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As part of their life-cycle, malaria parasites undergo rapid cell multiplication and

division, with one parasite giving rise to over 20 new parasites within the course

of 48 h. To support this, the parasite has an extremely high metabolic rate and

level of protein biosynthesis. Underpinning these activities, the parasite encodes

a number of chaperone/heat shock proteins, belonging to various families.

Research over the past decade has revealed that these proteins are involved in a

number of essential processes within the parasite, or within the infected host

cell. Due to this, these proteins are now being viewed as potential targets for

drug development, and we have begun to characterize their properties in more

detail. In this article we summarize the current state of knowledge about one

particular chaperone family, that of the HSP70, and highlight their importance,

function, and potential co-chaperone interactions. This is then discussed with

regard to the suitability of these proteins and interactions for drug development.
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Introduction

Malaria is one of the leading infectious diseases worldwide. The most lethal form is

caused by Plasmodium falciparum (P. falciparum) which caused 241 million cases in 2020.

The African continent accounted for up to 95% of these cases. Children under 5 years of

age represent the most vulnerable group to the disease and account for 80% of the

627.000 deaths reported in 2020 (WHO, 2021).

Similar to other organisms, Plasmodium encodes a wide variety of HSP and other

chaperones/co-chaperones which are involved in many essential cellular processes. These

proteins play (or are predicted to play) a major role in the survival, virulence and

pathogenicity of the parasite. As they lie at the heart of proteostasis, they assist in

protecting parasite proteins in several situations of proteotoxic stress, including the

temperature spikes caused by febrile episodes of the human host, temperature transitions

taking place during transmission from the mosquito vector to the human host and vice-

versa, and exposure to cytotoxic drugs. Due to their central role in such a diverse number

of essential biological processes, these proteins have gained interest as potential targets for
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development of small molecule inhibitors. Several HSP have been

shown to be upregulated in response to various drug treatments,

and may play a role in helping parasites survive these stress

situations (Akide-Ndunge et al., 2009; Cheeseman et al., 2012;

Shahinas et al., 2013). Thus, as well as potentially being direct

targets for drug development, any inhibitors identified may allow

some measure of reversal of drug resistance.

Special interest has been paid to members of the

HSP70 family, and their interactions with co-chaperones

(HSP40, also known as J-domain proteins, JDP). The focus of

this mini-review is to collate what is currently known about the

biology of PfHSP70 and PfJDP, their interactions, and what

progress has so far been made in developing specific inhibitors of

this important parasite Achilles Heel.

The HSP70 family

Chaperones of the HSP70-class are crucial elements of the

cellular protein surveillance network. They are a highly

conserved family of proteins that share a very similar

structure. In general, they comprise an N-terminal nucleotide-

binding domain (NBD) that is able to bind ATP. Following this is

a protease-sensitive linker domain leading to a substrate-binding

domain to which the corresponding substrate polypeptides bind

(Flaherty et al., 1990). HSP70 are involved in diverse cellular

processes such as protection from thermal insult, folding of

nascent proteins, refolding of misfolded proteins, targeting

terminally misfolded proteins for degradation and protein

translocation.

J-domain proteins

J-domain proteins (JDP, also referred to as HSP40, DNAJ)

are generally co-chaperones for HSP70. They perform several

tasks including recruitment of substrates to HSP70 and then

stimulating the ATPase activity of HSP70. They can thus be

viewed as adapters which allow a limited number of HSP70 to

work on highly diverse substrates, and JDP are one of the most

diverse co-chaperone families. In agreement with this, most

organisms encode a higher number of JDP than HSP70

(Kampinga et al., 2019).

The ATPase cycle and JDP-HSP70
interaction

HSP70 act as molecular chaperones. As such, they are able to

bind and hold exposed hydrophobic peptide-sequences of other,

aggregation-prone proteins. Beyond this “holdase” function,

HSP70 are able to refold denatured proteins. A catalytic ATP-

dependent interaction cycle enables the folding or refolding of

substrate proteins. This essential cycle couples the ATPase

activity of HSP70 to its affinity for substrate proteins

(Figure 1A). In the ATP-bound state, the affinity to peptide

substrates is low. In this context, a JDP binds first to a

hydrophobic peptide-segment of any substrate protein and

subsequently transfers it to HSP70 (Laufen et al., 1999; Mayer

et al., 2000; Kityk et al., 2018). The simultaneous binding of a

substrate to the SBD of HSP70 and a J-domain stimulate the

ATPase activity of HSP70 synergistically (Figure 1A). Upon

ATP-hydrolysis, the substrate-bound chaperone state is

stabilized (Wittung-Stafshede et al., 2003). In the high-affinity

HSP70-substrate-complex, the rate of ADP dissociation is the

rate-determining step for the remainder of the cycle (Figure 1A).

Nucleotide exchange factors (NEFs) facilitate ADP release and

initiate ATP binding again with subsequent substrate release.

The enzymatic ability to hydrolyze ATP is essential for

functional HSP70-substrate interaction (Mayer et al., 2000).

Based on this mechanism, HSP70 are able to bind and protect

virtually every protein from further denaturation and

aggregation (Boorstein et al., 1994).

The P. falciparum HSP70 and JDP
families

Based on their structure and localisation, several

PfHSP70 can be assigned functions by comparison to

homologues in other systems (Figure 1B). Some members of

the family have been more extensively studied and we now have

some insight into their specialised function. Limited reverse

genetic work has been carried out, however it is likely that the

HSP70 (and some JDP) involved in core processes within the

parasite will be essential for parasite survival, whereas those

involved in (for example) host cell modification are not

required in in vitro cell culture but may be important in an

infection situation (Przyborski et al., 2015).

PfHSP70-1: PfHSP70-1 is likely to be the only canonical

cytosolic HSP70. It contains a C-terminal -EEVD motif

which is used for interaction with PfHOP (Zininga et al.,

2015b). Although no definitive experimental evidence exists,

inhibitor studies suggest that PfHSP70-1 has essential

functions in the blood stages. Biochemical characterisation

of recombinant PfHSP70-1 reveals that the protein has a

slightly higher ATPase rate than that of the human

homologue, but has a dramatically lower affinity for ATP

(Matambo et al., 2004). PfHSP70-1 appears to be upregulated

upon thermal stress (Kumar et al., 1991). PfHSP70-1 has been

shown to associate with its putative NEF PfHSP70-Z in a

nucleotide dependent manner (Zininga et al., 2015a; Zininga

et al., 2016).

PfHSP70-2: PfHSP70-2 is localised in the ER, contains an

N-terminal ER-type signal sequence and a C-terminal -SDEL ER

retrieval sequence. PfHSP70-2 is likely to be a homologue of BiP/
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GRP78. PfHSP70-2 appears to be upregulated upon thermal

stress (Kumar et al., 1991).

PfHSP70-3: PfHSP70-3 is likely to be targeted to the

mitochondrion by virtue of an N-terminal transit peptide, but

otherwise little is known about this protein.

PfHSP70-X: PfHSP70-X is only encoded by Plasmodium

parasites belonging to the laverarian subgenus. These parasites

infected humans, chimpanzees, and gorillas. PfHSP70-X locates

to the lumen of the parasitophous vacuole and is also exported to

the host cell (Külzer et al., 2012). In the host cell, this protein is

found in structures referred to as J-dots, which also contain a

number of parasite encoded JDP (Külzer et al., 2010; Külzer et al.,

2012). Although partially exported to the host cell, the protein

lacks a PEXEL export motif, and its transport appears to be

directed by an atypical export signal found following an

N-terminal ER-type signal sequence (Rhiel et al., 2016).

Although not essential for parasite growth under normal

conditions in culture, knockout experiments suggest that

PfHSP70 is involved in a number of host cell modification

processes including cytoadherance, antigenic variation and

FIGURE 1
(A) The general ATPase cycle of HSP70. ADP, Adenosine di-phosphate; ATP, Adenosine tri-phosphate; NBD, nucleotide bindnig domain; SBP,
subtrate binding domain; JDP, J-domain protein; Pi, inorganic phosphate; NEF, nucleotide exchange factor. (B) Localisation of HSP70 and JDP
proteins in the P. falciparum-infected human erythrocyte. HSP70 are referred to by name as in text. PC, parasite cytosol; ER, endoplasmatic
reticulum; M, mitochondrion; PV, parasitophorous vacuole; RBCC, red blood cell cytosol; J, J-dots; K, Knobs; JDP, J-domain protein.
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regulating the stiffness of the infected host cell (Charnaud et al., 2017).

Knockdown experiments hint that PfHSP70-X may be involved in

protecting the parasite from heat stress during fever periods (Cobb

et al., 2017). Immunoprecipitation allowed the identification of a

number of proteins interacting with PfHSP70-X, including both

exported parasite proteins, a PV resident chaperone PfHSP101,

human HSP70 and an exported parasite JDP (Zhang et al., 2017).

The significance of this result is so far not known.

PfHSP70-Y: Also now known as PfGRP170, PfHSP70-Y belongs

to the HSP110 protein family. These proteins are generally known to

be NEFs for othermembers of the HSP70 family. PfGRP170 contains

an N-terminal ER-type signal sequence and a C-terminal -KDEL ER

retrieval sequence, and localises to the lumen of the ER. Earlier studies

suggested that this proteinmay localise to the parasite’s apicoplast due

to a predicted apicoplast transit peptide, however later work

determined that the C-terminal -KDEL signal was dominant and

retained the protein in the ER (Heiny et al., 2012). It is likely that

PfHSP70-Y acts as a NEF for PfHSP70-2. The protein appears to be

essential for parasite development and is linked to parasite stress

responses (Kudyba et al., 2019).

PfHSP70-Z: PfHSP70-Z, also known as PfHSP110, belongs

to the HSP110 protein family, and is likely to be the NEF for the

cytosolic PfHSP70-1. Indeed, PfHSP70-Z has been shown to

associate with PfHSP70-1 in a nucleotide dependent manner

(Zininga et al., 2016). Recombinant PfHSP70-Z forms higher

order oligomers and has been reported to have endogenous

ATPase activity (Zininga et al., 2015a; Zininga et al., 2016).

Functional inactivation of PfHSP70-Z is lethal, likely due to its

role in preventing aggregation of a number of asparagine-rich

proteins, especially under heat stress condition (Muralidharan

et al., 2012). In agreement with this, expression of PfHSP70-Z

is increased in response to heat stress (Zininga et al., 2015a).

P. falciparum JDP: P. falciparum encodes 43 proteins which

can be assigned to the JDP family (Botha et al., 2007). Of these, 17 are

predicted to be exported to the host cell, many of which are P.

falciparum specific [not found in other non-laverania species (Botha

et al., 2007)]. Based on the presence or absence of specific domains,

the 43 JDP have been further assigned to a number of sub families,

HSP40 Type I-Type IV. The 12 Type IV proteins are of particular

interested as, although they contain a recognisable J-domain, the

classical catalytic triad HPD has been replaced by HPE (Botha et al.,

2007). This does not exclude a functional interaction with a HSP70,

but implies that such interactions may be more specific and

specialised. The function of the parasite-localised JDP has not

been analysed in any great detail, but it is suggested that they

likely act in concert with PfHSP70-1, PfHSP70-2 or PfHSP70-3. It

is unknown why the parasite exports so many JDP. As JDP generally

function in concert with a HSP70, it is supposed that these JDP

functionally interact with either the exported PfHSP70-X, or

potentially residual human HSP70/HSC70. A number of the

exported JDP proteins have been knocked out, and many of these

parasite lines show aberrations in host cell modification (Maier et al.,

2008; Diehl et al., 2021). Of particular note, a knockout of the Type II

exported JDP PFA66 shows dramatic changes in the morphology of

the knobs (Diehl et al., 2021). Interestingly, further analysis suggested

that this JDP functions in concert with residual human HSP70/

HSC70. Amodel is emerging in which the parasite exports JDP to act

as “adapter” molecules between parasite-encoded and residual host

cell proteins (Diehl et al., 2021).

The search for specific inhibitors of
PfHSP70

A meaningful inhibitor would be specific for only

Plasmodium PfHSP70, and its target and mode of action

would be clear. A number of studies (detailed below) have

reported inhibitors of PfHSP70 (Table 1). Some of these

studies were carried out on recombinant protein, however the

assays used are not always directly comparable, as they assay

different sub-functions of HSP function. In vitro screening on

parasite cell cultures has also been carried out, however it is not

always clear what protein is being targeted. For inhibitors which

have been assayed using both methods, there are often striking

disparities between the effects on recombinant protein and in cell

cultures. This suggests either off-target effects, or possibly limited

bioavailability.

Rational drug design

Modern drug discovery is moving more and more towards a

rational design strategy based on knowledge of the target structure(s)

and or interfaces. In infectious disease research, this often involves

finding differences between proteins found in host and pathogen.

Recent research findings focused on crystallographic elucidation of

the functional domains of PfHSP70 and JDP (Day et al., 2019;

Schmidt and Vakonakis, 2020; Mohamad et al., 2021). A study of

the PfHSP70-X substrate-binding domain (SBD) reveals that the

SBD-structure is conserved and extremely similar to both the human

HSP70 (HsHSP70) and E. coli DnaK structure (Schmidt and

Vakonakis, 2020). The NBD also shows a high conservation and

similarity to that of the NBD of HsHSP70 (Mohamad et al., 2021).

While these results might lead to the conclusion that it is not

viable to design inhibitors which specifically target PfHSP70-X while

not affecting HsHSP70, the authors indicate that the NBD of

PfHSP70-X does indeed contain potential binding sites for small-

molecule activity-modulation which are structurally different in the

human homologue. It is worth noting that crystallography canmerely

outline fixed protein structures whereas in the cell proteins (especially

chaperones) are often conformationally dynamic. This flexibility

influences their binding affinity to small molecules, allosteric

modulators or other proteins (Johansson and Lindorff-Larsen,

2018). Thus, the use of structural information for the

identification of specific small molecule inhibitors is complicated

but a success is nonetheless possible.
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TABLE 1 Inhibitors so far tested against PfHSP70.

Substance Biological effect References

Classes Compounds P. falciparum
IC50, effect on
human cells

HSP70 effect HSP70/JDP effect

Pyrimidinones MAL3-39 PfIC50 = 0.8 μM,
HsIC50 = N/A

Weak inhibition of PfHSP70-1
and HSPA1A steady-state
ATPase activity at 300 µM

Inhibitory effect on HSPA1A/
Hdj2

Chiang et al., (2009)
Botha et al., (2011)

DMT-2264 PfIC50 = 1.1 μM,
HsIC50 = N/A

Inhibitory effect on HSPA1A/
Hdj2 and PfHSP70-1/
PfHSP40

Malonganenones Malonganenone A PfIC50 = 0.8 μM, Hs
(MCF12A, MDA-231-
MB, 50 µM) No effect

No inhibitory effect on basal
ATPase activities of PfHSP70-
X, PfHSP70-1 and HSPA1A

Strong inhibitory effect on
PfHSP70-1/PfHSP40

Cockburn et al.,
(2011) Cockburn
et al., (2014)

Malonganenone B PfIC50 > 50 μM,
HsIC50 = N/A

All three compounds have a
small significant inhi-bitory
effect on PfHSP70-X/Hsj1a
but no effect on HSPA1A/
Hsj1a or PfHSP70-1/Hsj1a
ATPase activity

Cockburn et al.,
(2011) Cockburn
et al., (2014)Malonganenone C PfIC50 = 5.2 μM, Hs

(MCF12A, MDA-231-
MB, 250 µM) No effect

Naphtaquinones Bromo-β-lapachona PfIC50 = 17.3 μM, Hs
(MCF12A, MDA-231-
MB, 20 µM) 80% cell
growth decrease

Strong basal PfHSP70-X
ATPase activity inhibition,
small inhibitory effect on
HSPA1A, no effect on
PfHSP70-1

Strong inhibitory effect on
ATPase activity of PfHSP70-
X/Hsj1a and PfHSP70-1/
PfHSP40, no effect on
HSPA1A/Hsj1a and PfHSP70-
X/PFA066wJ

Cockburn et al., (2011)
Cockburn et al., (2014)
Day et al., (2019)

Lapachol PfIC50 = 18.6 μM, Hs
(MDA-231-MB,
200 µM) ~ 50% cell
growth decrease

Medium PfHSP70-X ATPase
activity inhibition, no effect on
PfHSP70-1 and HSPA1A

Medium inhibitory effect on
PfHSP70-X/Hsj1a and
PfHSP70-1/PfHSP40, no effect
on HSPA1A/Hsj1a

Cockburn et al., (2011)
Cockburn et al., (2014)

Chalcones C86 PfIC50 = N/A, Hs
(22Rv1, 5 µM) 55%
cell viability decrease

No effect on basal PfHSP70-X
ATPase activity. HsHSP70:
N/A

Pre-incubation of PFE0055c
with C86 results in inhibition
of PfHSP70-X ATPase activity

Moses et al., (2018)
Dutta et al., (2021)

(Benzothiazole)-
Rhodacyanines

MKT-077 PfEC50 = 0.07 µM (3D7),
HsEC50 = 0.98 µM
(HCT-116)

Minimal PfHSP70-X ATPase
activity inhibition under
100 µM HsHSP70: N/A

Small concentration-
dependent inhibitory effect
detected for PfHSP70-X/
PFA066wJ and PfHSP70-X/
PFE0055cJ

Chen et al., (2018)
Day et al., (2019)
Dutta et al., (2021)

YM-01 N/A Concentration-dependent
inhibitory effect on PfHSP70-
X/PFA066wJ and PfHSP70-X/
PFE0055cJ

Day et al. (2019)

JG98 PfIC50 N/A, HsIC50 ~
500 nM (22Rv1)

Significant PfHSP70-X
ATPase activity inhibition at
10 µM HsHSP70: N/A

Significant inhibitory effect on
PfHSP70-X/PFE0055c ATPase
activity at 10 µM

Dutta et al. (2021)

Lipopeptides Polymyxin B PfIC50 = N/A, HsIC50 =
varying, 1.05 mM (NRK-
52E), 350 µM (HK-2)

Inhibition of basal ATPase and
aggregation suppression
activity of PfHPS70-1 and
PfHSP70-z. HsHSP70: N/A

N/A Azad et al. 2013)
Zininga et al.,
(2017a)

Catechin EGCG PfIC50 = 2.9 μM,
HsIC50 = varying, 22 µM
(H661, H1299), 65 µM
(HT-29)

Yang et al. 1998)
Zininga et al.,
(2017b)

Bis-Indole Violacein PfEC50 = 400 nm (3D7),
HsIC50 = 1.4 µM
(HepG2)

Inhibition of basal ATPase and
aggregation suppression
activity of PfHSP70-1.
HsHSP70: N/A

Bilsland et al. 2018
Tavella et al. 2021)
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Characterised inhibitors of PHSP70

The search for small molecule inhibitors of the Plasmodium

HSP70 chaperones has identified several suitable compounds.

Amongst others, these compounds are pyrimidinones,

malonganenones, naphtaquinones, lipopeptides, and a

catechin from green tea extract (Chiang et al., 2009; Cockburn

et al., 2011; Cockburn et al., 2014; Zininga et al., 2017a; Zininga

et al., 2017b; Day et al., 2019). The activity-modulating effects

towards several PfHSP70 chaperones are summarized in the

following section.

PfHSP70-1

As the main cytosolic chaperone of P. falciparum, PfHSP70-1 is

heavily associated with maintaining viability and proteostasis and is

thus a prominent target of molecular inhibitory research.

Members of the class of pyrimidinones exhibited varying

effects on the intrinsic ATPase activity of PfHSP70-1 in single

turnover assays. While they generally stimulated the ATPase

activity at concentrations of 100 μM, the compounds

DMT2264 and MAL3-39 inhibited the ATPase activity at

higher concentrations of 300 µM (Chiang et al., 2009). First

data regarding the malonganenones A-C, lapachol and

bromo-β-lapachona (BBL) showed a concentration dependent

inhibition of the aggregation suppression activity of PfHSP70-1

(Cockburn et al., 2011). However, the ATPase activity of

PfHSP70-1 was not modulated by any of these compounds

(Cockburn et al., 2014).

Studies with a focus on SPR analyses aim for the elucidation of

binding affinities of potential small molecule inhibitors to several

PfHSP70 chaperones. In this context, a screening of quinoline-

pyrimidine hybrid molecules revealed varying binding affinities of

these small molecules to PfHSP70-1 (Kayamba et al., 2021). Thus, the

authors suppose that PfHSP70-1 is a target of these compounds as

they exhibitmoderate to high anti-plasmodial activity in vitro. Binding

affinities for the green-tea polyphenol epigallocatechin-3-gallate

(EGCG) and the lipopeptide polymyxin B (PMB) were defined in

the same way (Zininga et al., 2017a; Zininga et al., 2017b).

Additionally, both compounds inhibited the basal ATPase activity

of PfHSP70-1 in vitro.

Furthermore, the phytocompounds iso-mukaadial acetate

(IMA) and ursolic acid (UAA) feature anti-Plasmodium

activity in vitro and in vivo (Nyaba et al., 2018; Salomane

et al., 2021). Both compounds were able to abrogate the

aggregation suppression activity of PfHSP70-1 in a

concentration dependent manner. The basal ATPase activity

of PfHSP70-1 was inhibited by IMA similarly. UAA, however,

did not modulate the ATPase activity in the highest tested

concentrations significantly (Salomane et al., 2021).

Recently, the bis-indole violacein was tested for anti-malarial

properties and possible inhibitory effects on PfHSP70-1. A significant

and concentration dependent inhibition of the chaperone’s ATPase

and aggregation suppression activity by violacein was observed

(Tavella et al., 2021). Thus, the small molecule is predicted to

compromise the ATP hydrolysis of PfHSP70-1 by interacting with

the SBD or the SBD-NBD-interface (Tavella et al., 2021). However, as

violacein exhibits broad biological activity, it also shows low selectivity

for Plasmodium.

PfHSP70-2

Data on small molecule inhibitors of PfHSP70-2 is limited.

Four commercially available GRP78 inhibitors, namely

Gilvocarcin V, Apoptozole, MKT-077 and VER-155008, have

been reported to exhibit broad specificity to members of the

HSP70-family (Matsumoto and Hanawalt, 2000; Rousaki et al.,

2011; Kim et al., 2014; Park et al., 2017). They were confirmed to

interact with PfHSP70-2 in in vitro binding assays, recently

(Chen et al., 2018). However, the binding affinities of the

compounds to PfGRP78 and HsGRP78 showed little

difference across the species. An exception was VER-155008

that stood out due to a three-fold lower affinity to PfGRP78 than

HsGRP78. The authors propose that the higher protein rigidity of

PfGRP78 leads to lower affinities for this inhibitor. The

marginally different properties of PfHSP70-2 possibly enable

researchers to design compound derivates with specific

inhibitory effects.

PfHSP70-X

PfHSP70-X is of high interest in inhibitor research, as it is

believed to assist the correct folding of exported proteins and

thereby supporting parasite virulence. Similar to PfHSP70-1,

the malonganenone-compounds did not modulate the basal

ATPase activity of PfHSP70-X. However, napthaquinones,

especially BBL, inhibited its ATPase and aggregation

suppression activity in a concentration dependent manner

(Cockburn et al., 2014). Regarding the ATPase activity, these

findings were recently confirmed (Day et al., 2019).

Additionally, the broad-spectrum HSP70 inhibitor MKT-

077 attenuates the ATPase activity of PfHSP70-X only at

concentrations above 100 µM. Its derivate YM-01 exhibits

similar inhibitory properties at slightly lower

concentrations (Day et al., 2019).

In contrary to the benzothiazole rhodacyanines JG98 and

JG231, the chalcone C86 did not inhibit the basal PfHSP70-X

ATPase activity significantly (Dutta et al., 2021). The authors

evaluate their findings to be in accordance to the functional

interaction of the compounds with PfHSP70-X. JG98 and

JG231 are considered to prevent nucleotide exchange of an

HSP70 and thus locking it in its ADP-bound form (Shao

et al., 2018).
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Comparing the varying results of studies with multiple small

molecules and particularly PfHSP70-1 and PfHSP70-X, a striking

distinction regarding their susceptibility to these compounds is

observable. Thus, and according to Mohamad et al., 2021, it may

be possible to design small molecules inhibitors to target specific

PfHSP70s (Mohamad et al., 2021).

PfHSP70-Z

Because PfHSP70-Z acts as a NEF for PfHSP70-1,

inhibitors of the chaperones’ interaction have become a

research target. The binding of the small molecules EGCG

and PMB to PfHSP70-Z has been confirmed via SPR and

in vitro activity assays showed an inhibitory effect of both

compounds for the basal PfHSP70-Z ATPase activity.

Additionally, EGCG and PMB interfere with the capability

of PfHSP70-Z to suppress the aggregation of heat stress-prone

proteins (Zininga et al., 2017a; Zininga et al., 2017b).

Alternatively, a SPR screening of quinoline-pyrimidine

hybrids suggested high binding affinities to PfHSP70-Z

within the nanomolar and micromolar range for some

compounds (Kayamba et al., 2021).

Inhibitors of PfHSP70/PfJDP
interaction

The explicated chaperone/co-chaperone interaction offers

the possibility to inhibit a single part of the network and

thereby achieving a loss of function in associated metabolic

pathways (Daniyan et al., 2019). Especially the HSP70/JDP

interface might be a viable target for controlling the PfHSP70’s

ATPase activity via small molecule inhibitors (Day et al.,

2019). The fact that small molecule compounds are able to

modify the PfJDP-stimulated ATPase activity of their

corresponding PfHSP70 is described in the literature for

over a decade (Chiang et al., 2009; Botha et al., 2011;

Cockburn et al., 2014). A number of compounds which

have been shown to modulate intrinsic PfHSP70 activity

have also been shown to modulate PfHSP70/PfJDP

activities (Chiang et al., 2009; Cockburn et al., 2014; Day

et al., 2019; Dutta et al., 2021). Similar strategies have been

suggested in cancer research, in which HSP70/JDP activities

have been associated with cancer cell progression (Nitika

et al., 2020; Knighton et al., 2021).

First promising results were achieved by examining the

human, Plasmodium and yeast HSP70 in combination with

the human and yeast HSP40 co-chaperones Hlj1 and Ydj1,

respectively (Chiang et al., 2009). Distinct and species-specific

modulations of the HSP70 ATPase activity by a selection of nine

pyrimidinones were reported. The capabilities of some particular

compounds (MAL3-39 and DMT2264) were further assessed in a

PfHSP70-1/PfHSP40 system (Botha et al., 2011). As a result, only

DMT2264 was found to inhibit the PfHSP40 stimulated ATPase

activity of PfHSP70-1.

Since the export of PfHSP70-X into the RBC has been

shown, this particular chaperone gained further attention in

small molecule compounds and JDP-interaction research

(Külzer et al., 2012; Cockburn et al., 2014). Changes in

PfHSP40-stimulated ATPase activity of PfHSP70-X and

pfHSP70-1 in combination with lapachol, BBL and the

malonganenones A (MA), B and C were monitored. The

effects of the compounds were highly diverse. While BBL

modulated the ATPase activities of PfHSP40/PfHSP70-1 and

Hsj1a/PfHSP70-X, it also inhibited the ones of the Hsj1a/

HSPA1A controls. Interestingly, MA provided selectivity of

the HSP70’ modulation. The ATPase activity of the PfHSP40/

PfHSP70-1 and Hsj1a/PfHSP70-X was significantly inhibited.

The human controls, however, were not affected (Cockburn

et al., 2014).

As more details on the interaction of PfHSP70 with

specific PfHSP40 partners emerged, new experimental data

on their inhibition was obtained (Daniyan et al., 2016; Day

et al., 2019). Upon the simultaneous stimulation of PfHSP70-

X by the J-domains of its supposed cognate co-chaperones

PFA0660wJ or PFE0055cJ, BBL did not decrease the ATPase

activity of PfHSP70-X. Even broad-spectrum

HSP70 inhibitors like methylene blue and MKT-077

showed little potency against PfHSP70-X that was

stimulated by its in vivo co-chaperones (Day et al., 2019).

The chalcone C86 and the benzothiazole-rhodacyanines

JG98 and JG231 were already identified as small molecule

inhibitors of the human JDP/HSP70 system. Recently, they

have been used on plasmodium proteins (Dutta et al., 2021). A

significant inhibition of the stimulated ATPase activity of

PfHSP70-X was observed when the JDP PFE055c was pre-

incubated with C86 prior to its addition. This result fits the

proposed function of C86 as a JDP pan-inhibitor (Moses et al.,

2018). Additionally, JG98 and JG231 provided inhibitory

effects on the PFE055c-stimulated ATPase activity of

PfHSP70-X (Dutta et al., 2021).

These results imply that the development of parasite-specific

chaperone/co-chaperone-based small molecule inhibitors is a

complex task, but success can be achieved (Daniyan and

Blatch, 2017).

Conclusion

This mini-review summarizes the current findings of the

search for Plasmodium HSP70 and HSP40 small molecule

inhibitors. As these molecular chaperones are involved in

multiple important molecular-biological processes of P.

falciparum, they represent a promising new and sustainable

drug target. Several studies successfully targeted and inhibited
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the PfHSP70’s and PfHSP40’s molecular chaperone activity in

in vitro assays with small molecule inhibitors. However, the

specificity of potential inhibitors is a critical point in research

as human and Plasmodium chaperone counterparts share high

structural similarity. Recent studies suggest that it may be

possible to design specific small molecule inhibitors for

PfHSP. Results of high-throughput screenings with derivates

of already identified small molecule activity modulators and

entirely new compounds are expected in the near future.
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