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Cuproptosis is a new type of cell death that is associated with mitochondrial

respiration of the tricarboxylic acid cycle. Previous studies showed that long

non-coding RNAs (lncRNAs) regulated low-grade glioma (LGG) progression.

However, the potential applications of cuproptosis-related lncRNAs (CRLs) in

LGG were not explored. A comprehensive analysis was performed in The

Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA)

cohorts. We first screened two distinct cuproptosis subtypes based on

prognostic CRLs using consensus clustering. To facilitate individualized

survival prediction in LGG, we constructed a prognostic signature (including

CRNDE, HAR1A, and FAM181A-AS1) in the TCGA dataset. The prognostic

signature exhibited excellent predictive ability and reliability, which was

validated in the CGGA_325 and CGGA_693 datasets. Notably, patients in the

high-risk group had increased immune cell infiltration and expression of

immune checkpoints, which indicated that they may benefit more from

immune checkpoint blockade (ICB) therapy. Finally, the prognostic signature

screened the population with sensitivity to chemotherapy and ICB therapy. In

summary, this study initially explored the mechanism of CRLs in LGG and

provides some insights into chemotherapy and ICB therapy of LGG.
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Introduction

Gliomas are the most common primary intracranial tumor in

the central nervous system and are derived from the neuroglial

stem or progenitor cells (Weller et al., 2015). Low-grade glioma

(LGG, WHO grades II-III) accounts for 13%–16% of gliomas

(Chen et al., 2017). Most patients with LGG inevitably progress to

high-grade glioma (HGG) (Duffau, 2018). Various treatment

methods, such as surgery, radiotherapy, chemotherapy,

immunotherapy, electric field therapy, and neutron therapy

are used, but tumor recurrence appears to be unavoidable (Lu

et al., 2021; Li et al., 2022). Therefore, it is urgent to identify novel

potential therapeutic targets for LGG.

Copper is an essential metallic element in the human body,

and it is linked to a series of biological processes, such as energy

metabolism, autophagy, and oxidative stress (Ge et al., 2022).

Since its pivotal role in the genesis, severity, and progression of

cancer was recognized, copper has attracted more attention in

targeted therapy (Denoyer et al., 2018). A previous study found

that copper commonly exhibited anti-tumor effects via the

formation of metal chelators and ionophores (Steinbrueck

et al., 2020). For the first time, Tsvetkov et al. defined Cu-

dependent cytotoxicity, which leads to regulated cell death

(RCD), as “cuproptosis” (Tsvetkov et al., 2019; Tsvetkov et al.,

2022). Previous research suggested that copper-dependent cell

death was correlated with the progression and treatment of

glioma (Buccarelli et al., 2021). Therefore, this new form of

cell death raises hope for successful future therapies for glioma

patients.

Long noncoding RNAs (lncRNAs) are a group of transcripts

longer than 200 nucleotides that lack protein-coding capacity

(Gibb et al., 2011). LncRNAs act as master regulators of gene

expression and play vital roles in various biological processes

(Peng et al., 2017). LncRNAs are implicated in the progression of

stemness, proliferation, angiogenesis, and drug resistance of

gliomas (Peng et al., 2018). Up to now, the underlying

mechanisms of cuproptosis-related lncRNAs (CRLs) in LGG

have not been established.

The present study used genome sequencing technology and

bioinformatics analysis to explore the function of CRLs in LGG

patients. According to the prognostic CRLs screened from The

Cancer Genome Atlas (TCGA) and Chinese Glioma Genome

Atlas (CGGA) cohorts, LGG patients were stratified into two

cuproptosis subtypes with distinct over survival,

clinicopathological features, immune cell infiltration, and

biological processes. To quantify the difference between

individuals, we established a new prognostic signature based

on three CRLs (including CRNDE, HAR1A, and FAM181A-

AS1). This prognostic signature had a powerful ability to predict

the prognosis of LGG patients. We initially demonstrated the

potential of our prognostic signature in predicting immune

checkpoint blockade (ICB) therapy and chemotherapy

sensitivity.

Materials and methods

Data collection and pre-processing

The transcriptional data and clinical information of LGGpatients

were sourced from the TCGA (https://portal.gdc.cancer.gov) and

CGGA (http://www.cgga.org.cn/) datasets. The gene expression

profiles of 105 normal brain tissues from the Genome Tissue

Expression (GTEx) project was obtained from the UCSC Xena

website (https://xena.ucsc.edu/). LGG samples were excluded when

they hadmissing survival information and definitive histopathological

diagnosis. Finally, a total of 509 LGG samples from the TCGAdataset

and 591 samples from the CGGA dataset (172 from the CGGA_

325 cohort and 419 from the CGGA_693 cohort) were filtered for

further study. The transcriptional data from the TCGA and CGGA

cohorts were TPM normalized. The characteristics of the LGG

patients are listed in Supplementary Table S1.

Identification of the CRLs in the TCGA and
CGGA_325 datasets

Seventeen cuproptosis-related genes (CRGs, Supplementary

Table S2) were retrieved based on a published study (Tsvetkov

et al., 2022). To screen the CRLs, Pearson correlation analysis was

performed between the CRGs and lncRNAs in the TCGA and

CGGA_325 cohorts. An absolute value of correlation

coefficients >0.5 corresponding to a p-value < 0.05 was

considered eligible.

Consistent clustering to determine the
cuproptosis subtypes

Univariate Cox regression analysis was used to screen the

prognostic CRLs. The prognostic CRLs shared by the TCGA and

CGGA_325 cohorts were selected for unsupervised clustering

according to the R package “ConsensusClusterPlus”. The candidate

cluster number ranged from two to six. To produce the most stable

consensus matrix, the procedure was repeated 100 times with an 80%

sample selected in each iteration (Wilkerson and Hayes, 2010).

Evaluation of the immune landscape

Infiltrating immune and stromal cells are mainly structural

components of the tumor microenvironment (TME). We used

the Estimation of STromal and Immune cells in MAlignant

Tumor tissues using Expression data (ESTIMATE) algorithm

to calculate the abundance of immune and stromal cells in each

LGG patient (Yoshihara et al., 2013).

To better understand immune cell infiltration in the TME of

LGG samples, the Tumor Immune Estimation Resource
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(TIMER) algorithm (Li et al., 2017) was used in the “IOBR” R

package (Zeng et al., 2021). For validation, the single-sample gene

set enrichment analysis (ssGSEA) algorithm was also used to

evaluate the relative abundance of infiltrating immune cells. Jia

et al. (2018)summarized the characteristic gene panels for TME-

infiltrating immune cell types (Supplementary Table S3).

Tumor Immunophenotype Profiling (TIP, http://biocc.hrbmu.

edu.cn/TIP/index.jsp) is a web-based tool that makes the process of

anticancer immunity easy to visualize (Xu et al., 2018). According to

the TIP, the anti-tumor immune response may be simplified as a

seven-step cycle event (Supplementary Table S4): the release of

cancer cell antigens (Step 1), cancer antigen presentation (Step 2),

priming and activation (Step 3), trafficking of immune cells to tumors

(Step 4), infiltration of immune cells into tumors (Step 5), recognition

of cancer cells by T cells (Step 6), and killing of cancer cells (Step 7). In

this study, we assessed the anti-tumor activity score of each LGG

sample in the TCGA database.

Functional enrichment analyses

Gene set variation analysis (GSVA) is a functional enrichment

analysis that estimates the difference in pathway activity of the

samples using an unsupervised method (Hänzelmann et al., 2013).

To investigate the difference in biological processes between distinct

clusters, we performed GSVA using the “GSVA” package in R.

Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets were

obtained from the Molecular Signatures Database (MSigDB, http://

www.gsea-msigdb.org/gsea/index.jsp, v7.5.1) (Liberzon et al., 2011).

KEGG pathways between different subtypes with a false discovery

rate (FDR) < 0.05 were considered significant. Sixteen gene sets that

represent classical biological processes were also analyzed for

validation (Supplementary Table S5) (Mariathasan et al., 2018).

Chemotherapeutic and immune
checkpoint blockade therapy response
prediction

LGGpatients greatly benefit fromchemotherapy (Shawet al., 2012;

Viaccoz et al., 2012). According to the Genomics of Drug Sensitivity in

Cancer (GDSC, https://www.cancerrxgene.org/) database, the

“pRRophetic” package in R was used to evaluate the chemotherapy

drug sensitivity of each LGG sample (Geeleher et al., 2014). Four

commonly used chemotherapeutics (temozolomide, tamoxifen,

bleomycin, and vinblastine) were selected in the present study.

The subclass mapping method from GenePattern (SubMap,

https://www.genepattern.org/) was used to predict the response

to ICB therapy (Hoshida et al., 2007). The SubMap method is an

unsupervised algorithm that reveals common subtypes between

independent datasets. The gene expression profiles of

47 melanoma patients who received ICB therapy were sourced

from a published dataset (Roh et al., 2017).

Identification of differentially expressed
cuproptosis-related lncRNAs between
cuproptosis subtypes

According to the “limma” package in R (Ritchie et al., 2015),

we further analyzed the differential expression of 37 prognostic

CRLs between distinct cuproptosis subgroups. Differentially

expressed CRLs (DE-CRLs) with an FDR <0.05 and | log2fold

change (FC) | values >1 were considered significant.

Construction and validation of
cuproptosis-related lncRNAs signature

The overlapping DE-CRLs from the TCGA and

CGGA_325 cohorts were incorporated into the least absolute

shrinkage and selection operator (LASSO) regression analysis

using the “glmnet” R package (Friedman et al., 2010). The risk

score for each sample was calculated by the expression level and

regression coefficient of each CRL. The formula is described below:

Risk score � ∑
n

i�1
Coef(Xi)p Exp (Xi)

Coef (Xi) is the regression coefficient of the CRLs, and Exp

(Xi) represents the expression levels of CRLs. LGG samples were

split into high- and low-risk score groups by the median value.

The Kaplan-Meier (K-M) survival curve was employed to

compare the overall survival between the high- and low-risk

groups. The receiver operating characteristic (ROC) curves were

drawn to measure the predictive power of cuproptosis-related

lncRNAs signature through the “survival-ROC” R package

(Heagerty et al., 2000).

Nomogram construction

Univariate and multivariate Cox regression analyses were

used to evaluate the independent prognostic value of

cuproptosis-related lncRNA signature. To evaluate the Cox

regression model, the PH hypothesis test was performed.

Nomogram was constructed to predict the survival probability

of 1-, 3-, and 5-years overall survival (Iasonos et al., 2008). The

calibration plot was also performed to verify the accuracy.

Real-time quantitative PCR

Four tumor tissues and corresponding peritumoral brain

tissues from LGG patients were collected in the Second

Affiliated Hospital of Harbin Medical Universit. This research

was approved by all the patients and the Ethics Committee of the

hospital. Total RNA was isolated from LGG tissues using TRIzol
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reagent (Invitrogen, United States) according to the

manufacturer’s protocol. According to the manufacturer’s

instructions of the Nanodrop ND-2000 spectrophotometer

(Thermo Scientific, United States), 2 μg of the total RNA was

transcribed into cDNA. RT-qPCR was performed with the SYBR

Green PCR kit (Takara, Japan). Independent experiments were

conducted in triplicate, and ACTB served as an internal control.

The primers (Tsingke Biotechnology Co., Ltd, Beijing, China)

were used are displayed in Supplementary Table S6.

Statistical analysis

All statistical analyses and visualizations were executed in

R 4.1.2 and GraphPad Prism 8.0.2. Survival analysis was

performed using the “survival” package in R. The

nomogram and the calibration curves were generated by

the “rms” R package (Zhang and Kattan, 2017). The R

package “maftools” was used to process and present the

mutation data (Mayakonda et al., 2018). Immune cell

infiltration, ssGSEA score, mRNA expression, and TIP

score were compared between the two groups using the

Wilcoxon test. The student’s t-test was used to analyze

differences between different risk groups. P < 0.05 was

considered statistically significant.

Results

Identification of prognostic CRLs from
TCGA and CGGA_325 datasets

Supplementary Figure S1 provides a flow chart of this study.

Pearson correlation analysis was performed between CRGs and

CRLs. Combined with univariate Cox regression analyses, a total

of 517 and 137 CRLs were obtained from the TCGA and

CGGA_325 datasets, respectively, using | cor | > 0.5 and p <
0.05 as cutoff values (Supplementary Tables S7, S8). Thirty-seven

prognostic CRLs that were shared by the two datasets were

screened (Figure 1A).

FIGURE 1
(A) Venn diagram to identify the intersecting prognostic CRLs from TCGA and CGGA_325 cohorts. (B) Cumulative distribution function curves
for k = 2–6. (C) Consensus clustering matrix for k = 2. (D) K-M curve between two cuproptosis subtypes. (E) The expression profile of 37 CRLs
between cuproptosis subtypes in the TCGA cohort (*p < 0.05, **p < 0.01, and ***p < 0.001).
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Determine the cuproptosis subtypes in
LGG patients

To better examine the role of cuproptosis in LGG patients,

unsupervised consensus clustering of the 37 prognostic CRLs was

performed using the R package “Consensus ClusterPlus”. As

shown in the cumulative distribution function (CDF) plots and

consensus matrix, k = 2 was the most suitable choice (Figures

1B,C). We obtained two cuproptosis subtypes from the TCGA

dataset, which were labeled cluster-1 and cluster-2. A total of

263 samples were classified into cluster-1, and 246 samples were

classified into cluster-2 (Supplementary Table S9). To confirm

the robustness of unsupervised clustering, the same algorithm

was used in the CGGA_325 cohort (Supplementary Figures

S2A,B). We also obtained two distinct subtypes. Eighty

samples were classified into cluster-1, and 92 samples were

classified into cluster-2 (Supplementary Table S10). These

results demonstrated the effectiveness of our grouping.

K-M survival curves showed that patients in cluster-2 had a

significant survival advantage (Figure 1D; Supplementary Figure

S2C). The distribution of various clinical factors and 37 CRL

expression levels between different subgroups are intuitively

shown in Figure 1E. Compared to cluster-2, patients in

cluster-1 were more related to the clinicopathological features

of WHO III, isocitrate dehydrogenase (IDH) wild-type,

unmethylated O6-methylguanine-DNA methyltransferase

promoter (MGMTp), and 1p19q non-codeletion. A similar

result was observed in the CGGA_325 cohort (Supplementary

Figure S2D).

Tumor microenvironment immune cell
infiltration in different cuproptosis
subtypes

We examined the difference in immune cell infiltration

between different cuproptosis subgroups. The immune and

stromal scores positively correlated with the number of

immune or stromal components in the TME. The ESTIMATE

score represents the comprehensive proportion of the immune

and stromal scores in the TME (Yoshihara et al., 2013). The

immune score, stromal score, and ESTIMATE score were

significantly higher in cluster-1 in this study, which indicates

an increased infiltration of immune and stromal cells (Figures

2A–C; Supplementary Figures S3A–C). Based on the TIMER

algorithm, we calculated the abundance of six immune cells,

including B cells, CD4+ T cells, CD8+ T cells, neutrophils,

macrophages, and myeloid dendritic cells, in the TME. The

infiltration levels of six immune cells in cluster-1 were

significantly increased (Figure 2D; Supplementary Figure

S3D). Patients with higher immune cell infiltration

corresponded with poor outcomes in LGG (Figure 2E;

Supplementary Figure S3E). We also evaluated the infiltration

levels of 28 immune cells using the ssGSEA score to validate these

results (Figure 2F; Supplementary Figure S3F).

To better understand the anti-tumor immune response in

LGG, the process was visualized using the TIP website. Patients

in cluster-1 had increased immune activity scores in Step 1, Step

4, and Step 5. However, the immune activity scores in Step 3, Step

6, and Step 7 of cluster-2 were higher (Figure 2G). Although the

recruitment and infiltration of immune cells in cluster-1 were

higher, the abilities to recognize and kill cancer cells were lower

than in cluster-2. This difference also explained why the

increasing level of immune infiltration was associated with

shorter overall survival in LGG.

Characteristics of the biological process in
distinct cuproptosis subtypes

To further examine the differences in biological processes

between distinct cuproptosis subtypes, we performed the GSVA

enrichment analysis. Cluster-1 was markedly enriched in

stromal, immune activation, oncogenic, and DNA damage

repair (DDR) pathways, such as the ECM receptor interaction,

antigen processing and presentation, TGF-β signaling pathway,

and DNA replication. Patients in cluster-2 were enriched in

pathways related to metabolism, including taurine and

hypotaurine metabolism and the biosynthesis of unsaturated

fatty acids (Figure 2H; Supplementary Table S11). Differences

in 16 typical biological processes between cluster-1 and cluster-2

were also identified in this study. The stromal, immune

activation, and DDR pathways were enriched in cluster-1

(Figure 2I). These results were verified in the

CGGA_325 cohort (Supplementary Figures S3G,H,

Supplementary Table S12).

Chemotherapy sensitivity and the immune
checkpoint blockade treatment
responsiveness in different cuproptosis
subtypes

Chemotherapy is the main adjuvant therapy for LGG, and

it provided great benefit. The present study assessed the half-

maximal inhibitory concentration (IC50) of four commonly

used chemotherapeutics (temozolomide, tamoxifen,

bleomycin, and vinblastine) in each LGG sample. Patients

in cluster-1 had a higher sensitivity for four

chemotherapeutics (Figures 3A,B).

The abundance of infiltrating immune cells and enrichment

of immune checkpoint pathways in cluster-1 indicated a positive

response to ICB therapy. Considering the importance of ICB

therapy in LGG, we next examined the response to ICB therapy

in LGG. The results demonstrated that patients in cluster-1 were

more responsive to anti-PD-1 treatment (Figures 3C,D).
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Construction of the cuproptosis-related
lncRNAs signature

With an FDR <0.05 and | logFC | > 1, we obtained eleven

and thirteen DE-CRLs from the TCGA and

CGGA_325 datasets, respectively (Supplementary Table

S13). Eleven overlapped prognostic CRLs were selected

from the two cohorts (Figure 4A). Considering the

individual heterogeneity, we established a CRL-based

prognostic model to quantify the difference between the

individuals in LGG (Figures 4B,C). The regression

coefficients of the three CRLs are shown in Supplementary

FIGURE 2
Differential immune landscape and biological processes between cuproptosis subtypes in the TCGA cohort. (A–C) Distribution of immune
score (A), stromal score (B), and ESTIMATE score (C) between the two cuproptosis subtypes. (D) Estimated abundance of six immune cells from the
TIMER algorithm. (E) The K-M curves for patients in the high- and low-level immune cell groups from the TIMER algorithm. (F) Estimated abundance
of 28 immune cells from the ssGSEA algorithm. (G) Immune activity scores of the anti-tumor immune response. (H) Heatmap of KEGG
pathways between cuproptosis subtypes. (I) Comparison of 16 classical biological processes between the cuproptosis subtypes. The horizontal line
of the box plot represents the median values (*p < 0.05, **p < 0.01, ***p < 0.001 and ns, non-significant).
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Table S14. We divided the LGG patients into low- and high-

risk score groups at the median cut-off. Patients in cluster-1

showed an increased risk score compared to cluster-2

(Supplementary Figures S4A, S5A). The clinicopathological

features of age ≤ 40 years, WHO II, 1p19q codeletion, IDH

mutation, and MGMTp methylation were associated with a

decreased risk score (Supplementary Figures S4B–E, S5B–E,

S6B–E).

K-M curves indicated that patients with a high-risk score had

a poor prognosis (Figure 4E). The distribution plot of the risk

score and survival status showed that patients in the low-risk

group had a higher survival rate (Figure 4F). Principal

component analysis (PCA) showed that the LGG patients

were easily distinguished according to the different risk

groups (Figure 4G). The AUC values of the signature for

predicting 1-, 3-, and 5-years survival rates in the TCGA

dataset were 0.841, 0.839, and 0.768, respectively. The AUC

values were 0.773 (1-year), 0.834 (3-years), and 0.849 (5-

years) in the CGGA_325 cohort, and the AUC values in the

CGGA_693 cohort were 0.699, 0.725, and 0.740 for 1, 3, and

5 years, respectively. (Figure 4H).

We further evaluated the predictive ability of the prognostic

signature between different clinical subgroups. The results

showed that patients in the low-risk group always had a better

outcome than patients in the high-risk group (Figure 5A–L;

Supplementary Figures S7A–L, S8A–L). These findings

demonstrated the favorable predictive ability of the prognostic

signature.

Building a predictive nomogram for
overall survival prediction

The results of univariate and multivariate Cox regression

analyses showed that the risk score was always an independent

prognostic factor in LGG (Figures 6A,B; Supplementary Figures

S9A,B; Supplementary Figures S10A,B). After the PH hypothesis

test (Figure 6C; Supplementary Figures S9C, S10C), a nomogram

FIGURE 3
Drug sensitivity of temozolomide, tamoxifen, bleomycin, and vinblastine between cuproptosis subtypes in TCGA (A) and CGGA_325 (B)
cohorts. ICB therapy responses between cuproptosis subtypes in TCGA (C) and CGGA_325 (D) cohorts (*p < 0.05, **p < 0.01, ***p < 0.001 and ns,
non-significant).
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FIGURE 4
(A) Venn diagram to identify the intersecting DE-CRLs from TCGA and CGGA_325 cohorts. (B) Ten-time cross-validation for tuning parameter
selection in the LASSOmodel. (C) LASSO coefficient profiles of the 3 prognostic CRLs. (D–G) The K-M curves between the high- and low-risk groups
(D), PCA plots (E), distribution plots of the risk score and survival status (F), and time-dependent ROC analysis (G) in the TCGA, CGGA_325, and
CGGA_693 datasets.
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prediction model was constructed (Figure 6D; Supplementary

Figures S9D, S10D). We found that the calibration curves of the

nomogram were close to the standard curves (Figure 6E;

Supplementary Figures S9E, S10E). These results also

indicated the clinical applicability of the nomogram.

Tumor microenvironment immune cell
infiltration in different risk groups

The difference in immune landscape between different

risk groups was also assessed in this research. Patients in the

high-risk group had a higher immune score, stromal score,

and ESTIMATE score (Figures 7A–C; Supplementary Figures

S11A–C, S12A–C). The abundance of immune cell infiltration

in the high-risk group was also increased compared to the

low-risk group (Figures 7D,E; Supplementary Figures

S11D,E, Supplementary Figures S12D,E). We examined the

expression levels of immune checkpoint (ICP) regulators

including CD80, CD86, CD274 (PD-L1), IDO1, CTLA4,

HAVCR2 (TIM-3), LAG3, PDCD1 (PD-1), and

PDCD1LG2 (PD-L2) in the different risk groups. We

found that most of the ICPs were upregulated in the high-

risk group, which indicated that more benefits may be gained

from ICB therapy (Figure 7F; Supplementary Figures S11F,

S12F).

Relationship between prognostic
signature and mutational status

Tumor mutation burden (TMB) has been used to predict

prognosis and ICB efficacy across many cancer types (Snyder

et al., 2014; Rizvi et al., 2015; Hugo et al., 2016). To better

understand the role of TMB in LGG, we calculated the TMB

level of each sample in LGG. Patients in the high-risk group

had a higher TMB level (Figure 8A). The TMB levels

increased with the risk score (Figure 8B). We also found

that the TMB level negatively correlated with overall survival

(Figure 8C). Patients in the low-risk group showed an

apparent survival advantage in the high and low TMB

groups (Figure 8D).

The top 20 mutated genes in different risk groups were

visualized using waterfall plots (Figures 8E,F). IDH mutation

is an important factor that is associated with favorable outcomes

in LGG patients (Choi et al., 2021). Glioblastoma with wild-type

IDHmay directly transform from LGGwith wild-type IDH (Brat

et al., 2015). Among the top 20 mutated genes, patients in the

FIGURE 5
K-M survival curves of the high- and low-risk groups stratified into multiple TCGA clinical subgroups. (A,B) Age ≤ 40 or >40 years. (C,D) Female
or male. (E,F) WHO II or WHO III. (G,H) IDH mutant or wild type. (I,J) 1p19q codel or no-codel. (K,L) MGMTp methylate or non-methylate.
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low-risk group (IDH1-89%, IDH2-7%) had a higher IDH

mutation rate than patients in the high-risk group (IDH1-

66%). This result supports the central role of IDH mutation

in LGG. CIC mutation was also highly expressed in the low-risk

group, which is associated with better survival of glioma (Hwang

et al., 2020). The mutation rates of potential targets, including

TP53, ATRX, EGFR, and TTN, were higher in the high-risk

group (Chen et al., 2016; Jia et al., 2019), which indicated a

positive response to ICB therapy.

Chemotherapy sensitivity and the immune
checkpoint blockade treatment
responsiveness in different risk groups

We assessed the predictive value of the risk score for

chemotherapy and ICB therapy to help construct

individualized treatment plans. The IC50 values of the four

chemotherapy drugs showed that patients in the high-risk

group were more sensitive to chemotherapy (Figures 9A–C).

FIGURE 6
(A,B) Univariate (A) and multivariate (B) Cox analyses of the prognostic signature in the TCGA cohort. (C) PH hypothesis test for each
independent prognostic factor. (D) A nomogram for predicting the 1-, 3-, and 5-years survival rates of LGG patients in the TCGA cohort. (E) The
calibration curves predicted 1-, 3-, and 5-years survival rates in the TCGA cohort.
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As shown in Figure 9D, patients in the high-risk group may have

greater benefits from ICB therapy.

Validation of the 3 CRLs expressions in
LGG tissue samples

We further characterized these 3 CRLs based on gene

expression and survival prognosis using the TCGA and GTEx

data. As is shown in Figures 10A–C, CRNDE, and FAM181A-

AS1 were expressed at high levels in LGG tissues, while HAR1A

was increased in normal brain tissues. K-M curves proved the

clinical outcomes between different expression levels of 3 CRLs

(Figures 10D–F). We further verified the expression levels of

3 CRLs between LGG and peritumoral brain tissues (PBT) with

RT-qPCR (Figures 10G–I).

Discussion

Compared to the most malignant glioblastoma, the median

survival of LGG is longer. However, LGG generally converts into

high-grade glioma approximately 4–5 years after diagnosis

despite receiving standard care (Kumthekar et al., 2015).

Cuproptosis is a form of copper-dependent cell death that is

different from known cell death pathways. Dysregulated copper

metabolism has been found in many types of cancer, which

suggests an irreplaceable characteristic in the development of

cancer (Kucharzewski et al., 2003; Jouybari et al., 2020).

LncRNAs participate important roles in tumor incidence,

development, and metastasis (Tang et al., 2022). The

underlying mechanism of CRLs in LGG is not clear. To the

best of our knowledge, this report is the first study to assess the

correlation between CRLs and biological and clinical features of

LGG using a bioinformatics method.

The present study first screened 37 prognostic CRLs from the

TCGA and CGGA cohorts using the CRGs. According to the

consistent clustering, samples in the two datasets were divided

into two subtypes with different expression levels of CRLs.

Patients in different cuproptosis subgroups had distinct

prognostic and clinicopathological features. Cluster-1 was

enriched in the stromal, immune activation, oncogenic, and

DDR pathways. In contrast, patients in cluster-2 were more

active in pathways related to metabolism. Therefore,

combined with a previous study on cuproptosis in glioma,

patients in cluster-1 were regarded as the cuproptosis-resistant

type. Cluster-2 patients were characterized as a cuproptosis-

sensitive type.

FIGURE 7
Differential immune landscape between the high- and low-risk groups in the TCGA cohort. (A–C) Distribution of immune score (A), stromal
score (B), and ESTIMATE score (C) between the high- and low-risk groups. (D) Estimated abundance of six immune cells from the TIMER algorithm.
(E) Estimated abundance of 28 immune cells from the ssGSEA algorithm. (F) The expression level of ICPs between the high- and low-risk groups. The
horizontal line of the box plot represents the median values (*p < 0.05, **p < 0.01, ***p < 0.001 and ns, non-significant).
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We also found that patients in cluster-1 had increased

immune cell infiltration. The abundance of immune cells was

negative for the overall survival of LGG. One of the most

important functions of dendritic cells (DCs) is antigen uptake

and processing. Using the antigen-processing machinery

(APM), tumor-derived epitopes are cross-presented to

T cells by DCs (Yamanaka, 2009). CD8+ cytotoxic T cells

and NK cells directly target and kill tumor cells (Kim and

Cantor, 2014). However, the TIP analysis showed that

patients in cluster-2 had a decreased immune activity score

for the infiltration of immune cells but an increased score in

the steps of cancer cell recognition and killing. This result

corresponds to the better outcomes for cluster-2 patients.

Glioma is characterized by a “clod” tumor, and immune cells

are trapped in the stroma rather than penetrating the tumor

parenchyma (Chen and Mellman, 2017; Jackson et al., 2019).

Combined with the TIP findings, we found that the

effectiveness of anti-tumor immune response may depend

on the “effective immune cells”. Therefore, methods to

increase “effective immune cells” in LGG will be a new

direction of immunotherapy.

Based on the DE-CRLs between different cuproptosis

subgroups, we then constructed a 3 CRL prognostic

signature, including CRNDE, HAR1A, and FAM181A-AS1,

to predict the individualized treatment through the LASSO

regression. CRNDE is involved in cancer progression,

neuronal differentiation, gametogenesis, and other

developmental processes (Han et al., 2017). CRNDE also

plays a regulatory role in temozolomide chemoresistance

to glioma (Zhao et al., 2021). HAR1A acts as a tumor

suppressor in many cancer types. Chen et al. (2020)

demonstrated that lower HAR1A expression may result in

a worse outcome for glioma patients (Waters et al., 2021). The

expression level of lncRNA FAM181A-AS1 correlates with

advanced tumor stage and survival of glioma (Jiang and

Chen, 2020).

We further demonstrated that patients in the high- and low-

risk groups exhibited significantly different survival outcomes.

The AUC values of the ROC plots demonstrated the reliability

and accuracy of the prognostic signature. The effectiveness and

stability of the prognostic signature were validated in the TCGA

and CGGA cohorts. Univariate and multivariate Cox regression

analyses showed that the risk score was an independent

prognostic factor in LGG. Nomogram and calibration plots

also showed that the prognostic signature had excellent

predictive power.

As an important component of LGG treatment,

chemotherapy has attracted more attention. The present

research evaluated four chemotherapeutic drug sensitivities

in each LGG sample. Temozolomide is a classic

FIGURE 8
(A) TMB levels between the high- and low-risk groups. (B)Correlation between TMB levels and risk score in LGG patients. (C) The K-M curves of
LGG patients in the TMB level-high and -low groups. (D) The K-M curves of the four subgroups based on the risk score and TMB levels. (E,F) The
mutation rates of the top 20 mutated genes of the low- (E) and high-risk groups (F).
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chemotherapeutic drug that is used for the treatment of

glioma. It is characterized as easy to administer and better

tolerated (van den Bent, 2015). Tamoxifen is an estrogen

receptor modulator that induces cell death in glioma

(Harmalkar et al., 2015). The combined administration of

tamoxifen and temozolomide was well tolerated (Carrabba

et al., 2013). Bleomycin functions by inducing single- and

double-stranded DNA breaks, which is similar to ionizing

radiation (Mathews et al., 2012). Research showed that the

effect of bleomycin on F98 glioma cells was stronger than

temozolomide (Gederaas et al., 2015). One large study

revealed that vinblastine showed low toxicity and

maintained the quality of life in pediatric LGG (Lassaletta

et al., 2016). The predicted IC50 values of the above four

chemotherapeutic drugs are lower in cluster-1 or high-risk

groups, which indicated more sensitivity to the four

chemotherapeutic drugs. According to the RTOG

9802 results, LGG patients had increased overall survival

after adjuvant chemotherapy and radiation. The

chemotherapy drugs procarbazine, lomustine, and

vincristine (PCV) were the mainstream treatment strategy

for improving LGG patients’ survival rates (Bell et al., 2020).

FIGURE 9
Drug sensitivity of temozolomide, tamoxifen, bleomycin, and vinblastine between high- and low-risk groups in the TCGA (A), CGGA_325 (B)
and CGGA_693 (C) cohorts. (D) ICB therapy responses between high- and low-risk groups in the TCGA, CGGA_325 and CGGA_693 cohorts (*p <
0.05, **p < 0.01, ***p < 0.001 and ns, non-significant).
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However, we could not assess the sensitivity to PCV in LGG

patients due to the limited candidate drugs in the predictive

algorithm.

Although ICB therapy has become a promising treatment

strategy against a variety of tumors, only a minority of patients

obtain favorable benefits from it (Hsu et al., 2021). PD-1, PD-L1,

and CTLA-4 are the main immune checkpoint molecules in

glioma immunotherapy (Topalian et al., 2015). However,

response to anti-PD-1/PD-L1 therapy commonly ranges from

10 to 40% (Zou et al., 2016). Due to the characterization of glioma

as a “cold tumor”, the response frequency may be lower (Chen

and Mellman, 2017). A clinical trial of recurrent glioma showed

that only 8% of patients exhibited dramatic responses to anti-PD-

1 therapy (Filley et al., 2017). Therefore, preliminary screening

FIGURE 10
(A–C) The expression levels of CRNDE (A), FAM181A-AS1 (B), andHAR1A (C) between normal brain tissues and LGG. (D–F) K-M survival curves of
the high- and low levels of CRNDE (D), FAM181A-AS1 (E), and HAR1A (F) in LGG patients. (G–I) Relative expression of CRNDE (G), FAM181A-AS1 (H),
and HAR1A (I) was detected by qRT-PCR in four pairs of LGG and PBT.
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for patients who are sensitive to ICB therapy using a

bioinformatics method may provide optimal clinical

treatment. The present study found that LGG patients with

higher immune cell infiltration, and TMB levels, may produce

more clinical responses to ICB therapy. PD-1 and its ligands PD-

L1/PD-L2 are the most comprehensively studied immune

checkpoint molecules (Qi et al., 2020). CTLA-4 is the first

ICP molecule that was used in ICB therapy, its also effect on

the CD80 and CD86 expressed by dendritic cells (Ohue and

Nishikawa, 2019). Research found that combining select

therapies with IDO1, LAG-3, and TIM-3 blockade tend to

benefit against tumor growth (Huang et al., 2015; Kim et al.,

2017; Zhai et al., 2018). In this study, the expression of these ICP

regulators was increased in the high-risk group. The above

findings may provide a means for the effective application of

ICB therapy for LGG.

Here are some limitations in the current work. First, the

sample size was relatively small as a validation group. Second, we

selected CRGs from recently published research. With further

study of cuproptosis, an increasing number of CRGs may be

identified. Finally, this study was based on bioinformatics

analysis, and further experimental studies in vitro and in vivo

are needed.

Conclusion

In summary, we identified two cuproptosis subtypes in

LGG with different outcomes, clinicopathological features,

and immune landscapes. We also constructed and validated a

cuproptosis-related signature that exhibited robust capacity

in predicting the survival outcomes of LGG patients. Notably,

we also evaluated chemotherapy sensitivity and ICB

treatment responsiveness in LGG patients. This study

provides a new reference for the chemotherapy and ICB

treatment of LGG and may be beneficial in individualized

treatment strategies.
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