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Traditionally, our understanding of how proteins operate and how evolution

shapes them is based on twomain data sources: the overall protein fold and the

protein amino acid sequence. However, a significant part of the proteome

shows highly dynamic and/or structurally ambiguous behavior, which cannot

be correctly represented by the traditional fixed set of static coordinates.

Representing such protein behaviors remains challenging and necessarily

involves a complex interpretation of conformational states, including

probabilistic descriptions. Relating protein dynamics and multiple

conformations to their function as well as their physiological context (e.g.,

post-translational modifications and subcellular localization), therefore,

remains elusive for much of the proteome, with studies to investigate the

effect of protein dynamics relying heavily on computational models. We here

investigate the possibility of delineating three classes of protein conformational

behavior: order, disorder, and ambiguity. These definitions are explored based

on three different datasets, using interpretable machine learning from a set of

features, from AlphaFold2 to sequence-based predictions, to understand the

overlap and differences between these datasets. This forms the basis for a

discussion on the current limitations in describing the behavior of dynamic and

ambiguous proteins.
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1 Introduction

The importance of protein dynamics for their (mis-)folding

(Daggett and Fersht, 2003; Dobson, 2003) and functionality

(Karplus and Kuriyan, 2005; Glazer, Radmer, and Altman,

2009) has been long recognized but has been overshadowed

by the need to first understand how most proteins fold into well-

defined three-dimensional structures (unique conformations)

(Hunkapiller, Strickler, and Wilson, 1984; Berman et al.,

2007). The recent impressive performance of AlphaFold2

(Jumper et al., 2021) in predicting such unique protein folds

from i) protein sequence and evolutionary information curated

by UniProt (The UniProt Consortium, 2021) and ii) the carefully

assembled protein structure information from the Protein Data

Bank over many decades (Berman et al., 2007) indicates that this

problem is now largely solved. This also implies that

experimental and computational approaches for proteins will

now have to necessarily focus beyond their fold, specifically on

understanding more about how proteins interact, which

alternative conformations they might adopt, and how they

move between these conformations. Indeed, many proteins

show ambiguous conformational behavior, either in specific

regions within folded domains [e.g., loops such as CDRs in

antibodies (Armstrong, Piepenbrink, and Baker, 2008) or

extracellular loops in GPCRs (Hilger, Masureel, and Kobilka,

2018)], in regions connecting folded domains [e.g., PEVK

domain of titin (Hsin et al., 2011)], or the full protein in the

case of intrinsically disordered proteins [e.g., Phd antitoxin from

Bacteriophage P1 (De Gieter et al., 2014)]. This behavior does not

have hard boundaries. For example, systematic studies on

ambiguous/disordered proteins have already proved that

missing residues in crystal structures do not always correlate

with protein disorder. In fact, sometimes they are predicted as

highly ordered (Gall et al., 2007). Similarly, residues that are

present or missing for the same protein in different X-ray

structures are rarely statically disordered and show a partial

or conditional disorder under different experimental conditions

(DeForte and Uversky, 2016). This different degree of disorder

was previously described and categorized into foldable, non-

foldable, or semi-foldable regions, where some protein regions

undergo a structural rearrangement at a certain point in time,

either spontaneously or induced (e.g., after binding with another

molecule) (Uversky, 2013). These conformational changes often

condition the functions that the proteins perform and break with

the classical protein structure-function paradigm (Uversky,

2019), supporting the prevalence and importance of the

ambiguous behavior that we are addressing. The move from

the traditional paradigm, with the sequence encoding for a single

static structure, toward a dynamic paradigm, where the sequence

encodes for different possible behaviors, also implies the

necessity to approach proteins from a probabilistic viewpoint.

This is a reasonable assumption, especially when considering that

billions of copies of the same protein exist in cells at

thermodynamically high temperatures; all these proteins will

have different interactions and (locally) different

conformations at any given time point and might have

(different) post-translational modifications (Vu, Gevaert and

De Smet, 2018). Such a proteomics-based probabilistic in vivo

view of proteins is in stark contrast to the reductionist and static

single-protein view in the traditional paradigm.

There have nevertheless been significant efforts in the

experimental investigation of the conformational ambiguity

and heterogeneity of protein structures and structural

ensembles by various techniques: nuclear magnetic resonance

(NMR), circular dichroism (CD) and electron paramagnetic

resonance (EPR) spectroscopy, small-angle X-ray and neutron

scattering (SAXS/SANS), Förster resonance energy transfer

(FRET) measurements, electrospray ionization–ion mobility

mass spectrometry (ESI/IM-MS), and hybrid approaches that

integrate more than one of the above-mentioned techniques

(Dobson, 2019). Although X-ray crystallography and cryo-

electron microscopy may both be able to trap more than one

protein conformer of globular proteins, solution techniques are

undoubtedly preferred for uncovering the dynamics of flexible

proteins, with NMR being the approach that initially highlighted

these features in proteins using different types of measurements

(chemical shifts, R1, R2, J-couplings, NOEs, and RDCs). Lately,

there have also been efforts dedicated to studying the dynamics of

flexible and intrinsically disordered proteins (IDPs) in the

cellular context using in-cell NMR and EPR spectroscopy, as a

protein’s conformational behavior may differ from what is

observed in isolation in the test tube (Gerez, Prymaczok, and

Riek, 2020; Bonucci et al., 2021). However, due to various

experimental challenges, these methods have not become

widely used in the community of structural biology. Valid

future alternatives for both single proteins (folding) and in-

cell determination of protein states might come from mass

spectrometry-based methods such as cross-linking (XL-MS) or

hydrogen–deuterium exchange (HDX-MS), which are becoming

increasingly informative (Britt, Cragnolini, and Thalassinos,

2021).

On the computational side, molecular dynamics (MD) and

Monte Carlo (MC) simulations are commonly used to investigate

the conformations and/or dynamics of proteins, often in

combination with experimental data to either restrain the

structure of the protein or reweight a pool of structures

generated from the simulation trajectory to obtain a

conformational ensemble that complies with the experimental

readout (Lindorff-Larsen et al., 2005; Hummer and Köfinger,

2015; Childers and Daggett, 2018; Orioli et al., 2020). Recent

advances in force field (FF) development combined with

enhanced sampling techniques now enables a more realistic

exploration of protein dynamics and flexibility even in the

absence of experimental data (Yang et al., 2019; Abriata and

Dal Peraro, 2021). Besides the advances achieved in developing

FFs that excel on IDPs (e.g., CHARMM36IDPSFF, Amber
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ffIDPs, and ffIDPSFF) (Huang and MacKerell, 2018; Zapletal

et al., 2020; Mu et al., 2021), the major focus nowadays is on those

achieving a balanced sampling on both folded and disordered

proteins [such as CHARMM36m (Huang et al., 2017), Amber

ff19SB (Tian et al., 2020), and DES-Amber (Piana et al., 2020)].

The main advantage of these simulations is their capability to

account for context-dependency (e.g., temperature, ionic

strength, PTMs, and a partner). However, their disadvantage

is their computational cost, which prohibits proteome-wide/

large-scale systematic analyses. To this end, various fast and

computationally inexpensive sequence-based predictors have

been developed, with many focusing on estimating intrinsic

disorder. Disorder predictors can be cataloged into three main

categories given their underlying prediction model: (1) ab initio

methods like IUPred (Dosztanyi et al., 2005), which are based on

the protein’s physicochemical properties; (2) machine learning

algorithms trained on experimental annotations like Disomine

(Orlando et al., 2022), Disopred (Ward et al., 2004), DisEMBL

(Linding et al., 2003), and SPOT-DISORDER2 (Hanson et al.,

2019); and (3) the meta-predictors that combine several

individual predictors, such as PONDR-FIT (Xue et al., 2010),

ESpritz (Walsh et al., 2012), DISOPRED3 (Jones and Cozzetto,

2015), MFDp2 (Mizianty, Uversky, and Kurgan, 2014), and

others. Usually, most of these predictors of protein disorder

focus on labeling regions of missing electron density as regions of

disorder using X-ray crystallography or NMR data, categorizing

each residue in only one of two classes, ignoring potentially useful

conformational states of the protein. However, there are new

predictors that address those kinds of different behaviors, like

IUPred2A (Meszaros et al., 2018), ODINPred (Dass, Mulder, and

Nielsen, 2020), and DispHred (Santos, Iglesias, and Pintado,

et al., 2020), assigning a degree of disorder to each amino acid

and other predicted features of the protein indicating the amount

or degree of disorder, like NetSurfP-2.0 (Klausen et al., 2019) that

outputs solvent accessibility, secondary structure, structural

disorder, and backbone dihedral angles for each residue of the

input sequences. The intrinsically semi-disordered state has also

been studied, with predictors able to identify such behavior often

associated with induced folders and aggregation-prone regions

(Zhang et al., 2013, Zhang et al., 2017; Katuwawala et al., 2019).

In addition, other sequence-based predictors provide useful

information, such as backbone dynamics (DynaMine) (Cilia

et al., 2013, 2014), fuzziness (FuzPred) (Horvath et al., 2020;

Miskei et al., 2020), secondary structure [PSIPRED4 (Jones,

1999), SPOT-1D (Singh et al., 2021)], solvent accessibility

[SABLE (Adamczak, Porollo, and Meller, 2004), ACCpro

(Magnan and Baldi, 2014), SPOT-1D (Singh et al., 2021)],

solubility/aggregation propensity [TANGO (Fernandez-

Escamilla et al., 2004), AGMATA (Orlando et al., 2020),

PASTA2 (Walsh et al., 2014), CamSol (Sormanni, Aprile, and

Vendruscolo, 2015)], liquid-liquid phase separation propensity

[catGRANULE (Bolognesi et al., 2016), PScore (Vernon et al.,

2018), PSPer (Orlando et al., 2019, p.), Droppler (Raimondi et al.,

2021)], and other biophysical features of proteins. As most of

these prediction tools only take the sequence as input, with

sometimes a few specificities or sensitivity parameters, they

remain largely context-independent and cannot take factors

such as pH, temperature, or PTMs into account. The

exception is a few specific cases, such as (i) oxidation-

dependent disorder prediction by IUPred2A (Mészáros et al.,

2018, p. 2); (ii) pH-dependent solubility prediction for IDPs by

SolupHred (Santos et al., 2020a; 2020b; Pintado et al., 2021); (iii)

prediction of molecular recognition features/elements (MoRFs/

MoREs) that are interacting regions of IDPs undergoing an

increase in the secondary structure propensity upon binding

(e.g., α-MoRF-PredII predictors (Oldfield et al., 2005; Cheng

et al., 2007), MORFchibi (Malhis, Jacobson and Gsponer, 2016),

SPOT-MoRF(Hanson et al., 2020), and fMoRFpred (Yan et al.,

2016)); and (iv) experimental condition (pH, temperature, ionic

strength, crowding agent, and protein concentration)-dependent

prediction of liquid-liquid phase separation by Doppler

(Raimondi et al., 2021).

Another significant influence on protein behavior is post-

translational modifications (PTMs), which regulate the

function, activity, and stability of proteins. Several studies

have shown the association of PTMs with various diseases,

such as cancer, Alzheimer’s, and diabetes (McLaughlin et al.,

2016; Song and Luo, 2019; Bai et al., 2021). PTMs alter the

biophysical, thermodynamic, and kinetic properties of

proteins, leading to a more diverse conformational

landscape than dictated by the arrangement of 20 amino

acids (Shental-Bechor and Levy, 2008). Therefore, a

complete comprehension of a folded protein monomer is

useful but insufficient to understand the functioning of a

protein in a biological environment. The structural

preferences of PTMs are divided into two categories: well-

defined secondary structures (N-linked glycosylation,

acetylation) and intrinsically disordered regions

(phosphorylation, methylation). These PTMs can exist

simultaneously in different amino acids (methylation,

phosphorylation), or in the same amino acid over time

(ubiquitination, phosphorylation), depending on the

biological context. The impact of PTMs on protein

structures can vary diversely, ranging from local

conformational stabilization or destabilization of

secondary structure elements to transitions between

intrinsically disordered and ordered states (Bah and

Forman-Kay, 2016).

In the case of IDPs, the disorder-to-order transitions can be

considered “a black box of structural biology.” This

multifaceted folding/unfolding behavior is widely regulated

and modulated by PTMs. The alteration of IDPs’

conformational space, dynamics, functionality, cellular

expression, and localization caused by PTMs can also be

unfavorable and cause protein pathogenicity. This equivocal

relationship between PTMs and IDPs significantly enlarges the
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complexity of the black box, which is invisible yet an important

attribute of protein folding (Bah and Forman-Kay, 2016).

Currently, the change in conformational dynamics of a

protein when modified by a PTM can be investigated by MD

simulations. However, the systematic force-field parameters

required for MD simulations are limited to several PTMs

(methylation, phosphorylation, glycosylation) and require

optimization and validation, which is computationally

expensive. It, therefore, remains a black box since the

current tools are deficient in terms of exploring PTMs and

the conformational behavior of proteins. On the other hand, the

stability of folded regions can also be affected by PTMs.

Incorporating information about PTMs into our

understanding of in vivo protein behavior is, therefore,

essential.

We here explore a class of protein regions that are more likely

to adopt multiple different conformations and show ambiguous

behavior; they can neither be strictly classified as traditional

“order,” nor as the oppositely defined “disorder” (Figure 1). We

focus on three different scenarios of conformational ambiguity:

(i) regions that undergo “order-to-disorder” transitions, where a

protein (region) that is disordered folds when encountering a

binding partner, (ii) regions of folded proteins that can change

their conformation, and (iii) regions that have ambiguous

behavior in solution based on NMR chemical shift

information. Such inherent ambiguous behavior could be

relevant for conformational changes in the protein, for

example, upon oligomerization, interacting with another

molecule or the cell membrane, or when being post-

translationally modified. These changes should happen within

the context of biologically reasonable environments and protein

modifications, for example, in disorder-or-order inducing agents

such as TFE, or denaturing agents like urea. We here show, based

on two different definitions and their joint one, that ambiguous

regions are difficult to define but that combinations of datasets

from different sources might help to unravel this complex protein

behavior.

2 Materials and methods

2.1 Datasets

2.1.1 DisProt “folding-upon-binding” dataset
with CoDNaS dataset (disprot_codnas_set)

DisProt is a large database of manually curated

intrinsically disordered protein (IDP) regions (IDRs)

(Hatos et al., 2020). Besides the structural state and the

function of the region, if available, interaction partners

and potential structural transitions (e.g., displaying

folding-upon-binding) are also annotated for DisProt

entries. For the present study, we downloaded a custom

set of human proteins with manually curated disorder-to-

order structural transitions, resulting in 138 different

proteins with at least one IDR that undergoes ordering.

The residues that are classified as undergoing structural

ordering were labeled as ambiguous (N = 9,792 residues)

and the residues in the IDR flanking regions that are not

proven to undergo structural ordering were labeled as

disordered (N = 4,232 residues).

CoDNaS (Monzon et al., 2016) stores proteins with multiple

X-ray and NMR structures solved under different experimental

conditions. The difference between these conformations of

“snapshots” varies over a wide range, with rigid globular

structures being on one side of the spectrum and disordered

structures on the other side. To assemble a set of rigid proteins,

we downloaded structural clusters by applying the threshold of a

maximum RMSD value of 2Å for each pair of structures available

for the same protein region. This way, we obtained a reliable set

of 207 human proteins entailing 11,947 residues in ordered

segments.

These two datasets were combined into a single dataset,

which, therefore, contains highly reliable definitions for

ordered residues (O) for which little or no conformational

change has been observed in experimental protein structures

(from CoDNaS) as well as disorder (D) (from DisProt) and

FIGURE 1
Conceptual definition of the “ambiguous” regions of proteins addressed in this study.
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ambiguous behavior folding-upon-binding residues, with a local

change in environment (the binding partner) triggering a

conformational transition or rearrangement (T) (from DisProt).

2.1.2 MFIB dataset (mfib_set)
MFIB (Fichó et al., 2017) is a database of mutually folded

IDPs/IDRs that synergistically fold upon binding, while as

monomers, the protein chains are unstructured. A subset of

MFIB was manually selected to reduce the redundancy in terms

of a sequence-structure relationship. Additional overlap with

other datasets has also been filtered out; in total, five protein

chains that were part of the DisProt set have been eliminated.

The final set of cases includes 17 chains from homo- and

23 chains from heterocomplexes forming various types of

folds (including histone-like folds; basic helix-loop-helix;

Phe-, Leu-, and Ala-zippers; and ribbon-helix-helix folds),

with 1–3 examples selected from each fold category. The

complete dataset is available at https://bitbucket.org/

bio2byte/protein_ambiguity/.

2.1.3 Metamorphic and fold-switching proteins
dataset (foldswitch_set)

The fold switchers dataset is a manually curated list of pairs

of experimentally solved structures for the same protein that

shows a different topology in some parts of the sequence. This

dataset provides experimental proof of residues that can switch

from one secondary structure element type to another one (e.g., a

residue that in one of the PDB structures is in an α-helix and in

the other one is in a β-strand). The original fold switchers list

consisted of 94 protein pairs (PDB entries), but we filtered it to

keep only the protein sequences that shared the same sequence,

as small sequence variations could have an impact on the protein

topology and would, therefore, affect our study. A total of

29 structure pairs remained, totaling 8,047 residues. This

dataset is available at https://bitbucket.org/bio2byte/protein_

ambiguity/ as supplementary material.

The residues were labeled using the DSSP secondary

structure annotations (Kabsch and Sander, 1983) extracted

from the PDBe API (Mir et al., 2018) for each of the

structures in the pair. Residues that stayed in either helix or

sheet conformations were labeled as the same (S), while residues

that switched from any secondary structure type to another one

were labeled as converted (C). We did not use the residues that

stayed in the coil for this analysis to avoid including likely

disordered regions in either of the two aforementioned

categories. A total of 3,751 and 1,341 residues were labeled as

S and C, respectively.

2.1.4 Combined dataset (combined_set)
A new dataset merging the disprot_codnas_set and

foldswitch_set was generated by combining some of the

categories of the previous ones (combined_set). The ordered

(O) and same (S) categories from the disprot_codnas_set and

foldswitch_set were merged as they were comparably defined. In

both cases, the residues that fall into these categories are amino

acids that have proved rigid/conformationally stable in several

experimental assays. Similarly, the ambiguous folding-upon-

binding residues (T) from DisProt and the fold-switching

residues (C) also share a particular biophysical behavior, as in

both categories the residues undergo conformational

rearrangement. The goal is to assess whether this dataset

exhibits similar features with respect to the

disprot_codnas_set and foldswitch_set or whether it captures

different biophysical characteristics. The disordered category (D)

remains as defined in the disprot_codnas_set. The total number

of residues in this set is 15,698, 10,750, and 4,232 for ordered (O +

S), ambiguous (T + C), and disordered (D), respectively.

2.1.5 Post-translational modification dataset
(ptm_set)

PTM information was obtained from four different

resources: Scop3P (Ramasamy et al., 2020), UniProtKB/Swiss-

Prot (The UniProt Consortium, 2021), dbPTM (Huang et al.,

2019), and PhosphoSitePlus (PSP) (Hornbeck et al., 2015).

Scop3P annotates protein phosphorylation sites by re-

processing large-scale public proteomics datasets. dbPTM

integrates experimentally validated PTM sites from Swiss-Prot,

PhosphoELM, and O-GLYCBASE. UniProtKB includes PTM

information that is directly curated from scientific literature and

propagates the information to homologues. PSP contains

manually curated PTM information obtained from the

literature. We downloaded PTM information from all the

above-mentioned resources (April 2022). All the obtained

PTM sites were checked for correctness in sequence positions

with the current UniProtKB/Swiss-Prot human protein

sequences. To obtain a reliable set of PTM sites, we only

considered sites having at least two different databases of

evidence. Multiple sites having more than one PTM type are

labeled as “multiple.” The final dataset contains 217,082 PTM

sites from 15,420 canonical human proteins. The complete data

table is available at https://bitbucket.org/bio2byte/protein_

ambiguity/.

2.1.6 Alphafold human proteome dataset (af_set)
AlphaFold 2’s mmCIF files for the human proteome were

downloaded on 2 September 2021, from the AlphaFold protein

structure database (Tunyasuvunakool et al., 2021). In this

section, we will refer to this dataset as “AF_dataset.”

According to AF_dataset’s description page (https://

alphafold.ebi.ac.uk/download), sequences longer than

2,700 residues were split into multiple files. For simplicity,

we removed these sequences and kept only the sequences

contained in a single file. Then, we extracted the protein ID,

sequence, pLDDT, and secondary structure and simplified them

to alpha_helix, beta_strand, and all remaining conformations

were labeled as the coil.
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We also downloaded all human Swiss-Prot entries contained

in Uniref90 (Suzek et al., 2007) on 2 September 2021 from

UniProt (The UniProt Consortium, 2021). In this section, we

will refer to this dataset as “uniref_dataset.” From this set, we

discarded all proteins shorter than 20 amino acids since some of

our predictive tools have this minimum length requirement.

Then, we found the sequence intersection between AF_dataset

and uniref_dataset and verified that the sequence in both sets was

correctly aligned, which resulted in the

“selected_human_dataset”.

With these sequences, we computed sequence-based

predictions with the b2btools predictors, comprising

DisoMine (disorder) (Orlando et al., 2022), DynaMine

[backbone (Cilia et al., 2013) and side-chain dynamics,

conformational propensities (Raimondi et al., 2017)],

EFoldMine (early folding propensity) (Raimondi et al.,

2017) using a recently developed PyPI package currently

in open beta (https://pypi.org/project/b2bTools/3.0.0b16/).

We then merged our predictions with the mLDDT and

secondary structure predictions that we extracted from the

AF_dataset into our selected_human_dataset. Finally, our

selected_human_dataset was saved into a NumPy file for

later processing and can be found at https://bitbucket.org/

bio2byte/protein_ambiguity/.

2.1.7 Deleterious mutant datasets
Even though mutation is a random process, it frequently

occurs at highly conserved hotspots of the protein, which

represent regions of structural and functional importance

(Chang et al., 2018). To explore the definition of ambiguous

regions, we downloaded publicly available deleterious somatic

mutations from the catalog of somatic mutations in cancer

(COSMIC version92_1,121) (Forbes et al., 2008) and Cancer

Genome Interpreter (Tamborero et al., 2018) and germline

deleterious and benign mutations from ClinVar (Landrum

et al., 2018) and UniProtKB/Swiss-Prot (The UniProt

Consortium, 2021), respectively. The COSMIC database

contains more than 13 million mutations associated with

various cancer types. UniProtKB/Swiss-Prot contains variant

annotation from literature reports and ClinVar reports on the

relationships among human variations and phenotypes, with

supporting experimental evidence from the literature.

Two different analyses were performed. For the first one,

9,295 missense mutations were selected and mapped on

1,115 canonical UniProt ids with at least one deleterious and

one benign mutation, resulting in 4,690 deleterious and

4,605 benign mutations. The second analysis focused on

comparing somatic and germline deleterious missense

mutations shared among 173 canonical isoforms, resulting in

2,145 somatic and 1,020 germline mutations. The datasets are

available under the names “canonical_mut” and

“germline_somatic_deleterious” at https://bitbucket.org/

bio2byte/protein_ambiguity/.

2.2 Predictions

2.2.1 Feature generation from sequence
For all protein sequences in the datasets, seven biophysical

features were predicted at the residue level using the following

methods: backbone dynamics (DynaMine) (Cilia et al., 2013),

side-chain dynamics (Raimondi et al., 2017), conformational

propensities (helix, sheet, and coil) (Raimondi et al., 2017),

early folding propensity (Raimondi et al., 2017), and disorder

(DisoMine) (Orlando et al., 2022).

2.2.2 Random forest predictor for folding-upon-
binding regions of proteins

The disprot_set describes protein regions that are initially

disordered but fold upon binding, with a local change in

environment (the binding partner) triggering a conformational

rearrangement, while the codnas_set describes residues for which

little or no conformational change has been observed in

experimental protein structures. The disprot_set was used to

define ambiguous/transitioning residues (T) as well as disordered

residues (D) and whilst ordered residues (O) were defined from

the codnas_set. We used a combination of these datasets

(disprot_codnas_set) to train a random forest (RF) predictor,

termed folding_upon_binding_RF, with the main aim of creating

an interpretable predictor, not necessarily a predictor with the

best possible performance. The classification model was trained

using seven predicted biophysical features at the residue level (see

the previous section). No amino acid codes were used in the

training, with all the features computed using a local version of

b2BTools from the single input sequences (Kagami et al., 2021).

The previously defined residue categories (O, T, and D) were

used as labels for the RF training. We used scikit-learn

(Pedregosa et al., 2011) version 1.0.2 to generate all the

models. The available information for the 25,588 residues was

split into 90% and 10% between the training and test sets,

respectively. For the training, a 3-fold cross-validation was

performed to select the best hyperparameters (n_estimators =

75, max_depth = 15, min_samples_split = 5, min_samples_leaf =

1, and bootstrap = False). The RF model is trained using those

hyperparameters and finally tested on the remaining 10% of the

data (test set), from which our model is completely agnostic.

2.2.3 Combined random forest
The combined_set was generated by merging the ordered (O)

and same (S) categories, and the transition (T) and convert (C)

categories from the disprot_codnas_dataset and the

foldswitch_set, respectively (for details, see c. f. Datasets).

Again, the same biophysical predictions were used at the

residue level as features for an RF classifier (combined_RF).

The data was split 70% to 30% into train and test sets,

respectively. The best hyper-parameters were retrieved using a

3-fold cross-validation (n_estimators = 25, max_depth = 15,

min_samples_split = 5, min_samples_leaf = 5, and bootstrap =
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True) and the model was further validated by testing it on the test

set that contains 30% of the original data.

2.2.4 Interpretation of random forest models
The RF models were interpreted using a surrogate model

trained over the predictions for each of the models. To generate

these models, we used theWeka (Eibe et al., 2016) implementation

of the Ripper algorithm (Cohen, 1995) (Repeated Incremental

Pruning to Produce Error Reduction) that works as a rule-based

classification algorithm and supports multi-classification tasks. As

a result, we obtained a limited set of rules that summarize the key

information on the RFmodels to classify the residues into different

categories. The surrogate models simplify the complexity of the

original RF, making them easier to interpret, as the decision trees

derived from the raw RF models are often too big and diverse to

interpret without any further actions.

3 Results

In the first section, we describe the RF predictors of “ambiguous

residues.” We did not develop these predictors for optimal

performance, but instead for interpretability in relation to the

“biophysical” input features. Comparing the predictors, which are

each trained on different classifications of ambiguity, enables us to

detect whether they seem to recognize the same features (or not),

with the aim of identifying whether the different ambiguity

definitions (order/disorder transitions or residues that can change

conformation inmetamorphic/fold-switching proteins) seem to have

the same origin. To further contextualize the input features and the

classifications, we also describe the relationship of the ambiguous

residues to theAlphaFold2 output, as well as information about post-

translational modifications and deleterious amino acid variants.

3.1 Random forest model interpretation

The F1 scores for the folding_upon_binding_RF model to

recognize folding-upon-binding regions of proteins based on the

combined disprot_codnas_set are lowest for the disorder class

(D), where especially the recall is significantly lower (0.67)

(Table 1). The performances are overall acceptable and

indicate that the model is predictive and captures essential

information from the input biophysical features. These

features were then ranked by importance (Figure 2), with the

early folding (EFoldMine), disorder (DisoMine), and backbone

dynamics (DynaMine) being the most relevant. The secondary

structure propensities and side-chain dynamics were less relevant

for this prediction.

The fold_switching_RF model, based on the foldswitch_set,

has a high F1 score for retrieving residues that remain the

same when the fold switches (S), but for the residues that

convert to secondary structure (C), the F1 prediction

performance is very low (0.36) due to very low recall (0.26)

(Table 1). This indicates that the biophysical features, which

essentially capture local sequence information, are insufficient

to detect such residues, or alternatively, that there is little

difference between the S and C categories. The amino acid

content of fold-switching proteins is similar to those of ordered

proteins with a few important differences, including higher valine/

phenylalanine and lower proline content for the metamorphic

regions (Figure 3). In these regards, this class of proteins is

significantly different from intrinsically disordered proteins that

have fewer valine and phenylalanine residues but more prolines

(Figure 3). In terms of feature importance, the disorder content is

the most relevant (Figure 2), indicating that a tendency toward

flexibility and/or conformational ambiguity does play a role in

distinguishing between the categories, however poor this

distinction is.

Finally, the combined_RF model, where the O/S classes and

the T/C classes were combined (combined_set), shows overall

poorer F1 performances for the O/S classes compared to O and

S separately, indicating that the definitions of O and S are likely

different, while the T/C class F1 performance is in between the

T and C classes, and the D performance drops (Table 1). The

feature importance is similar to the one for the

disprot_codnas_set (Figure 2). Although there is an

imbalance in the absolute numbers of the O compared to S,

TABLE 1 Performances of the trained random forest predictors.

Dataset Label Number Precision Recall F1 score

disprot_codnas_set Order 11,947 0.72 0.84 0.78

Transition 9,409 0.65 0.6 0.62

Disorder 4,232 0.72 0.5 0.59

foldswitch_set Same 3,751 0.79 0.96 0.87

Convert 1,341 0.72 0.26 0.38

combined_set Order/Same 15,698 0.72 0.86 0.78

Transition/convert 10,750 0.62 0.53 0.57

Disorder 4,232 0.72 0.46 0.56
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and T compared to C, classes, the sharp drop in overall

performances indicates that the biophysical characteristics

required for folding-upon-binding and for fold switching are

fundamentally quite different.

The surrogate models generated from each of the RF models

provide a perspective on the complexity of the data within. While

both the codnas_disprot_set and combined_set surrogate models

generate a large number of rules (84 and 89 rules, respectively),

the surrogate model trained on the foldswitch_set is much

simpler, with just 11 rules, which makes it easier to interpret.

We observed that the most disordered residues (DisoMine >=
0.897) are all predicted a transition (ambiguous behavior). Less

disordered residues (DisoMine > 0.256) that present a low

backbone rigidity (backbone <= 0.724 with DynaMine) are

also classified as transition, as are residues with low backbone

rigidity (backbone <= 0.754) and a high coil propensity (coil >=
0.505). The rest of the rules are often the combination of three or

more biophysical features, with the disorder by DisoMine and

backbone dynamics by DynaMine being the most prevalent ones,

as already observed in the RF feature importance analysis

(Figure 2).

3.2 Assessments on independent MFIB
dataset

To assess to what extent the RF predictor can recognize

the conditional fold of IDPs undergoing mutual folding-

upon-binding, we assembled a validation set based on the

MFIB database (Fichó et al., 2017) with structural filtering

and removal of overlap with other training datasets (for

details, see Methods). These proteins are quite different

from the classical IDPs, as they are only disordered in the

absence of their binding partner or under conditions that

prevent their homo-oligomerization. Otherwise, they fold

into compact domain-like structures. Thus, we expected to

see an enrichment of the predicted ordered and ambiguous

conformational class as opposed to the enrichment of the

disordered classes.

For the residues in regions undergoing synergistic folding,

the disordered class, without ambiguous folding propensity, was

shown to be depleted in the output of the combined_RF predictor

(<1%), while the ordered class was predicted to be the most

represented (79.6%). The ambiguous class was predicted for 20%

FIGURE 2
Feature importance variation for the RF classifier for the disprot_codnas_set (top left), the foldswitch_set (top right), and the combined_set
(bottom left).
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of cases, indicating that the folding mechanism of complexes in

MFIB, in terms of biophysics, resembles folded domains. This

resemblance between folded domains and mutually folded IDPs

has already been recognized earlier from the structural and

coevolution point of view (Iserte et al., 2020). A significant

proportion of ambiguous behavior is still present, however,

though fewer than the disorder-to-order transitions of IDPs

upon binding or to metamorphic fold-switchers. For

individual cases, predictions of regions with ambiguous

conformations had significant variation. For example, the SinR

dimerization domain of B. subtilis (MFIB:MF2120029; PDB:

2YAL) is predicted to have ambiguous confirmation with 94%

coverage of the domain. On the other hand, the dimerization

domain of the human SH2B adapter protein 2 (MFIB:

MF2100004; PDB:1Q2H) is predicted to be 100% ordered

despite the structural resemblance to the other case (Figure 4).

FIGURE 3
Amino acid fractions observed in the disprot_codnas_set for ordered residues (CoDNaS_O), transition (DisProt_T), and disordered (DisProt_D)
and the foldswitch_set for fold-switching residues (Foldswitch_C) and residues that stay in the same fold (Foldswitch_S).

FIGURE 4
SinR and SH2B2 dimerization domains from MFIB (MF2120029, MF2100004). The SinR (left) dimerization domain (PDB:2YAL) is predicted to
have only ambiguous residues, while the SH2B2 (right) dimerization domain (PDB:1Q2H) is predicted to be fully ordered based on the combined_RF
model.
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The complete prediction file is available from https://bitbucket.

org/bio2byte/protein_ambiguity/.

3.3 Relation to AlphaFold2 human
proteome models

AlphaFold2 (Jumper et al., 2021, p. 2, p. 2) can predict single

low-energy conformations of proteins with unprecedented

accuracy and provides excellent indications of the confidence

with which this is done through the per-residue pLDDT values.

However, possible conformational ambiguity is not well captured

by the AlphaFold2models (AlphaFold2 fails to predict protein fold

switching—Chakravarty—2022—Protein Science—Wiley Online

Library, no date), indicating the need to understand how the

characteristics of these models relate to conformational ambiguity

and dynamics. We, therefore, related the key biophysical

predictions of the selected_human_set with the respective

pLDDT values of the AlphaFold2 models, subdivided by

secondary structure category in the model as determined by

DSSP, to understand how these are related, and how this can

give insights into the ambiguous residue categories. Figure 5 shows

that for the backbone dynamics predictions (first row), the

confidently predicted alpha-helix or beta-strand residues, with

pLDDT scores close to 100%, have high predicted rigidity

(>0.8 DynaMine score); for DynaMine, residues with values

above 0.8 are expected to be well folded (Cilia et al., 2014).

Residues with a coil classification according to DSSP are either

similar to the secondary structure categories (pLDDT confident/

backbone rigid), indicating folded residues that do not fall into

FIGURE 5
AlphaFold2 pLDDT versus backbone rigidity, early folding and disorder predictions for human proteome residues. Based on the
“selected_human_dataset,” we show heat maps of the relation between AlphaFold2 pLDDT value and the backbone rigidity (top), early folding
(middle), and disorder (bottom) predictions for residues designed at alpha-helix (left), beta-strand (middle) and coil (right) by DSSP based on the
AlphaFold2 models.
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regular secondary structure categories, or they have low pLDDT

confidence and are in the “context-dependent” (DynaMine scores

between 0.69 and 0.80), or in the flexible region (<0.69). The
pLDDT and DynaMine scores are, therefore, aligned, with high

backbone dynamics (lower DynaMine scores) indicating multiple

conformations correlating with AlphaFold2 predictions of lower

confidence, as it is not able to confidently predict a single low-

energy conformation for these residues. The early folding

propensity predictions (Figure 5, second row) show that

residues with increased early folding propensity are also

typically residues predicted with high confidence by

AlphaFold2, although AlphaFold2 cannot distinguish between

these residues and ones that do not initiate folding pathways, as

already indicated by other studies (Outeiral, Nissley, and Deane,

2022). Finally, for disorder predictions (Figure 5, third row),

regions with high pLDDT are enriched with residues predicted

to have disorder scores of 0 (no disorder), whereas residues

predicted to be a coil by AlphaFold2 feature a low pLDDT

region that has a wide dispersion of datapoints covering a

range of disorder propensity values. Similar to backbone

dynamics, this indicates residues that might have ambiguous

conformational behavior.

When subdividing these plots in relation to our datasets that

indicate ambiguous residues (Figure 6), these trends are more

obvious. The ordered residues cluster at high pLDDT values

(>80%) and high backbone rigidity (>0.8), the disordered

residues at very low pLDDT values (<40%), and high

backbone dynamics (<0.8). The ambiguous residues fall in

between these categories, with many lower confidence

pLDDT values between 80% and 40%, and backbone

dynamics between 0.70–0.80, as well as significant overlap

with the ordered and disordered categories. The disorder

values confirm this trend, with few ordered residues

predicted as having high disorder scores and most

disordered residues correctly predicted with high disorder

scores. The ambiguous residues again give an intermediate

picture, with more residues having scores intermediate

between the typical scores for order and disorder.

For the fold_switch_set only (Figure 7), there are interesting

differences, especially the AlphaFold2 pLDDT scores, which tend

to be below 90% for the residues that change conformation. The

backbone dynamics also contain fewer high values, while more

residues are predicted with high disorder.

3.4 Relation to post-translational
modification data

Post-translational modifications (PTMs) of amino acid

residues are important for regulation and can have a

significant impact on protein conformation and function.

Based on the ptm_set, which contains information for

sumoylation, methylation, acetylation, ubiquitination, and

phosphorylation, or a combination of these (Figure 8, log

scale), we subdivided the observed PTMs by the different

datasets. For the disprot_codnas_set, the majority of PTMs

FIGURE 6
Relation between pLDDT score and backbone dynamics (top) and disorder (bottom) for the O/T/D classes from the disprot_codnas_set.
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FIGURE 7
Relation between the pLDDT score and backbone dynamics (left), early folding (middle), disorder (right) for the fold_switch_set same (top row),
and convert (bottom row) residues.

FIGURE 8
Post-translational modification (PTM) sites from the ptm_set in relation to datasets. The total number of included PTMs (A), subdivided by
disordered, ordered, and transition based on disprot_codnas_set (B), by ordered and convert based on foldswitch_set (C), and based on the
combined order, disorder, and transition classes (D).
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are observed in the order and transition classes, with

phosphorylation overrepresented in residues with transition

properties, and with ubiquitination and sumoylation

underrepresented (Figure 8B). In the foldswitch_set, residues

that remain in the same secondary structure state (S) have again

increased ubiquitination and sumoylation compared to residues

that convert (C), with a slight increase in acetylation and

especially multiple modifications, indicating a possible role in

fold-switching processes or more availability of these residues to

be modified by smaller PTMs. The trends for the combined_set

are very similar to the disprot_codnas_set, which constitutes the

bulk of the data.

3.5 Relation to deleterious amino acid
variants

We also investigated whether residues in ambiguous regions,

again given their likely role in conformational rearrangements

and allostery, are more likely to contain deleterious or benign

mutations, as classified in the canonical_mut dataset. Figure 9A

shows that for the disprot_codnas_set (RF model 1), the ordered

residues contain, as expected, relatively more deleterious

mutations. Although the ambiguous residues contain more

benign mutations, they still contain a high proportion of

deleterious mutations, especially compared to the ratio

observed for disordered residues. This situation is similar to

somatic versus germline cancer mutations (Figure 9D). For the

foldswitch_set (RF model 2), the ambiguous metamorphic

residues contain a higher amount of deleterious mutations

than the residues that retain their secondary structure

(Figure 9B), whereas there is no difference between somatic

versus germline mutations (Figure 9E). For the combined RF

model 3, the trends are very similar to RF model 1 (Figure 9C–F).

4 Discussion

In this exploratory analysis, we use two datasets that try to

capture amino acid residues in proteins that display different

“ambiguous” behaviors either by folding-upon-binding

(disprot_codnas_set) or by changing secondary structure in

metamorphic proteins (foldswitch_set). This definition of

“ambiguous” residues is highly relevant given the ready

availability of predicted AlphaFold2 protein structure models

with qualities comparable to experimentally derived structures.

Given the dynamic nature of proteins, and their capacity to

change conformation and transmit signals through allostery

FIGURE 9
Categorization of deleterious (yellow) and benign (green) mutations from the “canonical_mut” dataset classified as disordered, ordered, and
ambiguous based on models 1 [(A), top left], 2 [(B), top middle], and 3 [(C), top right], respectively. The distributions were normalized by the total
number of assigned ordered, disordered and ambiguous residues in the dataset. Categorization of germline (blue) and somatic (red) mutations from
the “germline_somatic_deleterious” dataset classified as disordered, ordered, and ambiguous based on models 1 [(D), bottom left], 2 [(E),
bottom middle], and 3 [(F), bottom right], respectively. The distributions were normalized by the total number of assigned ordered, disordered and
ambiguous residues in the dataset and the number of somatic/germline ratios for better comparison.
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(Tompa, 2014, 2016), annotations of the AlphaFold2 models

indicate where such conformational changes are more likely to

happen, which will help in interpreting such models. Our results

indicate that AlphaFold2, based on the per-residue pLDDT

prediction confidence values, captures ordered and disordered

residues very well, and while for ambiguous regions intermediate

pLDDT values are observed, many of these ambiguous residues

fall into the “traditional” ordered or disordered regions

(Figure 6). The RF models we created and their interpretation

show that sequence-predicted disorder is the most important

factor predicting fold switching residues (from order to order), as

well as folding-upon-binding (from disorder to order), with

backbone dynamics and early folding also important for the

last category. Specific amino acids are also a likely factor, such as

valine and phenylalanine for the fold switching residues.

Although the recognition by the combined_RF model of the

MFIB dataset, which contains dimers that form domain-like

structures, is of limited sensitivity (see https://bitbucket.org/

bio2byte/protein_ambiguity/), there are indications that

ambiguous residues can also be picked up in these cases. This

illustrates the complexity of protein behavior in relation to its

(local) environment; in this case, and expressed in terms of

ambiguous behavior, the local sequence context of the protein

is strongly geared toward order, but enough ambiguous residues

are present that the individual proteins cannot fold.

Previous AlphaFold2-related studies in this area have given

similar indications. AlphaFold2 is a good predictor of intrinsically

disordered regions (IDRs) based on the CAID PDB-DisProt

dataset (Piovesan, Monzon, and Tosatto, 2022), a study on

conditionally folded IDRs (Alderson et al., 2022) showed that

many IDRs are in the high (70≤×< 90) or very high (≥90) pLDDT
regions, similar to what we report, with enrichment in helical

conformations, and with long, extended single α-helix domains

not stabilized by tertiary contacts identified. For a subset of IDRs

that fold under specific conditions and have been extensively

characterized by NMR spectroscopy, the IDRs resemble the

conformation of the folded state, even if there is no stable

secondary structure observed with only a fractional preference

to populate secondary structures from the experimental NMR

data. The combination of higher relative solvent accessibility in the

AlphaFold2models, which indicates a lack of overall structure, and

high pLDDT scores, which indicate confident structure

predictions, does, however, seem to be a good indicator of

regions with a tendency for ambiguous behavior (Piovesan,

Monzon, and Tosatto, 2022). These results show again that

AlphaFold2 is excellent at defining a single low-energy state for

a given protein sequence if it exists, but that the context of the

protein and possible ambiguous behavior is more difficult to

capture. Indeed, in relation to conformational diversity as

observed in the PDB from apo-holo pairs of conformers for the

same protein (Saldaño et al., 2022), AlphaFold2 predicts the holo

form in ~70% of cases but is unable to capture both states. As the

conformational diversity between the apo/holo states increases, its

prediction performance also worsens. A similar picture is observed

for proteins that can switch folds (AlphaFold2 fails to predict

protein fold switching—Chakravarty—2022—Protein

Science—Wiley Online Library, no date), with 94% of

AlphaFold2 predictions capturing one experimentally

determined conformation but not the other, and with

moderate-to-high pLDTT scores for 74% of fold-switching

residues, similar to our study. Finally, although AlphaFold2 and

RoseTTAfold models seem to carry overall foldability information

(Liu, Wu, and Chen, 2022), the folding process itself is not well

captured (Outeiral, Nissley, and Deane, 2022), if at all.

Overall, it remains very difficult to capture the dynamic

properties of proteins; despite the availability of molecular

dynamics simulations of increasing length, limited direct dynamics

measurements from NMR and other structural biology approaches,

and the observed conformational diversity in the PDB, the complexity

of possible protein movements and their likelihood within the in vivo

environment of proteins, in general, precludes the generation of

relevant all-encompassing datasets. The increasing amount of data

that indirectly indicates such behavior, from mass spectrometry

proteomics (Britt, Cragnolini, and Thalassinos, 2021) as well as

from evolutionary and disease mutation sources, will be in this

respect invaluable, as already indicated in our limited study. The

challenge here lies in interconnecting the various diverse data sources

and analyzing the resulting complex information, which is beyond

direct human understanding and requires machine learning

approaches, preferably interpretable so that concepts and first

principles can be derived from them. Furthermore, methodology

development in the more traditional sense is also key, for example,

improved ensemble representations of proteins and especially IDRs,

as already indicated in other studies such as the ones discussed here

(Alderson et al., 2022; AlphaFold2 fails to predict protein fold

switching—Chakravarty—2022—Protein Science—Wiley Online

Library, no date), as well as more accurate sequence-based

predictors, with the combination of structure and sequence-based

approaches likely giving the most relevant results.

5 Conclusion

In our view, it is essential that we move away from the two-

state view of proteins (one single well-defined static fold, or

complete disorder) to a more nuanced probabilistic view, where

the “probability space” of proteins is defined—as the possible

states of a protein can adopt. The definition of the different kinds

of ambiguity observed in protein behavior, and their

interpretation is an important step to help the field move in

this direction. Ongoing ELIXIR implementation projects, for

example, are also focusing on related topics, highlighting the

community’s need for this kind of probabilistic interpretation of

protein behavior. We hope that the datasets and analyses we

assembled here provide additional reference points to further

explore and define residues with ambiguous behavior in proteins.
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