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The major hallmark of Parkinson’s disease (PD) is represented by the formation

of pathological protein plaques largely consisting of α-synuclein (αSN) amyloid

fibrils. Nevertheless, the implications of αSN oligomers in neuronal impairments

and disease progression aremore importantly highlighted thanmature fibrils, as

they provoke more detrimental damages in neuronal cells and thereby

exacerbate α-synucleinopathy. Interestingly, although generation of

oligomeric species under disease conditions is likely correlated to

cytotoxicity and different cellular damages, αSN oligomers manifest varying

toxicity profiles dependent on the specific environments as well as the shapes

and conformations the oligomers adopt. As such, this minireview discusses

polymorphism in αSN oligomers and the association of the underlying

heterogeneity in regard to toxicity under pathological conditions.
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1 Introduction

The pathogenesis of Parkinson’s disease (PD), the second most common type of

neurodegenerative disease, is multifactorial with various known molecular and transgenic

factors. Irrespective of the precise cause, α-synucleinopathy is considered as the major

pathological hallmark of PD characterized by the abnormal fibrillation and subsequent

aggregation of a presynaptic neuronal protein called α- synuclein (αSN) (Spillantini et al.,
1997; Dawson and Dawson, 2003). Although different putative functions of αSN such as

the regulation of neurotransmitter release have been suggested, its exact functions under

normal conditions remain elusive (Stefanis, 2012). The implications of αSN most

prominently manifest in different neurodegenerative diseases including PD, as

pathological deposits called Lewy bodies (LBs) are largely formed by αSN amyloid

fibrils (Kim et al., 2014). As the disease progresses, these deleterious αSN aggregates

undergo neuron-to-neuron propagation along the midbrain, which progressively kill off
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dopamine producing neurons in the substantia nigra (Desplats

et al., 2009). Thus, in the early days of studies, researchers

devoted their attention to the exploration of mature fibrils in

the hopes of understanding the formation of LBs and their

association with the disease progression.

Around the late 1990s, however, attention shifted to soluble

oligomers, as growing evidence from cellular toxicity studies

suggested that oligomeric species provoke more severe

detriments to neurons when compared against fibrillar

aggregates (Bemporad and Chiti, 2012; Stefani, 2012). The

ensuing findings from established in vitro and in vivo

experiments, coupled with the biofluids and tissue samples

from human patients, further validate the implications of

oligomeric species in triggering and aggravating α-
synucleinopathy in PD (Kalia et al., 2013; Cremades et al.,

2017). The oligomerization of αSN unavoidably produces a

heterogenous population of oligomers varying in size and

morphology. Namely, assorted oligomers ranging from small

(~2–5-mers), medium (~5–15-mers), to large (~15–150-mers)

species can be formed in different shapes (Oliveri, 2019). In

addition to the distinctive toxicity profiles these oligomers

exhibit, their structural and conformational heterogeneity

consequentially gives rise to polymorphism in mature fibrils,

which remains crucial for garnering further insight into the

formation of LBs (Stefani, 2012). Therefore, beyond their

overarching impact in neuronal impairment, understanding

polymorphism in αSN oligomers, including drawing a clearer

connection between heterogeneity and toxicity, is crucial for a

more complete comprehension of disease progression and drug

development to yield an effective target selection for PD.

As such, this minireview highlights the importance of

polymorphism in αSN oligomers through the correlation with

various forms of cellular damages in neurodegenerative diseases,

focused on PD. While understanding the in vivo formation and

progression of αSN oligomers stands as a critical element in drug

development, obtaining granular information around the

fibrillation process inevitably demands extensive in vitro

studies to investigate key aspects that are comparably

infeasible in vivo. Hence, this minireview predominantly

focuses on various in vitro studies with suggested relevance

and correlation to in vivo environments, as well as further

translation of these findings into clinical settings. Foremost,

we discuss the reported pathways of oligomer generation,

which primarily take place during the formation and

disaggregation of amyloid fibrils. Several noticeable features

are highlighted and common across these oligomers, such as

size, shape, post-translational modifications, as well as relevance

in their distinct toxicity profiles. Based on these unique

characteristics, the specific types of damages different

oligomeric species provoke in neuronal cells are outlined.

Finally, we present several notable modulators for varying

types of αSN oligomers, which provide important and timely

insight into the ongoing and forthcoming drug development

efforts to surmount α-synucleinopathy which exhibits a

polymorphic fibrillation process.

2 Oligomer polymorphism, toxicity,
and disease progression

2.1 Generation of oligomers

2.1.1 Amyloid fibril formation
The formation of diverse non-fibrillar aggregates can be

identified with several standardized biophysical methods

including electron microscope (EM), atomic force microscope

(AFM), and fluorescence spectrometer at the onset of

amyloidogenesis. Namely, the early stages of αSN fibrillation

generate an array of distinct oligomeric species varying in size,

shape, stability, and β-sheet content, particularly during the lag

phase (Cremades et al., 2017). This is mainly because i) the

nucleation and growth of fibrils occurs within a heterogeneous

population of small, medium, and large oligomers and ii) even

the oligomerization of identical monomers acquires distinct

conformations dependent on the specific and unique

conditions. These oligomeric species can be either on-pathway

intermediates or off-pathway dead end products, however most

of them are considered unstable, transient intermediates arising

in the path of forming mature fibrils (Stefani, 2012; Karamanos

et al., 2019). Although the major difference between on- and off-

pathway oligomers is distinguished by the eventual formation of

fibrillar assemblies, some researchers only classify the oligomers

whose blockage can lead to an apparent prevention of fibril

formation as on-pathway oligomers (Dear et al., 2020). It should

be noted that the formation of stable off-pathway intermediates

by compounds such as polyphenols has been suggested as a

strategy to reduce relevant toxicity. However, both on- and off-

pathway oligomers are implicated with toxicity in different

contexts, depending on many complicated factors, some of

which are described in later sections.

2.1.2 Amyloid fibril disaggregation
Previous findings have also demonstrated that mature αSN

amyloid fibrils release soluble polymorphic dimers and

oligomers, which may provoke severe toxic outcomes to

neurons in the vicinity (Cremades et al., 2012; Cascella et al.,

2021). Interestingly, oligomers produced from short fibrils elicit

significantly more deleterious effects in neurons when

compared to species released from long fibrils. This is partly

because the release of toxic oligomers occurs from the fibrillar

ends; shorter fibrils facilitate a faster release owing to their

higher proportion of ends (Cascella et al., 2021). In addition to

immediate functional impairments in the neurons, these

oligomeric species can be internalized and contribute to

progressive diffusion of α-synucleinopathy through neuron-

to-neuron transmission. Studies on denatured mature fibrils
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under supercooling conditions show annular and spherical

oligomeric species, which reportedly exhibit similar toxicity

levels to oligomers generated during amyloid formation (Kim

et al., 2008).

2.1.3 Binding to lipid membranes
The interactions between αSN monomers and the cell

membrane are particularly critical during the initial stages

of amyloid formation (Terakawa et al., 2018a; Terakawa et al.,

2018b; Lin et al., 2022). Upon binding to lipid membranes,

αSN monomers oligomerize, primarily to dimers and trimers,

as the cross-linking between αSN monomers act to stabilize

the conformations of membrane-bound αSN (Cole et al., 2002;

Ding et al., 2002). Notably, the membrane-induced

oligomerization of αSN may result in the formation of

nucleation sites for subsequent aggregation and aggravated

α-synucleinopathy. Some researchers suggest that a longer

incubation of membrane-bound spherical oligomers results in

structural conversion into membrane-bound annular

oligomers, where such alteration may contribute to

increased toxicity and accelerated disease progression (Ding

et al., 2002).

2.2 Structure-toxicity relationships

Unlike mature amyloid fibrils, αSN oligomers are

predominantly localized in the presynaptic terminals, where

they exert harmful impacts on synapses and dendrites. Similar

to their provocation of distinct fibrillation kinetics to mature

amyloids, differently structured and shaped oligomers elicit

distinctive toxic outcomes.

2.2.1 Spherical oligomers
The early onset of the fibrillation process typically

produces small spherical oligomers, which further

assemble into annular protofibrils or even mature fibrils in

the presence of excess αSN monomers (Cremades et al.,

2017). While the mechanisms underlying the toxicity of

αSN oligomers primarily pertain to various forms of cell

membrane perturbation, the interactions between spherical

oligomers and the membrane are not particularly

pronounced (Surguchov et al., 2017). Therefore, compared

to annular oligomers, spherical or globular oligomers are

considered more stable and thus generally display less

deleterious toxicity profiles (Cremades et al., 2012). In

support of this notion, studies on brain tissue samples of

multiple system atrophy (MSA) patients manifesting α-
synucleinopathy revealed that mild detergent treatment

breaks apart the inclusions into 30–50 nm-sized annular

oligomers. On the other hand, the same treatment on

recombinant wild type (WT) αSN results in the release of

spherical oligomers (Pountney et al., 2005). The findings

suggest that pathological conditions preferentially form

annular oligomers with higher toxicity. However, it should

be noted that unlike annular oligomers, spherical oligomers

can be internalized by neuronal cells and function as a seed

for consequential nucleation and elongation (Danzer et al.,

2007). Taken together, although the direct toxicity of

spherical oligomers is deemed relatively subtle in eliciting

destructive outcomes, their spontaneous conversion to

annular oligomers and/or the creation of further

nucleation sites may contribute to exacerbated α-
synucleinopathy.

2.2.2 Annular oligomers
Annular species have become the focal point for

understanding the neuronal impairments induced by αSN
oligomers under disease conditions. In addition to the studies

with MSA patients’ brain tissue samples showing αSN inclusions

are predominantly formed by annular species, several subsequent

studies further validate the implications of annular oligomers in

toxicity including the specific types of damages they provoke.

2.2.2.1 Membrane damage

In the past, the prevailing hypothesis around the toxicity of

αSN oligomers proposed the embedment of annular species into

lipid bilayers, which leads to the formation of pore-like protein

channels (Kostka et al., 2008). However, further analyses have

since corroborated that the intercalation of the oligomers

between tightly packed lipid domains induces disintegration of

the hydrophobic core where destabilized membrane permeability

thus triggers an aberrant transport of molecules across the

membrane (Stöckl et al., 2013). Indeed, the updated notion with

decreased lipid order is consistent with the observations of elevated

lipid flip-flops induced by oligomers. Importantly, membrane

destabilization can lead to dysregulation of intracellular calcium

homeostasis; several hypotheses consider atypically increased

intracellular calcium levels as an important factor contributing to

neurodegeneration (Zaichick et al., 2017). In addition to the

formation of toxic annular oligomers of 70–90 nm in diameter

when bound to the C-terminal of αSN, elevated intracellular calcium
levels via unregulated transport of extracellular calcium induce a

remarkable increase in the activation of caspase-3 for consequential

apoptosis (Danzer et al., 2007). It should also be noted that aberrant

ion flux correlates with abnormal patterns in the neuronal

excitabilities, which allude to another aspect of neuronal

vulnerability in PD.

2.2.2.2 Other damages

While growing evidence supports disruption of the plasma

membrane integrity via oligomer-membrane interaction,

various other forms of cellular damages by αSN oligomers

have been reported. Akin to the plasma membrane

destabilization, destructive permeabilization into the

membranes of mitochondria, endoplasmic reticulum (ER),
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and various trafficking vesicles can be more readily provoked

by annular oligomers. Such damages trigger enhanced

oxidative stress, membrane depolarization, and various

forms of dysfunction including disruption of the electron

transport chain in mitochondria (Stefani, 2012).

Impairments in the ER-Golgi membranes are linked to

ubiquitin/proteasome system-mediated clearance pathways

as well as obstruction of trafficking. In addition, severe

lysosomal leakages and/or adverse cytoskeletal changes can

manifest (Oliveri, 2019). Finally, membrane-bound forms or

internalized soluble species can act as nucleation sites to

spread and aggravate α-synucleinopathy (Cascella et al.,

2021). Possible toxicity pathways induced by αSN
oligomers are outlined in Figure 1A.

2.2.3 Secondary structure
In addition to morphological characteristics, distinct

secondary structure contents within similarly shaped and

sized αSN oligomers can lead to conflicting outcomes in

cytotoxicity. Namely, oligomeric species with richer β-sheet
content are likely inclined to make deleterious interactions

with cellular membranes as binding is facilitated by

increased hydrophobicity (Alam et al., 2019). Fusco et al.

employed two different types of spherical oligomers within a

FIGURE 1
Toxic effects of αSN oligomers. (A) Schematic representation of the αSN oligomerization and ensuing toxicity. The outlined process includes: 1)
impaired proteostasis, 2) prolonged ER stress, 3) aberrant pore formation, 4) dysfunctional glutamate receptor, and 5) intracellular uptake and
seeding followed by 6) neuron-to-neuron transmission of pathological aggregates (Kalia et al., 2013). (B) Schematic representation of themembrane
destabilization process by two types of oligomers with distinct secondary structure contents. Type-A* oligomers are predominantly
unstructured and can only bind to the surface of biological membranes (left). Type-B* oligomers exhibit both disordered (gray) and β-sheet (red)
regions where the β-sheet regions penetrate through the lipid bilayers, provoking destabilization (right). In addition, the folding of the N-terminal
regions into α-helices (blue) provide more binding regions to the membrane (Fusco et al., 2017).
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similar size range that display contradicting toxicity profiles

(Fusco et al., 2017). While type A oligomers did not elicit any

disruption in synthetic and cellular membranes, type B

oligomers exhibited clear signs of destructive perturbation

in the membranes as well as damages from impaired

mitochondrial functions and increased ROS levels. Such

disparity in toxicity can be attributed to the difference in

their secondary structure contents. As shown in Figure 1B,

While the type A oligomers predominantly manifest

unstructured conformation, the type B oligomers show

evident β-sheet and random-coil contents. In addition,

unlike the type A oligomers, the type B oligomers display

dynamic N-terminal regions, which adopt amphipathic α-
helices upon interacting with cellular membranes.

Collectively, beyond the type B oligomers’ β-sheet
structure that inserts into the membranes and thereby

destabilizes integrity, the helical folding of the N-terminal

regions further contributes to conspicuous membrane

disruption. In support of these findings, Xu et al.

performed a comparative toxicity analysis of different

variants of αSN oligomers (G51D, A30P, E46K, H50Q,

and A53T) associated with the onset of familial PD (Xu

et al., 2022). Despite their comparable size, overall

morphology, and β-sheet content, only G51D oligomers

show markedly higher toxicity than WT oligomers. It is

fascinating to note that G51D oligomers reveal

polymorphism in the α-helical content, where their richer

presence results in more detrimental outcomes. Helical

folding of the N-terminal part also shows the importance

in binding to the membranes of presynaptic vesicle and

mitochondria (Terakawa et al., 2018a; Terakawa et al.,

2018b; Lin et al., 2022). Thus, besides hydrophobicity and/

or the level of β-sheet content, α-helical content stands as an
important factor in understanding the structure-toxicity

relationships of αSN oligomers.

2.2.4 Post-translational modifications
αSN can undergo several types of post-translational

modifications that alter the propensity for aggregation, which

thereby affect the toxicity profiles and levels of oligomers (Alam

et al., 2019).

2.2.4.1 Phosphorylation

Phosphorylation of αSN plays a critical role in

modulating the fibrillation process and relevant

neurotoxicity (Barrett and Greenamyre, 2015). While αSN
can be phosphorylated at different residues including

tyrosine 133 and 136 (Y133 & 136), phosphorylation at

serine 129 (S129) is one of the most representative

hallmarks of the fibrillation process, which increases the

levels of toxic αSN oligomers (Fujiwara et al., 2002). On

the other hand, phosphorylation at other residues such as

S87 and Y125 can decrease the production of αSN oligomers

by modulating the interactions between αSN and the cell

membrane (Chen et al., 2009; Paleologou et al., 2010).

2.2.4.2 Nitration

Various reactive nitrogen species (RNS) including

peroxynitrite (ONOO−) can nitrate tyrosine residues in αSN,
which can be detected with 3-nitrotyrosine antibodies. Nitration

of αSN may render a protective factor against α-synucleinopathy
as in vitro nitrated αSN cannot undergo fibrillation while also

preventing the fibrillation of non-nitrated αSN in the vicinity

(Yamin et al., 2003; Hodara et al., 2004). This can be attributed to

the preferential production of stable spherical oligomers that are

predominantly octamers with some dimeric and trimeric

populations. On the other hand, several contrasting results

report that nitrated αSN oligomers’ reduced association with

lipid vesicles favors self-aggregation, which promotes the

formation of inclusions to exacerbate α-synucleinopathy (Liu

et al., 2011). However, it should be noted that the cytotoxicity of

nitrated αSN has a deeper connection with the integrin- inducible

NO synthase (iNOS)/-focal adhesion kinase (FAK) signaling

pathway than with the formation of cytotoxic oligomers.

2.2.5 Other modifications
2.2.5.1 Lipid peroxidation

Under pathological conditions, increased production of

reactive oxygen species (ROS) causes lipid peroxidation of

various polyunsaturated fatty acids (PUFAs) in the brain that

alter αSN fibrillation. Foremost, docosahexaenoic acid (DHA),

which localizes at synapses, is known to promote αSN
aggregation with the production of heterogeneous oligomers

dependent on the molar ratio (De Franceschi et al., 2011;

Fecchio et al., 2013). More importantly, peroxidation of DHA

is implicated in the generation of reactive aldehydes such as 4-

hydroxyl-2-nonenal (4-HNE), when other peroxidation adducts

produce acrolein, malondialdehyde (MDA), and 4-oxo-2-

nonenal (4-ONE), which all exhibit considerable cytotoxicity

by themselves (Esterbauer et al., 1991; Lee and Blair, 2000).

Noticeably, covalent modifications of αSN by 4-ONE and 4-HNE

are known to trigger the production of highly toxic off-pathway

αSN oligomers rich in β-sheet content (Nasstrom et al., 2011).

The oligomers induced by 4-ONE are mostly amorphous with

higher stability and lower protease-resistance, whereas 4-HNE

induces the generation of distinctly shaped species ranging from

spherical to annular. This is supposedly due to 4-ONE’s carbonyl

group resulting in more potent cross-linking. It should also be

noted that increased levels of adducts associated with 4-HNE and

acrolein have been found in PD brain tissues (Castellani et al.,

2002).

2.2.5.2 Metal ion binding

While the brain maintains proper metal homeostasis,

dysregulated levels of metal ions under pathological conditions

lead to increased ROS production and aberrant interactions with
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αSN that stimulate aggregation. In addition to the aforementioned

role of Ca2+ ions in producing annular oligomers, the implications of

different metal ions including Cu2+, Fe3+, Al3+, and Cd2+ in

promoting the formation of αSN oligomers and fibrils have been

highlighted (Uversky et al., 2001). Akin to Ca2+, Cu2+ also accelerates

oligomerization by binding to the C-terminal of αSN, where the

presence of Cu2+ chelators reposition αSN towards the membrane

with decreased aggregation (Wang et al., 2010). It is also important

to note that Fe3+ results in the creation of destructive ion-permeable

pores by inducing the formation of sodium dodecyl sulfate (SDS)-

resistant oligomers (Kostka et al., 2008).

2.2.5.3 Nucleic acids

The interplay between αSN and nucleic acids has also been

investigated under different conditions. Particularly, double-

stranded DNA (dsDNA) interacts with αSN to promote

fibrillation along with evident association with the mature

fibrils (Cherny et al., 2004; Di Domizio et al., 2012). Namely,

soluble αSN oligomers display preferential binding with nucleic

acids and glycosaminoglycans (GAG) to accelerate the formation

of mature fibrils. Interestingly, such binding decreases the

cytotoxicity presumably due to the structural conversion of

strongly toxic oligomers into less toxic fibrils (Di Domizio

et al., 2012). Nevertheless, the in vivo and clinical significance

of nucleic acids in αSN fibrillation remains questionable as a

recent study demonstrated that amyloid αS binding to dsDNA is

weak and nonspecific (Jos et al., 2021).

2.3 Modulators targeting oligomers

Current PD medications in the clinic focus on mitigating

major motor symptoms by administering levodopa to

compensate for the dopamine deficiency-provoked disruption

of the nigrostriatal pathway (Salat and Tolosa, 2013). In the hope

of fundamentally altering the disease progression for a more

efficacious and sustainable intervention, several studies have

introduced modulators of toxic αSN oligomers, which can

effectively reduce neuronal impairments and impede disease

progression by multiple mechanisms (Figure 2).

2.3.1 Polyphenols
Vast exploration has been made into the inhibitory

functions of several polyphenols against the fibrillation of

FIGURE 2
Schematic representation of the formation of αSN oligomers and intervention strategies. αSN oligomers are generated through the aggregation
of monomers or the disaggregation of amyloid fibrils. The modulators described in this review interfere with the toxicity of αSN oligomers by five
molecular mechanisms: (1) the inhibition of αSN amyloid formation, (2) the enhanced formation of non-toxic oligomers, (3) the stabilization of non-
toxic oligomers for blocking their conversion to toxic oligomers, (4) the displacement of toxic oligomers from cell membranes, and (5) the
enhancement of the degradation of oligomers.
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amyloidogenic proteins such as αSN, amyloid beta (A β),
tau, and prion (Freyssin et al., 2018). Common across these

polyphenols manifests structural suitability conducive to

inhibiting aggregation, as well as antioxidant properties

underlying their efficacy. Interestingly, some polyphenolic

compounds display evident specificity towards αSN
oligomers. Foremost, protocatechuic acid (PCA)

preferentially binds to oligomers or preformed amyloid

fibrils to effectively reduce the toxicity provoked by αSN
oligomers and fibrils (Hornedo-Ortega et al., 2016).

Different flavonoids such as baicalein and

epigallocatechin-3-gallate (EGCG) also exhibit

neuroprotective features by regulating the oligomerization

via several putative mechanisms. While some studies propose

that baicalein prevents the formation of high-molecular weight

αSN oligomers and thereby interferes with the oligomerization,

other reports suggest its role in facilitating the formation of non-

toxic spherical oligomers as the grounds for toxicity reduction

(Zhu et al., 2004; Hong et al., 2008). Noticeably, EGCG also

prevents amyloidogenesis by promoting the generation of small

spherical oligomers (Ehrnhoefer et al., 2008; Zhao et al., 2017).

These findings collectively highlight an important aspect of

therapeutic development; stabilization of pathological oligomers

into less deleterious species like spherical oligomers can likely lead

to attenuated cytotoxicity with impeded disease progression. In

addition, other compounds from diverse subclasses of polyphenols

including curcumin, quercetin, and orcein-related molecules (O4)

have been identified, highlighting their ability to modulate αSN
oligomers and thereby mitigate the relevant toxic outcomes

(Pandey et al., 2008; Bieschke, 2013; Zhu et al., 2013). On the

other hand, different oxidization products of dopamine, namely

catecholamines, are known to trigger the generation of toxic

oligomers while successfully arresting the fibrillation process

(Bisaglia et al., 2007; Mor et al., 2017). It is important to note

that the interplay between dopamine and αSN is particularly

significant under pathological conditions as αSN has a

profound impact on controlling dopamine synthesis, transport,

and uptake. Hence, understanding how oxidized derivatives of

dopamine exacerbate the toxicity of αSN oligomers and thereby

accelerate the disease progression should be underlined.

2.3.2 Non-polyphenols
Different types of non-polyphenolic small molecules also

display therapeutic effects by modulating the levels or properties

of αSN oligomers. Authorized as a diuretic for several medical

purposes including the reduction of intracranial pressure,

mannitol plays a notable function in αSN oligomerization

(Shaltiel-Karyo et al., 2013). Remarkably, while mannitol does

not prevent the generation of oligomers, it blocks the formation

of large oligomers and induces conformational changes from α-
helices to unidentified structures. The secondary structure

change presumably leads to an alternative aggregation

pathway that manifests decreased neurotoxicity. Several

compounds isolated from natural sources have also shown

efficacy in alleviating oligomer-provoked toxicity. Squalamine,

obtained from the spiny dogfish shark, is known to displace toxic

oligomers from cellular membranes and thereby interfere with

the membrane damage caused by oligomers (Limbocker et al.,

2021). Active ingredients of Ginseng, particularly Rb1, can act to

stabilize non-toxic αSN oligomers with negligible β-sheet content
(Ardah et al., 2015). In addition, different epidemiological studies

suggest cigarette smoking is linked to lower onset rate of PD.

Interestingly, nicotine and hydroquinone, major inhalants of

smoking may facilitate the formation of non-toxic spherical

oligomers, leading to reduced toxicity (Ono et al., 2007).

Finally, Anle138b is a lead candidate among various pyrazole

compounds specifically designed to modulate αSN oligomers. By

interacting with the hydrophobic binding pocket composed of several

αSN, Anle138b exhibits preferential binding with oligomers without

any proof of interaction with monomers (Wagner et al., 2013). This

leads to Anle138b′s confirmed efficacy in different in vitro and in vivo

studies, which also corroborate its ability to halt disease progression

and prevent neurodegeneration. Currently, Anle138b is under phase I

clinical trial.

2.3.3 Proteins and Peptide-based inhibitors
A selective degradation of αSN oligomers can be achieved

by the expression of carboxyl terminus of Hsp70-interacting

protein (CHIP), a member of E3 ubiquitin ligase (Tetzlaff et al.,

2008). Akin to Anle138b, one the most popular strategies in

designing novel drug candidates incorporates the use of

modified short peptides with sequence homology to αSN
that either leads to an alternative pathway to generate non-

toxic species or prevents the fibrillation process. The synthetic

peptides predominantly correspond to the non-amyloid-β
(NAC) component of αSN, with a special emphasis around

the sequence 68–78 as this region provides the minimum

fragment that preserves the features of pathological αSN.
Among several short peptides, the T72P peptides,

particularly the hexapeptide 72PGVTAV77 displayed the

optimal result in preventing the fibrillation process and

reducing the neuronal death provoked by αSN aggregation

(Choi et al., 2011). While further evidence will provide a

more compelling elucidation of the mechanism of action, the

hexapeptide likely interacts with αSN monomers and small

non-toxic oligomers and thereby blocks their conversion to

toxic species. It should be noted that some peptides without any

sequence homology to αSN have also been explored.

Chemerovski-Glikman et al. demonstrated the ability of self-

assembled cyclic D,L-α-peptides to bind with the NAC region

and the N-terminus of αSN to promote the generation of non-

toxic amorphous aggregates (Chemerovski-Glikman et al.,

2016). Interestingly, β-synuclein, the 134-residue protein in

the synuclein family, has shown its intrinsic ability to prevent

the fibrillation of αSN by competitive binding to interfere with

both the nucleation and aggregation steps (Brown et al., 2016).
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3 Conclusion

In this minireview, the implications of polymorphic αSN
oligomers with focus on the toxicity and disease progression in

PD are outlined. It is important to note that different types of

oligomers including Aβ, amylin (IAPP), and transthyretin (TTR)

oligomers behave akin to αSN oligomers in vitro and follow

analogous molecular pathways of aggregation (Nguyen et al.,

2021). As such, understanding the intrinsic heterogeneity of

amyloid oligomers provides insight into the pathoprogression

of other diseases beyond PD. Particularly, as illustrated in the

development of Lecanemab (BAN2401), which is currently in

phase 3 clinical trials, preferential targeting of soluble oligomers

stands as one of the most popular and promising approaches in the

development of drugs for diseases with deleterious fibrillation of

amyloidogenic proteins (Tolar et al., 2020). Even for drugs such as

Aducanumab, which predominantly address insoluble Aβ plaques

with only partial arrest of toxic oligomers, understanding the

intrinsic polymorphism in oligomers is crucial as they act as

templates which give rise to heterogeneity in mature amyloid

fibrils. While the approval of Aducanumab remains controversial,

its development process provides an important insight into

achieving the same goal for PD patients; having a profound

knowledge on the properties of αSN oligomers and their impact

on disease progression is key to unlocking treatments and discover a

potential cure for Parkinson’s.
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