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Heat shock protein 90 (Hsp90) is a molecular chaperone playing a significant

role in the folding of client proteins. This cellular protein is linked to the

progression of several cancer types, including breast cancer, lung cancer,

and gastrointestinal stromal tumors. Several oncogenic kinases are Hsp90

clients and their activity depends on this molecular chaperone. This makes

HSP90 a prominent therapeutic target for cancer treatment. Studies have

confirmed the inhibition of HSP90 as a striking therapeutic treatment for

cancer management. In this study, we have utilized machine learning and

different in silico approaches to screen the KCB database to identify the

potential HSP90 inhibitors. Further evaluation of these inhibitors on various

cancer cell lines showed favorable inhibitory activity. These inhibitors could

serve as a basis for future development of effective HSP90 inhibitors.
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Introduction

Due to their distinct cellular distribution, molecular chaperones have emerged as

appealing drug targets for therapeutic research (Schopf et al., 2017; Kim et al., 2018; Li

et al., 2018). Heat-shock proteins, a molecular chaperone, vary from 10 kDa to >100 kDa
in size and are located across different cellular compartments. HSP90α and HSP90β in the
cytoplasm, GRP94 in the endoplasmic reticulum, and TRAP-1 (tumor necrosis factor

receptor-associated protein 1) in the mitochondria are different isoforms of 90 kDa HSPs

(Hoter et al., 2018).

Hsp90 reportedly involves a wide range of essential cell functions (Wu et al., 2017). It

plays a crucial role in the folding and stabilizing of more than 200 client proteins (Trepel

et al., 2010; Azoitei et al., 2014). Hsp90 is well reported to be involved in various cancer
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progression by playing a prominent role in the biological

functions and maintaining the conformation of several

oncoproteins (Boroumand et al., 2018; Liew et al., 2022). The

role of HSP90 has been thoroughly investigated and linked with

progression of various cancer types, including breast cancer, lung

cancer, melanoma, and gastrointestinal stromal tumors

(Whitesell and Lindquist, 2005; Sherman and Multhoff, 2007;

Wandinger et al., 2008; Graner, 2016; Chatterjee and Burns,

2017; Wu et al., 2017). Studies have well established that

compared to normal cells, the expression level of Hsp90 is

much higher in various cancer cells (Beliakoff and Whitesell,

2004; Mahalingam et al., 2009; Moser et al., 2009; Miyata et al.,

2013; Sanchez et al., 2020). In cancer cells, the inhibition of

Hsp90 promotes the degradation of client oncoproteins, thereby

making it a significant cancer therapeutic strategy (Bhat et al.,

2014; Ozgur and Tutar, 2016; Liu et al., 2019). In addition, the

role of Hsp90 is reported in several other diseases (Cowen et al.,

2009; Lackie et al., 2017; Wang et al., 2017). It is widely

investigated as a crucial therapeutic drug target for viral,

parasitic, fungal, and various neurodegenerative disorders

(Ernst et al., 2014; Lackie et al., 2017).

Hsp90 is considered a prominent anticancer drug target

because of its interaction with several kinases (almost 60%

kinases) (Taipale et al., 2012). The inhibition of HSP90 results

in the degradation of the client kinases (mediated by

ubiquitination). The central role of HSP90 in these tumor

mediating interactions has placed it as one of the most

prominent anticancer drug targets. This has also constantly

developed research interest towards developing

Hsp90 targeting anticancer agents (Bhat et al., 2014; Kumalo

et al., 2015). In the early 1990s, researchers identified the

druggable pocket of HSP90 (Sanchez et al., 2020). Since then,

many inhibitors targeting the N-terminal domain have been

developed, some of which are also under clinical trials (Yuno

et al., 2018). Despite so much research, there is still no

HSP90 targeting molecule approved by FDA for cancer

monotherapy.

The recent advancement in technology has fastened the

drug discovery process. A large number of molecules have

been developed using advanced computational techniques

(Baig et al., 2016; Lin et al., 2020). Virtual screening is an

efficient and cost-effective strategy for identifying chemical

moieties and structural scaffolds potentially crucial for the

binding to a target protein (Lionta et al., 2014) (Baig et al.,

2016).

We used three different ML techniques on the ChEMBL

activity dataset along with DUD-E decoys to increase the

performance and balance out the number bias. The relevant

features were selected to develop a robust model for HSP90. The

best MLmodel was chosen on several parameters and was further

utilized for screening the Korean Chemical Bank (https://

chembank.org/) to identify the potential HSP90 inhibitor.

Further various in silico techniques were applied to evaluate

the selected compounds’ binding potential and stability against

HSP90. Finally, the top compounds were experimentally

validated. The outcome of this study results in identifying

potent HSP90 inhibitors with novel scaffolds.

Material methods

Dataset

ChEMBL database (Mendez et al., 2019) was used to select

the dataset of molecules having previously reported activity

against HSP90 (ChEMBL ID: CHEMBL3880). The selected

assay was a single protein assay designated to HSP 90-alpha.

The dataset was filtered for (i). Organism: human and (ii).

Binding activity type: IC50.

Further the data was preprocessed and filtered for

desired information. The unique molecules were

segregated to remove the redundancy. To make a

classification model, molecules having IC50 activity value

less than or equal to 100 nM were treated as active, and

more than 500 nM were treated as inactive. Decoys were

generated by the DUD-E database (Mysinger et al., 2012).

Both active and inactive datasets were initially segregated in

smiles format.

Descriptor calculation and feature
selection

RDkit was used to calculate the MACCS KEYS, ECFP4,

and 1D&2D descriptors. The biophysical molecular

descriptors and fingerprints comprising 1385 unique

properties were calculated. To reduce the complexity,

improve predictive power, and reduce overfitting of the

model, feature selection was performed. Finally, a total of

62 relevant features were selected with Pearson correlation

coefficient more than 0.3.

Model building and validation

ML model was built using Python, Scikit-learn (Bac et al.,

2021). The dataset was divided into training and test sets in a

ratio of 20:80 using the stratified method. Three ML models were

built: Randomforest, XGBoost, and SVM (Support Vector

Machine). The model data was preserved in the github

repository (https://github.com/marinewhlae/HSP90).

Hyperparameter tuning was done by the grid search cross-

validation method.

The model was validated through several performance

parameters, such as Accuracy, Precision, Recall, MCC

(Matthews correlation coefficient), F1 score, and ROC-AUC
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(Receiver Operating Characteristic curve - Area Under the

Curve).

ACC � TP + TN

TP + TN + FP + FN
, Precision � TP

TP + FP
,

Recall � TP

TP + FN

F1 � 2 ×
PPV × TPR

PPV + TPR
� 2TP
2TP + FP + FN

,

MCC � TP × TN − FP × FN
�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√

Y-scrambling

Y-scrambling is one of the methods used to verify machine

learning models and is called Y-randomization or

Y-permutation. By randomly mixing response variables (Y

data) and intentionally breaking the connection between

feature variables (X data), this is an attempt to verify the

accidental action of coincidence in model performance,

i.e., whether the model’s performance on selected dataset was

a random accidental event.

Randomly mix the Y value to create a pair mixed with the

existing X value for model learning.

This process is repeated 1000 times, and the performance

metric (Accuracy, MCC, F1 score) is compared with the existing

learned model.

If the performance of a model learned with existing data is

similar to or inferior to that of a model learned through

y-scrambling, even if the performance metric of the model is

high, the prediction is unreliable.

ML screening

The selectedMLmodel was used for screening the KCB. KCB

is a collection of highly active 578,112 structures. The database

was also pre-processed to remove the redundancy and the

descriptor information required for screening purposes. The

ML model was applied to the compound library, and the

molecules predicted to be over 90% active were selected.

Molecular docking

The structure of Human HSP90 in Complex with

Geldanamycin was extracted from the RCSB Protein

Databank (PDB ID: 1YET) (Stebbins et al., 1997). HSP90 and

Geldanamycin were separated and were subjected to redock

using CCDC GOLD v5.8.1 (Jones et al., 1997). The binding

orientation of the redock and crystal confirmation of

Geldanamycin within the binding site of HSP90 were

compared. The molecules identified from the ML

approach were further screened against HSP90 based on

molecular docking study using CCDC GOLD. The

molecules with a PLP fitness score higher than

Geldanamycin were selected and further evaluated using

autodock (Morris et al., 2009).

Molecular dynamics simulations

The high performing molecules in complex with the target

protein were then subjected to molecular dynamic simulation

studies. The thermal stability, binding affinity, and relative

motion were the prime objective. Gromacs (v

2020.04 package) (Van Der Spoel et al., 2005) was used to

perform the MD throughout the study. CHARMM27 force

field and TIP3P water model was applied to the cubic

simulation box of 1.2 Å radius. Ligand topology was

generated at SwissParam. The simulation box was filled

with solvent; and subsequently, the system was electro

neutralized using sodium and chloride ions. The bad

contacts were corrected through a steepest descent

minimization algorithm fixing a maximum force and steps

at 1000 kJ/mol/nm and 50,000 respectively. Two rounds of 100

ps of equilibration was performed. First, an isothermal and

isochoric equilibration (NVT) was done using Particle Mesh

Ewald electrostatics, followed by an isothermal and isobaric

equilibration (NPT). Temperature coupling was applied to

rectify the temperature differences. Finally, the production

MD was performed for 100 ns using trajectories generated

after NPT equilibration.

Free energy calculation

The MMPBSA.py module utilizing the AMBER software

was used to appraise the Molecular Mechanic/Poisson-

Boltzmann Surface Area (MM-PBSA) (Miller et al., 2012).

The binding free energy between the ligand and the receptor

was calculated by keeping the account for the vacuum

potential energy and solvation free energy terms.

Poisson–Boltzmann equation and solvent-accessible surface

area (SASA) methods were harnessed to estimate polar and

nonpolar energies.

This approach calculates the binding free energy (ΔG
binding) based on the following equation:

ΔGbinding � ΔGMM(Potential energy in vaccum) + ΔGsol(solvation ef f ects)
(1)

where
ΔGMM � ΔGcoulomb (electrostatic interaction) + ΔGVdw (2)

and
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ΔGsol � ΔGpolar + ΔGnonpolar (3)

where ΔGpolar represents the electrostatic and ΔGnon-polar is
the nonpolar contribution to the solvation free energy.

Reagents and cells

3-(4,5-imethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT), Dimethyl sulphoxide (DMSO) were purchased from

Sigma-Aldrich. RPMI-1640 medium, fetal bovine serum (FBS),

penicillin/streptomycin, trypsin–EDTA, and phosphate buffer

saline (PBS) were purchased from Gibco Life Technology. All

the HSP90 inhibitors (Compound-1, 2, 3, and 4) were provided by

the KCB, Republic of Korea. HSP90 inhibitors were prepared in

DMSO at 10 mM stock solution and stored at −20°C. Human

breast cancer cells MDA-MB-231 and human lung cancer cells

A549 were obtained from Korean Cell Line Bank.

Cell culture

Human breast cancer cells (MDA-MB-231) and lung cancer

cells (A549) were grown in RPMI-1640 medium with 10% heat-

inactivated fetal bovine serum (FBS) and 100U/ml of penicillin

and 10 μg/ml streptomycin at 37°C in a humidified atmosphere

with 5% CO2 in the incubator.

3-(4,5- imethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide assay

Antiproliferative effects of all the compounds on the MDA-

MB-231 andA549 cell line were evaluated by 3-(4,5- imethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In brief,

MDA-MB-231 and A549 cells were seeded into 96-well plates

(10,000 cells/well) and were allowed to adhere overnight. The

cells were then treated with the top 4 selected HSP90 inhibitors

(Compound-1, 2, 3, and 4) at various concentrations (0.321µM,

0.625µM, 1.25µM, 2.5µM, and 5 µM) for 72 h. To measure the cell

viability, 10 µl of MTT (5 mg/ml) solution was added to each

well, and the cells were further incubated for another 3 h at

37 °C. The supernatant was removed and subsequently 200 μl

of DMSO was added to each well to dissolve the formazan

product. Absorbance at 540 nm was measured using a

microplate reader (Promega, Discover), and percentage of

cell viability was calculated as follows: (optical density of

experimental sample/optical density of control) * 100.

Result and discussion

Model development and evaluation

The use of Machine learning techniques in drug discovery

has attracted much research interest (Sato et al., 2010;

Carpenter and Huang, 2018; Zhu et al., 2020). ML

improves the decision-making in hit discovery to retrieve

accurate outcomes (Adeshina et al., 2020; Dara et al.,

2021). This study aimed to build a robust classification

model for screening the potential hits for HSP90. At the

outset, this study incorporated a total of 354 inhibitors

with reported inhibitory activities against HSP90 from the

ChEMBL Bioassay database.

The primary dataset for molecular descriptors

calculation contained 218 active and 136 inactive, and

518 decoy entries (Table 1). The training and test data

distribution was in the ratio of 20:80. The magnitude of

the biological activity range was sufficiently wide and evenly

distributed between the sampling sets. Therefore, the multi-

dimensional chemical property space was evenly rendered

between training and test sets. In total, 1385 1D&2D,

MACCS KEYS, and ECFP4 unique descriptors were

calculated (Table 2). Molecular descriptors represent a

molecule’s physical, chemical, or topological features that

are experimentally or theoretically defined (Todeschini and

Consonni, 2008; Dong et al., 2015). The descriptors were

filtered using the Pearson correlation coefficient matrix. The

relevant features with characteristic correlation with the

TABLE 1 Training and test dataset used in our study.

Active Inactive Total

IC50<= 100 nM IC50 > 500 nM Decoy

No. of molecules 218 136 518 872

TABLE 2 Molecular descriptor statistics of the dataset.

Total descriptors Selected descriptors

1D&2D descriptors 195 20

MACCS KEYS 166 16

ECFP4 1024 26
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continuous data of inhibitory activity and low

dimensionality were considered as an independent

chemical variables. The descriptors that contained a

correlation value greater than 0.3 were selected. In this

study, 62 high correlating features were used for the

classification. A plot for the Pearson correlation

coefficient matrix for adopted 1D&2D (20), MACCS

KEYS (16) and ECFP4 (26) descriptors against their

inhibitory activities are shown in Figure 1. A significant

correlation was found between inhibitory activity and

selected features.

Machine learning models employing SVM, Random

Forest, and XGBoost were generated on the identical binary

dataset. The selected parameter sets were optimized to attain

maximum accuracy for each classifier. Internal 10-fold cross-

validation to tune the hyperparameters was performed. Data

was compared to the original class label for all the classifiers to

evaluate true positives, true negatives, false positives, and false

negatives. The confusion matrix and the evaluated quality

parameters of the classifier are illustrated in Figure 2.

The performance of the binary classifier was also analyzed on

a comparative ROC plot drawn between the proportion of truly

predicted positive classes among all actual positive classes and the

proportion of incorrectly predicted negative classes among all

actual negatives to encapsulate the findings in confusion

matrices.

The accuracy evaluation for the internal ten-fold cross-

validated SVM, RF, and XGB was computed while keeping the

FIGURE 1
A correlation histogram of selected descriptors against the inhibitory activity. The scale represents the value of the Pearson correlation
coefficient.
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complexity parameter to 1.0 (Table 3). Scores for six

performance parameters viz., accuracy, precision, recall,

MCC, F1, and ROC-AUC for the 3 different methods were

compared to each other. The ROC-AUC for the XCBoost

model was significantly highest among the 3 models.

Concretely, the tradeoff between statistical results of the

performance parameters among the 3 classifiers establishes

an XGBoost model as the best-suited binary class prediction

method for our dataset.

Although the accuracy andMCC scores indicated (Table 3)

in all three models are above 0.9, demonstrating their ability to

generalize outside the initial dataset characteristics, the

difference lies in the results of performance for recall

FIGURE 2
(A–C) Confusion matrix for the models prepared using RF, XGBOOST and SVM. (D): ROC curve showing the performance of binary class
models.

TABLE 3 The performance parameter collation for the Ramdom forest, XGBoost and Support Vector Machine models.

Accuracy Precision Recall MCC F1 ROC-AUC

RF 0.965 0.913 0.954 0.910 0.933 0.992

XGB 0.971 0.898 1 0.929 0.946 0.993

SVM 0.96 0.8622 1 0.903 0.926 0.982

TABLE 4 Test dataset for Machine Learning screening.

Total Screening Active Probability>90%

No. of molecules 578,112 577,939 6807 237
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FIGURE 3
(A–C) showing Y-scrambling MCC, Accuracy, and F1 score for the XGBoost model.

TABLE 5 Machine Learning and molecular docking results for the top 4 molecules.

Compound Classification probability GOLD docking score Autodock docking score

XGboost (PLP fitness score) (kcal/mol)

Compound 1 0.906 77.57 −10.95

Compound 2 0.913 76.49 −9.48

Compound 3 0.951 76.16 −8.34

Compound 4 0.925 76.99 −10.66

FIGURE 4
The 2-dimensional structure of the top four selected molecules in screening.
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values. We found the lowest recall value for RF (0.954), and

the highest recall value possessed by XBG and SVM models (1.0).

Overall, the higher value of the five performance metric parameters,

including accuracy, precision, recall, MCC, and F1, indicates XBGoost

as the most accurate classifier in combination with the selected

descriptors (Table 3). We performed Y-scrambling randomization

test on the XGBmodel. The results favor the argument for the model

not being a change event (Figure 3).

FIGURE 5
Biophysical simulation analysis of the complexes. (A) RMSD plot of HSP90with the identified compounds (B)Hydrogen bond frequency plot (C)
Binding free energy.

FIGURE 6
(A–D) 2D projection of the trajectory allocation for motion of the proteins in complex with compound 1,2,3 and 4 in the essential subspace,
(E–H) 3D projection of the free energy landscape as a function of first two principal components.

TABLE 6 Free energy of Binding result of the selected molecules.

MMGBSA Compound 1 Compound 2 Compound 3 Compound 4

ΔG Binding (Kcal/mol) −31.4847 −23.8679 −25.1347 −17.6889
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Screening database

The test dataset with 577,939 molecules was screened on the

XGBoost model. A total of 6807 molecules were predicted as

active hits against HSP90 (Table 4).

The selected active molecules were further screened

against HSP90 using CCDC Gold and Autodock. Finally,

the top 4 molecules with binding scores from both the

FIGURE 7
Effect of the selected compounds (Compound-1, 2, 3 and 4) on the cell viability of human breast cancer cells MDA-MB-231 and lung cancer
cells A549. Both the cells were treated with various concentrations of these compounds for 72 h. Cell viability was determined by MTT assay.
Percentages of viable cells were calculated by comparing treated and solvent control (DMSO) cells. Data are the mean ± S.D. of three replicates.

TABLE 7 IC50 value of HSP90 inhibitors on human cancer cell lines.

Compounds MDA-MB-231 (IC50 μM) A549 (IC50 μM)

Compound-1 3.62 4.13

Compound-2 3.13 6.75

Compound-3 4.5 4.13

Compound-4 1.86 12.32
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docking software higher than Geldanamycin were selected.

The PLP fitness score from Gold, binding energy from

Autodock, and Classification Probability score from the ML

model for the selected compounds are shown in Table 5.

The 2D representation of the four potential molecules

selected against HSP90 is shown in Figure 4. When

compared with the drug geldanamycin, these molecules

showed no significant structural similarity. All the

molecules have an extended ring structure with molecular

weights ranging from 565.840 Da (Compound 1),

533.846 Da (Compound 2), 572.779 Da (Compound 3),

and 593.826 Da (Compound 4).

Molecular dynamics

The stability of the selected hits in complex with HSP90 was

further confirmed through molecular dynamic simulations (Liu

et al., 2018; Naqvi et al., 2018). Apart from stability, we sought to

evaluate the binding affinity and the effect of inhibitors on the

dynamic structure of the protein. The RMSD, Hydrogen bond,

and free energy plot were calculated. (Figure 5; Table 5). The

RMSD values for Compounds 1, 2, and 3 were below 2Å, while

compound 4 showed a slightly higher fluctuation.

Principal component analysis

The principal component analysis (PCA) was carried out

on the simulation trajectories to segregate, discover and

evaluate the meaningful conformational changes among

all the multidirectional atomic thermal fluctuations

(David and Jacobs, 2014; Khan et al., 2021). The biggest

eigenvectors from the analysis depict the rigorous atomic

motion in the complex (Mazanetz et al., 2014). We

investigated the projection of 8 eigenvectors for the PCA

of HSP90 bound with Gelendamycin and four high-scoring

hits (Compound1, 2, 3, and 4). The trajectory suggested

different atomic motions during the simulation. The 2D

projection of the trajectories in the essential subspace is

projected in Figures 6A–D. The results show that the

Compound 1 and 2 bound structure of HSP90 occupies a

common conformational space, indicating higher complex

structural stability.

Further, we plotted the free energy landscapes in Figures

6E–H to understand the folding pattern fluctuations among

the top four selected complexes. The simulation ensembles of

the four compound bound structure showed narrow peaks

with distinct minima among the first two essential

components. Complex with compound 1 has most of the

ensembles in a narrow range of conformational space with

no major state transition. These findings suggest compact

packing and better stability of the compound 1 bound

structure followed by 2, 3, and 4.

We also determined the stable number of hydrogen

bonds stabilizing the interactions between HSP90 and the

molecules. As anticipated, Compound 3 and 4 were

stabilized with 3–4 stable and consistent hydrogen bonds,

indicating their strong binding capability. In drug discovery,

the analysis of MM-PBSA is considered an efficient strategy

to account binding affinity (Genheden and Ryde, 2015). The

binding free energy values for Compounds 1, 2, 3, and 4 were

found to be −31.4847, −23.8679, −25.1347,

and −17.6889 kcal/mol, respectively (Table 6). The

selected compounds were further evaluated on different

cancer lines.

Cellular assay

Antiproliferative activity of the selected compounds was

assessed in MDA-MB-231 and A549 cells by MTT assay. The

inhibitory effect of these compounds against both cell lines

was evaluated using the half-maximal inhibition

concentration (IC50) value (a concentration required to

inhibit cell growth in 50% of the cell population) at 72 h.

Along with the increasing concentration of these

compounds (Compound-1, 2, 3, and 4) treatments, all

these inhibitors significantly decreased human breast

cancer MDA-MB-231 cell and human lung cancer

A549 cell proliferation in a dose-dependent manner

(Figure 7). The Half inhibitory concentration (IC50) of

these compounds (Compound-1, 2, 3, 4) on MDA-MB-

231 was 3.62 µM, 3.13 µM, 4.5 µM, and 1.86 µM

respectively, and on A549 was 4.13 µM, 6.75 µM,

4.13 µM, and 12.32 µM respectively (Table 7). 17-DMAG

is a semi-synthetic geldanamycin analog that binds

specifically to Hsp90’s ATP binding site and inhibits the

protein folding process. The cell proliferation of MCF-7 and

MDA-MB-231 is inhibited by 17-DMAG, with IC50 values

of 3.11 μM and 2.16 μM, respectively (Ghadban et al., 2016).

Our compounds were found to be demonstrating potency

close to 17-DMAG. Overall, the selected compounds

(Compound-1, 2, 3, and 4) significantly reduced cell

proliferation in MDA-MB-231 and A549 cell lines with

low IC50 values at 72 h (Table.7).
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Conclusion

Heat shock protein 90 (Hsp90) is amolecular chaperone playing

a significant role in the folding of client proteins. This cellular

protein linkage with cancer progressionmakes it a viable therapeutic

target. This study has utilized machine learning and different

in silico approaches to identify potential HSP90 inhibitors.

Further experimental validation of the selected compounds on

various cancer cell lines proved their anticancer potential.

Compound-1 and Compound-3 showed antiproliferative activity

with IC50 below 5 µM against both the studied cancer cells. While

Compound-2 and 4 also demonstrated good antiproliferative

activity against MDA-MB-231 (IC50 < 3.5 µM). The finding of

this work identified four novel and promising leads for further

development of anticancer drugs targeting Hsp90.
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