

ci,j ∈ [0, c max]. (1)

Typically, c = 0 denotes the background pixels, and cmax varies

largely from patient to patient. As mentioned previously, apart

FIGURE 1
Overview of the proposed semi-supervised metastasis lesion segmentation method.
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from the metastasized bone, the high uptake of

radiopharmaceuticals is commonly seen in normal bones and

benign processes. It is thus difficult to normalize the count, c, into

a fixed range, such as it is done in natural image analysis.

2.2 Lesion labeling

Semi-supervised learning tasks still need human manual

labels to train a segmentation model, where the labeled lesions

act as ground truth in the experiments. To help human experts (a

chief physician aged 45 years, an associate chief physician aged

40 years, and a resident physician aged 33 years) to manually

label a low-resolution SPECT image, we developed an annotation

system based on the open-source online tool LabelMe (http://

labelme.csail.mit.edu/Release3.0/).

Using the LabelMe-based annotation system, three

experienced nuclear medicine physicians in our group

independently labeled each image. Let l = <p1, p2, . . ., pm =

p1> denote a manual label, which is a closed curve consisting

of points. For a bone metastasis lesion, if the difference

between the areas surrounded by any two closed curves is

not larger than the threshold tΔA, we randomly select any one

from the three labels as the ground truth; a new annotation

process will start otherwise. Specifically, the area difference

ΔA is defined using the Intersection over Union (IoU ) in

Eq. 2.

ΔA � 1 − Al1 ∩ Al2

Al1 ∪ Al2
, (2)

where Alk (k = 1, 2) represents the area of the closed curve lk. We

assign a value of 5% for tΔA in the experiments.

During the supervised training stage, the manual annotation

Llabel in Figure 1A will be fed into the segmentation model.

2.3 Feature extraction

As depicted in Figure 1B, cascaded layers are used in the

feature extraction stage which include the residual dilated

convolution, pooling, feature aggregation, inception

connection, upsampling, and traditional convolution to extract

multi-scale features of lesions from low-resolution images.

2.3.1 Dilated residual convolution
Bone metastasis lesions typically demonstrate variability in size,

shape, and intensity. Extracting hierarchical features of lesions from

low-resolution images is significantly challenging. Compared to the

conventional convolution, a dilated convolution has the potential to

systematically aggregate multi-scale contextual information without

losing resolution (Yu and Koltun, 2015). On the other hand, the

residual connection can alleviate the gradient vanishing and

explosion problems.

We used the residual dilated convolution block in the feature

extraction stage to extract the multi-scale features of metastasis

lesions, which is illustrated in Figure 2.

As shown in Figure 2, there are two paths in the residual

dilated convolution block. In the residual mapping path, two

dilated convolution (DilatedConv) layers are used to extract

multi-scale features, with each followed by a batch

normalization (BN) operation and parametric rectified linear

unit (PReLU) operation. The BN operation has the potential to

make a network utilize much higher learning rates and be less

careful about initialization, enabling the acceleration of network

training. As a typical activation function, PReLU performs a

threshold operation to bring nonlinearity into the network. In the

identity path (also skip path), a 1 × 1 conventional convolution is

used to reduce the number of depth channels by simply mapping

an input pixel to output pixel.

Given the i × i feature map IIN with a kernel size of k as the

input, for any given dilation rate of d, the size o of the feature map

IOUT after dilated convolution can be calculated according to

Eq. 3.

o � [i − 2p − n
s

] + 1

n � k + (k − 1)(d − 1)
, (3)

where p and s denote the padding and stride, respectively.

2.3.2 Inception architecture
Increasing the size of a network (depth and width) is one of

the alternatives to improve the performance of a convolutional

neural network. However, an enlarged network with a larger size

is often prone to overfitting. The inception architecture (Szegedy

et al., 2014) can find an optimal local sparse structure in the deep

network while allowing for significantly increasing the number of

FIGURE 2
Structure of the residual dilated convolution block.
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units at each stage without an uncontrolled blow-up in

computational complexity.

We define an inception block (see Figure 3) in this work

to further extract multi-scale features of bone metastasis

lesions.

The defined the inception block consists of several

convolutions with different kernels (1 × 3/3 × 1, 1 × 7/7 × 1,

1 × 1, and 5 × 5) and a max pooling with stride = 2 after a 1 ×

1 convolution to capture hierarchal features and halve the

resolution of the grid. The DepthConcat concatenates the

outputs from the previous layers.

2.3.3 Feature aggregation
The dual views of 2D SPECT imaging are exploited to

enhance the metastasis lesions by aggregating the anterior and

posterior views of an image. Specifically, let IAnt and IPost be the

anterior- and posterior-view images (features) of a patient,

respectively, and an aggregated image IAgg can be calculated

according to Eq. 4.

IAgg � f [IAnt ,Mirr(IPost)], (4)

where f is the pixel-wise addition, and Mirr (·) is the image

horizontal flipping/mirroring operation.

For instance, Figure 4 illustrates the image aggregation

by using a pixel-wise addition operation (see “Addition” in

Figure 1). Lesions in the aggregated image are either enhanced

by adding the lesion areas in both the anterior and posterior

views or mapping from the anterior or posterior views. For a

patient with diagnosed bone metastasis, the lesion(s) can

always be displayed in the aggregated image rather than

only in the anterior or posterior one. The dual-view

aggregation will be helpful for CNN-based classifiers in

detecting lesions.

2.3.4 Recurrent feature extraction
Inspired by the structure of the recurrent convolutional

layer in RCNN (Liang and Hu, 2015), we let the feature

extraction network run in a recurrent way, indicated by the

green dotted line with an arrow in Figure 1A, to integrate the

context information for lesion segmentation. An illustration

of a recurrent feature extraction subnetwork is depicted in

Figure 5.

As shown in Figure 5, the feature extraction subnetwork

comprises the feedforward network and recurrent network. Let

u(t) be the input of the feedforward network at time t, and

x(t–1) be the input of the recurrent network at time t–1, the

output of the network at time t can be calculated according to

Eq. 5.

zijk(t) � [WF(k)]Tu(i,j)(t) + [WR(k)]Tx(i,j)(t − 1) + bk (5)

FIGURE 3
Structure of the inception block used in the feature extraction
stage.

FIGURE 4
Illustration of feature aggregation using pixel-wise addition operation.
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where (i, j) indicates the pixel in the k-th feature map,WF(k) and

WR(k) are the convolutional parameters of the feedforward and

recurrent nets, and bk is the bias.

2.4 Feature classification

Typically, image segmentation performs portioning of

objects by automatically classifying pixels into the

corresponding categories. In the paradigm of supervised

learning, the labeled samples of images are used to train a

segmentation model, which is then used to predict the class,

y, from a pixel, x, of any new image. On the contrary, an

unsupervised model is trained without manual labels.

Our semi-supervised segmentation model is trained using a

large number of unlabeled samples together with only few labeled

samples to build a pixel-level feature classifier. A core

consideration of the semi-supervised segmentation model is in

how to determine a segmentation loss function, which would

probabilistically predict the class for each pixel and be defined

according to the unsupervised segmentation loss and manual

labels. The semi-supervised segmentation loss ℓ consists of two

parts: unsupervised loss ℓU and supervised loss ℓS, which is

defined in Eq. 6.

ℓ � ℓU + α · ℓS. (6)

For a given image g, let c = f (g) be a closed curve that

delineates a bone metastasis lesion, the unsupervised loss ℓU in

Eq. 6 can be defined as

ℓU � v · Area(f (g)> 0) + ∑
f(g)> 0

∣∣∣∣g(x, y) − c1
∣∣∣∣2

+ ∑
f(g)> 0

∣∣∣∣g(x, y) − c2
∣∣∣∣2. (7)

where c1 and c2 are the average of image g inside curve c and

outside curve c, respectively; and Area (·) is the function used for

measuring the area inside the curve, which has been defined by

Chan and Vese (2001).

Let Ω be the image filed and u be the label, the supervised

segmentation loss ℓS can be calculated according to Eq. 8.

ℓs � ∑
f (i)

∣∣∣∣∇(f (g))∣∣∣∣ +∑
Ω

((1 − μ)2 − (0 − μ)2)f (g). (8)

In the aforementioned Eqs. 7, 8, the constants are assigned as

α = 0.4, v = 0.004, and u = 0 in the experiments.

With the semi-supervised segmentation loss function defined

in Eq. 6, the segmentation model classifies each pixel into one of

the categories (i.e., the background and lesion regions). The

boundary of pixels that falls into an individual lesion is then

delineated using a closed curve. For an input image, the

segmented lesions act as the output of a segmentation model.

3 Results

3.1 Experimental data

The SPECT images used in this retrospective study were

acquired from the Department of Nuclear Medicine, Gansu

Provincial Hospital. A total of 724 whole-body images were

collected from 362 patients, who were clinically diagnosed

with bone metastasis by using a single-head equipment (GE

SPECTMillenniumMPR) with a parallel-beam low-energy high-

resolution (LEHR) collimator (energy peak = 140 keV, intrinsic

energy resolution ≤9.5%, energy window = 20%, and intrinsic

spatial resolution ≤6.9 mm). The SPECT imaging was taken

between 2 and 3 h after the intravenous injection of 99mTc-

MDP (20–25 mCi). The imaging size was 256 × 1024 with a

pixel size of 2.26 mm. The acquisition time was 10–15 min for

each whole-body bone scan image.

We selected 112 images that contained bone metastasis

lesions in the thorax from all images. The selected images

were cropped to extract the regional images using the image

FIGURE 5
Structure of the recurrent feature extraction network with t indicating recurrence time.
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cropping technique as mentioned in Section 2.1. We organized

these 112 regional images into the data set D1, which is outlined

in Table 1.

The subsequent section details the process of augmenting the

size of D1, which would be helpful for training a better

segmentation model since deep learning–based models often

perform well on the “big” data set.

3.2 Data augmentation

3.2.1 Geometric transformation
Geometric transformations such as flipping, cropping,

rotation, and translation are frequently used in the field of

deep learning–based image augmentation (Shorten,

Khoshgoftaar). In this work, image flipping, rotation, and

translation were applied on the images in data set D1 to

obtain more samples.

The augmented samples that were obtained by using the

aforementioned geometric transformations and the images in

data set D1 were grouped into data set D2, which is outlined in

Table 1.

3.2.2 Adversarial learning
The generative adversarial network (GAN) (Goodfellow

et al., 2014) is one of the most emerging deep learning

techniques that is used to generate new “fake” samples with

the given images. The generated samples have an entirely

different distribution from the original ones. The GAN

consists of a generator (G) and discriminator (D). Specifically,

generator G generates “fake” data G(z) from a distribution of PZ
and discriminator D distinguishes fake data from real data X.

The deep convolutional GAN (DCGAN) (Radford et al.,

2015) as a variant of GAN has the potential to improve the

stability of training and alleviate mode collapse that the original

GANmay suffer from. Assume that the distribution of real data is

PD, both the generator and discriminator are iteratively

optimized against each other in a minimax game as follows

(Radford et al., 2015):

max
θG

max
θD

Ex~PD[logD(x)] + Ez~pz[log(1 − D(G(z)))], (9)

where θG and θD denote the parameters of G and D, respectively.

In this work, we used a DCGAN-based technique to generate

the simulated samples of SPECT images. Figure 6 shows the

diagram of training such a network, where the iteration

parameter is set as k = 3 in the experiment.

The samples generated by using the aforementioned

DCGAN-based technique and the images in data set D1 are

grouped into data set D3, which is outlined in Table 1.

3.3 Experimental setup

The evaluation metrics used include Dice similarity

coefficient (DSC), class pixel accuracy (CPA), and Recall,

which are defined in Eqs 10–12.

DSC � 2 · TP
FP + 2 · TP + FN

, (10)

CPA � TP
TP + FP

, (11)

Recall � TP
TP + FN

, (12)

where TP = true positive, TN = true negative, FP = false negative,

and FN = false negative.

The parameter setting of the proposed deep segmentation

model is provided in Table 2.

In the experiment, we divided each data set in Table 1 into

two parts: subset 1# for unsupervised learning and subset 2# for

supervised learning. Specifically, in each subset, we have

randomly chosen 70% of the samples to train and the rest

(30%) to test the developed segmentation model. It is worth

noting that samples without manual labels are used to train the

proposed model in an unsupervised manner, and samples with a

varied number of manual labels are used to train the model in a

semi-supervised manner. Images which include the augmented

ones from the same patient were not divided into different

subsets because they would show similarities. The trained

model was run 10 times on the test subset to reduce the

effects of randomness. For the aforementioned defined

evaluation metrics, the final outputs of the model are the

average of the 10 running results. The experimental results

reported in the next section are the averaged ones, unless

otherwise specified.

The experiments are run in TensorFlow 2.0 on an Inter

Xeon(R) Silver 4110 PC with 16 Kernels 62 GB RAM running on

Ubuntu 16.04 equipped with a GeForce RTX 2080 × 2.

3.4 Experimental results

In this subsection, we evaluated the segmentation

performance of the proposed semi-supervised model with

respect to the evaluation metrics on several data sets as shown

in Table 1.

TABLE 1 Overview of the data sets used in this work.

Data set Number of samples Annotation

D1 112 —

D2 2280 —

D3 2280 —

D4 4560 D2 + D3
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3.4.1 Quantitative scores
Table 3 reports the scores of evaluation metrics obtained by

the semi-supervised model on test samples in data sets D1–D4,

where Llabel refers to the number of labeled samples used while

training the model.

On the whole, the proposed semi-supervised model performs

best on data set D2. This tells us, on the one hand, that data

augmentation positively contributes to improving segmentation

performance; on the other hand, geometric transformation is

more suitable to be used for augmenting the size of the SPECT

data set when compared to the adversarial learning–based

augmentation since image flipping, translation, and rotation

operations can preserve label post-transformation.

Using test samples in data set D2, we examined how the

number of labeled samples (i.e., Llabel) affects the segmentation

performance, by providing experimental results in Figure 7.

From the experimental results in Figure 7, we can see that as

expected, the scores of evaluation metrics keep increasing as Llabel
increases. When 37% of the labeled samples were used for the

training model, the best segmentation performance (DSC =

0.683, CPA = 0.715, and Recall = 0.601) was obtained. An

exception is that the unsupervised model (Llabel = 0) obtained

the highest score for the Recall metric, which is mainly

contributed by background pixels during testing the model.

This reveals the major difference between our SPECT and the

natural images: objects (i.e., lesions) in the former are far smaller

than those in the background.

3.4.2 Ablation experiments
The reported aforementioned experimental results were

obtained when the complete model was recurrently run thrice

on data set D2 without image aggregation. In this subsection, a

set of scores of ablation experiments are reported.

Impact of recurrent feature extraction on segmentation

performance: as mentioned in subsection 2.4.1, the feature

extraction network can run in a recurrent manner. It is

necessary to examine the impact of parameter t on the

segmentation performance, which is illustrated in Figure 8.

Figure 8 demonstrates that recurrent feature extraction is of

great necessity, and a value of 3 for t is optimal when the

complete model is used during the feature extraction stage. In

Table 4, we further present the number of model parameters and

the test time for different recurrence times.

It can be seen that the proposed model can segment bone

metastatic lesions efficiently with a maximum test time of 4.21 s.

FIGURE 6
Illustration of generating fake samples of SPECT images using DCGAN-based sample generation technique.

TABLE 2 Parameter setting of the proposed deep segmentation
model.

Parameter Value

Input size 256 × 256

Optimizer Adam

Learning rate 0.0005

Learning momentum 0.9

Weight decay 0.0001

Epoch 400

TABLE 3 Scores of evaluation metrics obtained by the proposed semi-
supervised model.

Data set Llabel DSC CPA Recall

D1 10 0.582 0.618 0.547

D2 210 0.586 0.621 0.539

D3 210 0.481 0.507 0.471

D4 210 0.483 0.514 0.487

The bold value in each column indicates the maximal one.

Frontiers in Molecular Biosciences frontiersin.org08

Lin et al. 10.3389/fmolb.2022.956720

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.956720


Despite the significant increases of parameters, the time grows

slowly.

Impact of network structure on segmentation performance:

until now, the best aforementioned segmentation performance

was obtained when the feature extraction network was structured

as stacked dilated residual convolutions combined with the

inception block. We call such a model a complete model. It is

required to explore whether the segmentation performance

varies as the structure of the feature extraction network

changes. Table 5 reports the scores of DSC under different

cases, with each indicating one type of setting, where Case 4#

denotes the one with which our model achieved the best

segmentation performance.

We can see from Table 5 that the value of DSC increases

steadily as the feature extraction network approaches the

“perfect” structure as shown by Case 4#. An absolute increase

of 0.051 for DSC shows superiority of stacked dilated residual

convolution layers for automatically extracting the representative

features of bone metastasis lesions from low-resolution SPECT

images.

Impact of image aggregation on segmentation performance:

image aggregation operation conducted on ‘optimal’ data set

D2 outputs an aggregated data set D2_Agg. There are

1,140 aggregated samples in data set D2_Agg. Image or

feature aggregation is detailed in subsection 2.1.3. In Figure 9,

FIGURE 7
Segmentation performance obtained by the proposed model when varying numbers of labeled samples were used during training the model.

FIGURE 8
Illustration of impact of recurrent feature extraction on
segmentation performance obtained by the complete model on
data set D2 without image aggregation.

TABLE 4 Number of model parameters and test time for different
recurrence times.

t Number of model parameters (million) Test time (sec)

1 3.654 2.19

2 9.808 2.45

3 23.545 2.60

4 46.826 4.21

TABLE 5 Impacts of structure changes of the feature extraction
network on the segmentation performance.

Case Dilated conv. Inception Residual unit DSC

1# — — — 0.632

2# √ — — 0.656

3# √ √ — 0.667

4# √ √ √ 0.683

The bold value in each column indicates the maximal one.
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we have shown the scores of several evaluation metrics on data

sets D2 and D2_Agg.

We can see from Figure 9 that the image aggregation

operation slightly improves the performance, with an increase

of 0.006 for CPAwhen the proposedmodel was trained in a semi-

supervised manner with 840 labeled samples.

3.4.3 Comparative analysis
A comparative analysis was conducted between the proposed

model and existing classical models which included U-Net

(Ronneberger et al., 2015) and its variant nnU-Net (Isensee

et al., 2021). The U-Net and its variants are well-known

supervised models. We therefore selected 70% of the samples

(i.e., Llabel = 798) for training U-Net and nnU-Net. Our semi-

supervised model was trained using 37% of samples (i.e., Llabel =

420). Table 6 reports the scores of evaluation metrics achieved by

several models.

It can be seen that the existing supervised models perform

slightly better than the proposed semi-supervised model. On the

whole, however, our model obtains comparable performance

with DSC = 0.692. The model U-Net and its variants were

originally designed for supervised learning, which cannot be

trained in a semi- or unsupervised manner. The

encoder–decoder structure combined with the skip connection

that the U-Net has greatly inspires us to develop better semi-

supervised models using more samples of SPECT images in the

near future.

4 Discussion

In this section, we provide a brief discussion about the

proposed semi-supervised segmentation model on identifying

and delineating bone metastasis lesions in 99mTC-MDP SPECT

images. This section begins with a visual presentation of the

segmented images, which is followed by an analysis on the

reasons that account for the imperfect performance.

With regional images in the thorax acquired from two

patients with metastasis, Figure 10 shows the segmented areas

by our model, where the original images and manual labels are

also presented.

The visual presentation depicted in Figure 10 shows that our

model performs better on segmenting the single-lesionmetastasis

(patient 1#) than themulti-lesion one (Patient 2#). There is almost

no difference between themanually labeled and the automatically

delineated regions of the image acquired fromPatient 1#, whowas

clinically diagnosed with bonemetastasis in the collarbone. There

isalsononoticeable improvement inperformanceas thenumberof

labeled samples significantly increases during the training model.

By contrast, there is quite a distinction in terms of the size of the

lesion between themanually labeled and automatically delineated

areas of the image acquired from Patient 2#, who was clinically

diagnosedwithbonemetastasis in the collarbone, left scapula, ribs,

and lumbar vertebrae simultaneously.

Now, we present the possible reasons that negatively affect

segmentation performance as follows.

Imperfect manual annotation: 99mTC-MDP SPECT imaging

is typically characterized by the inferior spatial resolution, which

brings a significant challenge to the pixel-level annotation by

human researchers. The situation will get much worse when

multiple tiny lesions are present in an image (e.g., the one from

Patient 2# in Figure 10). Any error of manual annotation may

result in incorrect classification of pixels by the automated

segmentation model. The more the pixels have been correctly

classified, the higher the values for DSC, CPA, and Recall are.

Therefore, the imperfect manual annotation mainly accounts for

the decreased segmentation performance.

Insufficient feature representation: the proposed deep

segmentation model segments metastatic lesions via first

extracting the hierarchical features of lesions and then

classifying the pixel-level features into classes. However,

learning the representative features of metastasis lesions from

a small-scale data set of low-resolution images is significantly

challenging as metastasis lesions are commonly distributed

irregularly and typically show variability in size, shape, and

intensity of radiopharmaceutical uptake. Although data

augmentation, especially the geometric transformation-based

operations, positively contributes to improving segmentation

FIGURE 9
Scores of evaluationmetrics obtained by the proposedmodel
on test samples in data sets D2 and D2_Agg, with the number of
labeled samples used for training the model being Llabel = 840 and
Llabel = 420 for D2 and D2_Agg, respectively.

TABLE 6 Comparative analysis between the proposed model and
existing models with test samples in data set D2_Agg.

Llabel Model DSC CPA Recall

798 U-Net 0.695 0.722 0.608

798 nnU-Net 0.757 0.772 0.712

420 Proposed 0.692 0.721 0.624
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performance, more samples are still needed to be used for

extracting deeper features of bone metastasis lesions.

Now, we can summarize that the proposed semi-supervised

segmentation model has the potential to be used to automatically

detect and delineate bone metastasis lesions with low-resolution

SPECT images. A score of 0.683 for DSC has been obtained by the

proposed deep model on the augmented data set if only 37%

(≈840/2280) of the labeled samples were used for training the

model. In the case that the model was trained with the aggregated

samples, i.e., 37% (≈420/1140) of the labeled images, a score of

0.692 was obtained for DSC, achieving comparable segmentation

performance.

5 Conclusion

To facilitate the clinical diagnosis of skeletal metastasis by

nuclear medicine physicians, in this work, we have proposed a

semi-supervised segmentation model to automatically detect and

delineate bone metastasis lesions in the regional SPECT images.

The proposed model was presented by detailing the structures of

feature extraction and pixel-level feature classification stages.

Experimental data of clinical SPECT bone scan images and the

data augmentation methods used were also elaborated. The

experimental evaluation conducted on these images has shown

that the proposed model has the potential to be used as a clinical

tool for automatically delineating the boundaries of bone

metastasis lesions in low-resolution images, achieving a best

mean score of 0.692 for DSC, if the model was trained using

37% of the aggregated samples with manual labels.

We plan to extend ourwork in two directions in the future. First,

we intend tocollectmoredataof clinical SPECTimages andfine-tune

the proposed semi-supervised model such that it can work in

computer-aided diagnosis systems. Second, we plan to develop

models for whole-body SPECT image segmentation, enabling

automateddetection anddelineation ofmulti-lesionbonemetastasis.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed and

approved by the Ethics Committee of Gansu Provincial Hospital.

Author contributions

Conceptualization: QL, RG, andML; methodology: QL, RG,

and ML; software: RG and ML; validation: QL, RG, and ML;

formal analysis: QL, ZM, and YC; investigation: QL; resources:

HW and RW; data curation: HW, RW, and QL;

writing—original draft preparation: QL and ML;

writing—review and editing: QL, RG, and ML; visualization:

RG and ML; supervision: QL; project administration: QL;

funding acquisition: QL and ZM. All authors have read and

agreed to the published version of the manuscript.

Funding

This work was supported by the Key R&D Plan of Gansu

Province (21YF5GA063), the Youth Ph.D. Foundation of

Education Department of Gansu Province (2021QB-063), the

Natural Science Foundation of Gansu Province (20JR5RA511),

the Fundamental Research Funds for the Central Universities

(31920220020, 31920220054, 31920210013), the National

Natural Science Foundation of China (61562075), the Gansu

Provincial First-class Discipline Program of Northwest Minzu

FIGURE 10
Visual presentation of manually labeled lesions and automatically segmented lesions by our semi-supervised deep segmentation model.

Frontiers in Molecular Biosciences frontiersin.org11

Lin et al. 10.3389/fmolb.2022.956720

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.956720


University (11080305), and the Program for Innovative Research

Team of SEAC ([2018] 98).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

editors, and reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Apiparakoon, T., Rakratchatakul, N., Chantadisai, M., Vutrapongwatana, U.,
Kingpetch, K., Sirisalipoch, S., et al. (2020). MaligNet: Semisupervised learning for
bone lesion instance segmentation using bone scintigraphy. IEEE Access 8,
27047–27066. doi:10.1109/access.2020.2971391

Asgari Taghanaki, S., Abhishek, K., Cohen, J. P., Cohen-Adad, J., and Hamarneh,
G. (2021). Deep semantic segmentation of natural and medical images: A review.
Artif. Intell. Rev. 54, 137–178. doi:10.1007/s10462-020-09854-1

Aslanta, A., Dandl, E., Akrolu, M., and Cakiroǧlu, M. (2016). Cadboss: A
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