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The three-dimensional (3D) structure of chromosomes influences essential

biological processes such as gene expression, genome replication, and DNA

damage repair and has been implicated in many developmental and

degenerative diseases. In the past two centuries, two complementary genres

of technology—microscopy, such as fluorescence in situ hybridization (FISH),

and biochemistry, such as chromosome conformation capture (3C or Hi-C)—

have revealed general principles of chromosome folding in the cell nucleus.

However, the extraordinary complexity and cell-to-cell variability of the

chromosome structure necessitate new tools with genome-wide coverage

and single-cell precision. In the past decade, single-cell Hi-C emerges as a new

approach that builds upon yet conceptually differs from bulk Hi-C assays.

Instead of measuring population-averaged statistical properties of

chromosome folding, single-cell Hi-C works as a proximity-based

“biochemical microscope” that measures actual 3D structures of individual

genomes, revealing features hidden in bulk Hi-C such as radial organization,

multi-way interactions, and chromosome intermingling. Single-cell Hi-C has

been used to study highly dynamic processes such as the cell cycle, cell-type-

specific chromosome architecture (“structure types”), and

structure–expression interplay, deepening our understanding of DNA

organization and function.
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1 Introduction

How DNA folds in the nucleus is a fundamental question in

biology. The spatial separation of the euchromatin and

heterochromatin has been observed since the early age of

microscopy. In the 1980s, the development of DNA

fluorescence in situ hybridization (FISH) validated the

hypothesis of chromosome territories and revived the study of

nuclear architecture (Jerkovic’ and Cavalli, 2021). FISH and

fluorescent protein imaging brought about fruitful research on

the behavior of genomic loci; however, their genomic coverage

and resolution remained a bottleneck for further exploration

along the path (Ulianov et al., 2017).

The development of genome-wide chromatin architecture

technologies has brought the field of 3D genomics into a new era

(Figure 1). At the single-cell level, these technologies primarily

fall into two categories: sequencing-based methods and imaging-

based methods (Ulianov and Razin, 2021). Imaging-based

methods directly measure the 3D coordinates of labeled

genomic loci. These methods include chromatin tracing

(Wang et al., 2016; Bintu et al., 2018; Nir et al., 2018), ORCA

(Mateo et al., 2019), Hi-M (Cardozo Gizzi et al., 2019), DNA-

MERFISH (Su et al., 2020), DNA seqFISH+ (Takei et al., 2021),

OligoFISSEQ (Nguyen et al., 2020), and IGS (Payne et al., 2021).

In contrast, sequencing-based methods measure 3D spatial

proximity between genomic loci, producing “chromatin contact

maps” that indirectly reflect the relationship between 3D

coordinates. The majority of these methods are based on the

digestion of DNA followed by proximity ligation—originally

pioneered by bulk chromosome conformation capture assays

(3C (Dekker et al., 2002) or Hi-C (Lieberman-Aiden et al.,

2009))—yielding artificial ligation junctions (“chromatin

contacts”) between genomic loci that are far away along the

linear sequence but nearby in 3D. Therefore, here, we refer to

them as “single-cell Hi-C” (scHi-C) methods (Nagano et al.,

2013, 2017; Flyamer et al., 2017; Ramani et al., 2017; Stevens et al.,

2017; Tan et al., 2018; Lee et al., 2019; Li et al., 2019). Other

sequencing-based methods are ligation-free—such as scSPRITE

(Arrastia et al., 2021), GAM (Beagrie et al., 2017), and

immunoGAM (Winick-Ng et al., 2021).

These technologies greatly improved our understanding of

both higher-order and fine-scale chromosome structures (Fraser

et al., 2015). Hi-C strongly supported the existence of

chromosome territories because contacts are highly enriched

within each chromosome (“intra-chromosome”). Spatial

segregation of the euchromatin and heterochromatin

manifests as a “plaid” (or “checkerboard”) pattern in the

contact map—a phenomenon termed “chromatin A/B

FIGURE 1
Single-cell Hi-C provides a holistic high-resolution view into the 3D structure of our genetic blueprint. (Left) DNA fluorescence in situ
hybridization (FISH) provided the first look into genome organization in the cell nucleus by directly measuring 3D coordinates (i.e., x, y, and z) of
various genomic loci (or entire chromosomes, in the case of chromosome painting) but is limited by the optical resolution and spectrum (i.e., the
number of loci). (Right) Chromosome conformation capture (3C or Hi-C) indirectly measures nuclear architecture through 3D proximity
between genomic loci (i.e., “contact map”). Bulk Hi-Cmeasures the average 3D proximity (probability (P) that two loci are within a certain 3D distance
(d)) among a large population of cells and, therefore, cannot produce true 3D structures (dashed line). In particular, the “all-to-all” inter-
chromosomal contacts in bulk Hi-C provide conflicting spatial constraints, while chromatin domains (three are depicted here) would be seemingly
isolated from each other. In contrast, single-cell Hi-C offers a new concept of a “biochemical microscope.” 3D proximity of a single cell can be
converted into actual 3D coordinates of the whole genome, yielding high-resolution structures without the need for specialized equipment.
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compartmentalization” (Lieberman-Aiden et al., 2009). Further

studies have shown that sub-compartments exist within the

primary A (euchromatin) and B (heterochromatin)

compartments, corresponding to spatial segregation of

additional epigenetic marks (Rao et al., 2014). The driving

force behind compartmentalization might be the phase

separation of the chromatin (Falk et al., 2019).

On finer scales, chromatin domains [also known as

“topological-associated domains” (TADs)] were discovered as

sub-megabase (Mb) chromatin structures (Dixon et al., 2012;

Nora et al., 2012; Sexton et al., 2012). At this scale, chromatin

loops (also known as “dots” in the contact map), “stripes,” and

more complex patterns also emerged from high-resolution Hi-C

(Rao et al., 2014) and Micro-C data (Hsieh et al., 2020;

Krietenstein et al., 2020; Akgol Oksuz et al., 2021). Among

them, loops manifest as pixels in the contact map with higher

contact frequencies than neighboring pixels and are usually

found at domain boundaries (i.e., at the corner of diagonal

“squares” in the contact map). Some believed loops to be

stable, but recent studies have preferred a more transient view

(Mirny and Dekker, 2021).

In this mini review, we focus on proximity ligation-based

DNA sequencing methods for measuring single-cell nuclear

architecture. We first introduce current technologies and then

review discoveries made by applying them to different biological

systems—especially those achievable only with single-cell

methods.

2 Current single-cell Hi-C methods

In 2013, Nagano et al. (2013) pioneered an incredible feat of

bringing Hi-C—which normally required a large number of

cells—to the single-cell level. Although key features of bulk

Hi-C—such as the enrichment of intra-chromosomal contacts

(i.e., chromosome territory)—are preserved, single-cell Hi-C

(scHi-C) contact maps uncovered extraordinary cell-to-cell

variability of the genome structure. In particular, the highly

variable, “patchy” inter-chromosomal contacts are in sharp

contrast to the much smoother “all-to-all” contacts in bulk

Hi-C. Although the diploid nature of our genome prevented

the 3D reconstruction of autosomes (because each contact map

was a mixture of different chromosomal copies) at the time,

Nagano et al. solved the structure of the (single-copy) male X

chromosome. The spatial resolution of these structures was

limited by the biochemistry of the time.

In 2017, multiple groups optimized scHi-C technologies.

Flyamer et al. (2017) improved the sensitivity of scHi-C and

applied it to the oocyte-to-zygote transition inmice. Nagano et al.

(2017) redesigned their assay to yield more contacts and better

throughput and applied it to the cell cycle in mouse embryonic

stem cells (mESCs). Stevens et al. (2017) solved the first 3D

genome structure of a single mammalian cell, taking advantage of

a special haploid mESC line, thus circumventing the challenge of

the normally diploid genome. In sci-Hi-C, Ramani et al. (2017)

used combinatorial indexing to achieve high throughput. Single-

cell Hi-C methods until 2017 have been reviewed in detail by

Ulianov et al. (2017).

In 2018, Tan et al. (2018) solved the first 3D genome

structure of the human genome [and the diploid mouse

genome using a new method termed Dip-C—which combined

improved biochemical sensitivity including a transposon-based

whole-genome amplification (WGA) method META] and an

algorithm to solve the challenge of the diploid genome by

imputing haplotypes from sparse data—and applied Dip-C to

the human blood.

scHi-C methods continued to grow in the past years. In 2019,

methyl-Hi-C (Li et al., 2019) and sn-m3c-Seq (Lee et al., 2019)

combined proximity ligation and whole-genome bisulfite

sequencing (WGBS) to simultaneously profile DNA

methylation and chromatin architecture.

Sensitivity and scalability are two major criteria to compare

the performance of scHi-C methods (Galitsyna and Gelfand,

2021; Zhou et al., 2021). Scalability has been improved by

automation (Nagano et al., 2017; Tan et al., 2021) and split-

pool barcoding (Ramani et al., 2017). Sensitivity has been

improved by better WGA methods (Flyamer et al., 2017; Tan

et al., 2018) and one-step library preparation with transposase

(Nagano et al., 2017; Stevens et al., 2017; Tan et al., 2018).

However, a systematic, uniform comparison of scHi-C methods

that takes into account the cell type, ploidy, sequencing depth,

and data processing is still lacking (Lando et al., 2018).

3 Revising Hi-C concepts in single
cells

3.1 Single-cell chromatin domains

Originally defined as contact-rich “squares” along the

diagonal line in bulk Hi-C data, chromatin domains [also

known as topologically associating domains (TADs)] are

characterized by increased contacts within each domain

(“intra-domain”) and decreased contacts between domains

(“inter-domain”). This appealing feature seems to suggest a

role in genome function—for example, to confer specificity of

enhancer–promoter interactions by partitioning regulatory

elements into different domains (van Arensbergen et al.,

2014); however, evidence both for and against this proposed

function has accumulated (Nora et al., 2017; Rao et al., 2017;

Ghavi-Helm et al., 2019; Zuin et al., 2022). Therefore, the origin

and function of chromatin domains are still under debate.

Chromatin domains are usually illustrated based on bulk Hi-

C as “globules” of DNA with the two boundary loci stably

contacting (Figure 1 middle); however, an alternative

explanation is that domains are just population-averaged
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contact preferences with no discernable structures in single cells.

The true extent of cell-to-cell variability is masked in bulk Hi-

C data.

Single-cell Hi-C (scHi-C) shed light on those questions. As

expected, the ensemble average of scHi-C contact maps

reproduced all bulk Hi-C features—including the intensity

and position of each chromatin domain “square” (Nagano

et al., 2013). In addition, within each cell, the average contact

profile (“pile-up”) of bulk Hi-C domains and bulk Hi-C loops

showed expected enrichment of contacts within domains and at

loop anchors (Flyamer et al., 2017; Gassler et al., 2017).

Cluster of contacts were prominently detected in scHi-C

contact maps; however, boundaries of these “single-cell

chromatin domains” [sometimes referred to as “TAD-like

structures” (TDLs)] were highly variable across cells and did

not always coincide with bulk Hi-C domains (Flyamer et al.,

2017). Since then, additional algorithms have been developed to

systematically annotate single-cell domains, and these domains

were found to prefer common boundaries and correlate with

epigenetic marks and transcription (Zhou et al., 2019; Li et al.,

2021; Zhang et al., 2021). Cell-to-cell variability of chromatin

domains has been confirmed with imaging-based methods,

which provided additional mechanistic insights (Bintu et al.,

2018; Finn et al., 2019; Luppino et al., 2020; Szabo et al., 2020)—

for example, cohesin seemed dispensable for single-cell domains

(Bintu et al., 2018) but is necessary for bulk Hi-C domains (Rao

et al., 2017; Schwarzer et al., 2017).

What is the nature of single-cell chromatin domains? Do

they have the same origin as bulk Hi-C domains? Modeling

suggested that domain structures called “proto-TADs”

naturally emerged from random chromatin polymers

confined to a volume (Gürsoy et al., 2014) and that entropy

might play a role (Vasquez et al., 2016). The theory of loop

extrusion was also used to explain the heterogeneity of single-

cell domains, where many chromatin loops are dynamically

created and extruded by loop-extruding factors (LEFs)

translocating along the chromatin fiber (Flyamer et al., 2017;

Liang and Perez-Rathke, 2021; Yu et al., 2021; Dequeker et al.,

2022; Li et al., 2022). Questions about single-cell domains have

not been settled yet. Care must be taken when studying this

question because chromatin domains have developed into a

complex concept with different meanings and origins (Beagan

and Phillips-Cremins, 2020).

3.2 Single-cell chromatin compartments

Unlike the “globular” domains, chromatin

compartmentalization does not imply a specific physical

structure. Chromatin compartments were originally defined

from a statistical perspective: genomic loci were divided based

on their chromosome-wide contact profiles into two mutually

anti-correlated types—“compartment A” and “compartment B.”

Single-cell Hi-C (scHi-C) allowed bulk Hi-C A/B

compartments to be visualized in 3D. When scHi-C 3D

structures were colored by bulk-defined compartments, the A

and B compartments were relatively segregated (Stevens et al.,

2017; Tan et al., 2018). This segregation was consistent with

imaging-based studies, where single chromosomes showed

polarized configuration of compartments (Wang et al., 2016);

later, results with higher resolution found more variable spatial

arrangements like “sandwiches” and more overlaps between A

and B (Su et al., 2020).

Coloring 3D structures with bulk-defined compartments has

limitations because single cells—especially cells of different

types—can have different epigenomic profiles and, therefore,

different chromatin compartments (Su et al., 2020; Ulianov and

Razin, 2021). This is evenmore necessary, considering exceptions

to the traditional A/B classification [e.g., the intermediate (“I-

type”) compartment, splicing factories, and polycomb-repressed

H3K27me3 regions] (Mirny and Dekker, 2021).

The de novo compartment calling directly from single cells is

conceptually challenging because bulk Hi-C algorithms rely on

cross-correlations between population-averaged long-range

contact profiles. Long-range contacts are sparse in single cells

because of the sensitivity of contact detection and, more

fundamentally, because each genomic locus can only have a

limited number of 3D neighbors in each cell.

To accomplish de novo compartment annotation in single

cells, a practical solution is to define each genomic locus’s “single-

cell compartment score” as the average value of some property of

its 3D neighbors, instead of binary A/B categorization. For

example, in defining the “A-association score,” the property of

choice was the bulk Hi-C A/B compartment (Nagano et al.,

2017), whereas in defining “scA/B” values, the property of choice

was the frequency of CpG dinucleotides (which is derived from

the genome sequence itself rather than from bulk Hi-C) (Tan

et al., 2018).

These single-cell compartment scores are essentially the

result of 3D “diffusion”/“smoothing” of certain genomic

properties. Globally, these metrics were highly correlated with

bulk Hi-C annotation (Nagano et al., 2017); however, their cell-

to-cell differences were found to convey critical cell identity

information, which can be extracted by the dimension-

reduction algorithms to tell apart cell types without additional

information (i.e., “3D genome structure typing”) (Tan et al.,

2018). In addition, developmental switching of single-cell

compartment scores correlates with changes in transcription

(Tan et al., 2021).

More recent algorithms include imputation based on

hypergraph representation learning, which enabled direct

identification of single-cell compartments (Zhang et al., 2021).

Non-backtracking walks were also reported to find

compartments in sparse single-cell data (Polovnikov et al.,

2020). It would be worth comparing these methods, especially

on large datasets with complex cell types.
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4 Dynamics and cell-type specificity
of chromatin structures

By the time this mini review was written, no more than

20 single-cell Hi-C (scHi-C) studies have been published in peer-

reviewed journals. A fair proportion of them studied cell lines or

their synthetic mixture (Nagano et al., 2013, 2017; Ramani et al.,

2017; Stevens et al., 2017; Li et al., 2019; Kim et al., 2020; Ulianov

et al., 2021; Pang et al., 2022), while the application of scHi-C to

primary tissues has been growing recently. Researchers have

exploited different technical features of scHi-C according to

the biological systems they studied.

First, scHi-C has the unique advantage of straightforward

reconstruction of 3D models (Figure 1 right) and can, therefore,

reveal structural features unattainable from bulk Hi-C contact

maps. This makes scHi-C a new approach to uncover, visualize,

and quantify a variety of nuclear structures. Interesting examples

include the Rabl configuration in many species (Stevens et al.,

2017; Tan et al., 2018; Zhou et al., 2019), “inside-out”

configuration of retinal rods in nocturnal animals (Tan et al.,

2019), inter-chromosomal gene and enhancer hubs (also known

as “Greek Islands”) in olfactory sensory neurons (Tan et al.,

2019), and the “compact silent center” (CSC) in rice (Zhou et al.,

2019).

Second, dynamic changes can be reconstructed despite the

snapshot nature of Hi-C when enough cells in different states of a

process are covered. A pioneering example is in silico cell cycle

phasing of mouse embryonic stem cells (mESCs) based on scHi-

C contact maps (Nagano et al., 2017). Intensities of

compartments, domains, and loops were found to change

continually along the cell cycle. Another example is early

embryonic development, where bulk Hi-C observed early

relaxed chromatin, followed by a prolonged process of higher-

order structure establishment in succession (Du et al., 2017; Ke

et al., 2017). scHi-C identified domains and loops as early as G1-

phase zygotes (Flyamer et al., 2017; Gassler et al., 2017) but

agreed that these structures were much weaker than in later

stages (Zheng and Xie, 2019). A more recent study with a larger

sample size found that domains could be divided into several

clusters according to their temporal patterns, such as early

parental-specific domains and de novo domains arising at later

stages (Collombet et al., 2020). Later in the developmental

process, the trajectory of mESC differentiation was analyzed

using “contact decay profiles” (CDPs) of sci-Hi-C contact

maps (Bonora et al., 2021).

Third, similar to other single-cell technologies that have been

used to create a human cell atlas, scHi-C can capture many cell

types at once from complex tissues. This is particularly useful

when direct cell sorting is impossible because of a lack of prior

knowledge (Schwartzman and Tanay, 2015). Applying scHi-C to

the human and mouse brain, researchers demonstrated this

“atlasing” capability by showing that major cell types can be

delineated from chromosome conformation alone (e.g.,

clustering based on scA/B)—albeit less sensitive than

transcriptome- or methylome-based clustering (Lee et al.,

2019; Tan et al., 2021). This implies that cell identity is at

least partially encoded in the chromatin structure (Winick-Ng

et al., 2021). The chromatin structure was also found to correlate

with gene expression (Tan et al., 2021) and the epigenome at

single-cell resolution (Lee et al., 2019), which is expected because

“omic” data were usually correlated with each other (Boix et al.,

2021). More interestingly, scHi-C uncovered a new mode of

neuron maturation—the radial reconfiguration of certain genes

(Tan et al., 2019, 2021). This discovery again demonstrates that

new epigenome technologies provide a new understanding of the

cell activity from a different angle—in the case of scHi-C, the new

angle is from “space.”

5 Perspective

Single-cell Hi-C (scHi-C) is, in theory, a distance geometrical

measurement of the chromatin, while microscopy is mostly

Cartesian. scHi-C and microscopy tend to corroborate each

other (Bintu et al., 2018) but also have important differences.

The capture radius of the crosslinking-ligation chemistry in Hi-C

is relatively short (presumably 10–100 nm) compared to the

diffraction limit of conventional optical microscopy (Maslova

and Krasikova, 2021). In addition, Hi-C does not measure

chirality and, therefore, cannot differentiate enantiomorphs

(i.e., mirror images) (Acemel et al., 2016; Xie et al., 2017).

Combining scHi-C and microscopy will generate more

accurate 3D structures using chirality and long-distance

information. Microscopy followed by Hi-C has been used in

some studies (Stevens et al., 2017; Lando et al., 2018).

Recent advances in bulk Hi-C chemistry—including new

digestion enzymes (Hsieh et al., 2015, 2016) and crosslinking

reagents (You et al., 2021)—are worth adopting for single cells.

The use of micrococcal nuclease (MNase) will, in principle,

increase the number of possible contacts and, therefore,

alleviate the data sparsity problem (Galitsyna and Gelfand,

2021). In addition, scHi-C chemistry will also benefit from

advances in whole-genome amplification (WGA). For

example, the phi29 DNA polymerase in multiple displacement

amplification (MDA) was reported to generate artifactual

contacts in scHi-C (Ulianov et al., 2021); less biased WGA

methods (Chen et al., 2017) and filtering algorithms may

increase the accuracy of scHi-C.

One unanswered question in the field of 3D genomics is the

function of genome folding: how do genome folding and gene

expression influence each other? Functional perturbations—such

as the depletion of a few key structural proteins—gave us a

limited overview of this structure–function relationship (Rao

et al., 2017). Genome editing studies (Zuin et al., 2022) and

simultaneous multi-omic measurements may give us a more

quantitative rulebook of genome organization. Development of
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new 3Dmulti-omic methods (Cardozo Gizzi et al., 2019; Nguyen

et al., 2020; Payne et al., 2021; Takei et al., 2021) is, therefore, an

exciting next step.
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