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Background: The polypyrimidine tract-binding protein (PTBP) nuclear
ribonucleoprotein family of proteins, including PTBP1, PTBP2 and PTBP3,
requlate the process of cell proliferation, differentiation, apoptosis and
carcinogenesis. PTBPs exhibit oncogenic effects in certain tumors. However,
the role of PTBPs in pan-cancer remains unclear. Our study examined the
clinical significance and mechanism of PTBPs in pan-cancer.

Methods: We compared the expression of PTBPs in paired and unpaired tissue
samples from the Cancer Genome Atlas (TCGA) database. Univariate and
multivariate Cox regression, Kaplan—Meier curves, and time-dependent
receiver operating characteristic (ROC) curves were used to assess the
prognostic significance of PTBPs in pan-cancer. The cBioPortal database
also identified genomic abnormalities in PTBPs. TISIDB, TCGA, and Cellminer
were used to investigate the relationship between PTBP expression and
immune subtypes, immune checkpoint (ICP) genes, tumor mutational
burden (TMB), microsatellite instability (MSI), tumor-infiltrating immune cells,
and chemosensitivity. cBioPortal was used to search for PTBP co-expressing
genes in pan-cancer, and GO and KEGG enrichment analyses were performed
to search for PTBP-related signaling pathways.

Results: PTBPs were shown to be widely upregulated in human tumor tissues.
PTBP1 showed good prognostic value in ACC, KIRP, and LGG; PTBP2 in ACC
and KICH; and PTBP3 in ACC, LGG, and PAAD, with AUC >0.7. PTBPs were
differentially expressed in tumor immune subtypes and had a strong correlation
with tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment
(TME). In addition, PTBP expressions were related to ICP, TMB, and MSI,
suggesting that these three PTBPs may be potential tumor
immunotherapeutic targets and predict the efficacy of immunotherapy.
Enrichment analysis of co-expressed genes of PTBPs showed that they may
be involved in alternative splicing, cell cycle, cellular senescence, and protein
modification.
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Conclusion: PTBPs are involved in the malignant progression of tumors. PTBP1,

PTBP2 and PTBP3 may be potential

biomarkers for prognosis and

immunotherapy in pan-cancer and may be novel immunotherapeutic targets.
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Introduction

Cancer is a life-threatening disease to humans worldwide.
The incidence and mortality rates of various cancers have been
increasing year by year, and lung cancer, colorectal cancer, liver
cancer and gastric cancer have the highest mortality rates (Sung
etal, 2021). The field of precision medicine is advancing through
new developments in technology and medicine, but the present
state of practice is far from ideal (Konig et al., 2017). Therefore,
the identification of tumor-related diagnostic, prognostic, and
therapeutic biomarkers is a research hotspot.

(PTBPs)
important RNA-binding proteins (RBPs) which influence cell

Polypyrimidine tract-binding proteins are
growth and development by regulating mRNA stability,
translation and alternative splicing (Singh et al, 1995;
Mickleburgh et al, 2014). The PTBP family consists of
PTBP1, PTBP2 and PTBP3, and these proteins

similarities and differences in expression, structure, and

show

biological function (Oberstrass et al., 2005; Tan et al., 2015).
Studies have shown that up-regulation of PTBP1 is associated
with the poor prognosis and disease progression in non-muscle-
invasive bladder cancer. Therefore, PTBP1 may become a
possible outcome-predictor for bladder cancer (Bielli et al,
2018). PTBP2 was also shown to stimulate the proliferation,
migration, and metastasis of colorectal cancer cells (Ji et al,
2014). Previous studies demonstrated that PTBP3 enhances the
invasion and metastasis of breast cancer and regulates the
expression of drug resistance proteins in gastric cancer,
suggesting that PTBP3 may serve as a potential novel
therapeutic target for gastric cancer (Liang et al, 2017; Hou
et al, 2018; Liang et al,, 2020). These studies have indicated that
PTBPs may function in cancer. However, research has been
restricted to a small number of tumor types, and the function
of PTBPs in pan-cancer has not been examined.

A growing body of evidence has revealed the close
relationship between the tumor microenvironment (TME)
and the effectiveness of immunotherapy (Donlon et al,
2021; Newnes et al, 2021). Immune checkpoint (ICP)
inhibitors, including PD-1, CTLA4, LAG3, and TIM-3,
have potent tumor suppressor effects and can interfere with
immune escape; these inhibitors are currently the first-line
treatment options for multiple malignancies (Ribas and
Wolchok, 2018; Tu et al, 2020). Tumor infiltrating
immune cells in TME, such as macrophages, neutrophils,
T cells, Treg cells, T helpers, and NK cells, can affect the

Frontiers in Molecular Biosciences

02

immunological features of malignancies. Unfortunately, this
tumor heterogeneity among individuals influences the efficacy
of clinical immunotherapy (Keenan et al., 2019). Thus far,
precision medicine has not completely manifested in human
tumors. Researchers agree on the need to explore better
treatment targets.

In this study, we evaluated the clinical importance and
prognostic usefulness of PTBPs in pan-cancer. We used the
Cancer Genome Atlas (TCGA) to examine the expression
levels of PTBP1, PTBP2, and PTBP3 in normal and tumor
tissues, and cBioPortal was used to examine the genomic
We also examined the link between PTBP
expression and tumor immune subtype, tumor-infiltrating
lymphocytes (TILs), ICP, tumor mutational burden (TMB),
microsatellite instability (MSI), and chemosensitivity using

alterations.

multiple databases. Finally, we constructed a PTBP-interacting
protein network and performed enrichment analysis of co-
Our the
prognostic value of PTBPs in pan-cancer. PTBPs may have

expressed genes. findings have demonstrated
excellent potential to be therapeutic targets and predict the
efficacy of immunotherapy. We also predicted the molecular
mechanisms and biological signaling pathways of PTBPs using

databases and experimental data.

Materials and methods
Study overview

A total of 30 tumor types were studied in this article. A
schematic flow chart of our research is shown in Supplementary
Figure S1.

Difference and correlation analysis of
PTBP1, PTBPZ2, and PTBP3 expression

Gene expression, clinical data, and survival information for
30 different types of tumors were downloaded from TCGA
database (https://portal.gdc.cancer.gov), and the RNA-seq data
in level 3 HTSeq-FPKM format were log2-transformed. The
Mann-Whitney U test was used to analyze the differences in
the expression levels of PTBP1, PTBP2, and PTBP3 in unpaired
tissue samples, and the Wilcoxon signed rank test was used for
paired samples.
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To analyze the expression correlation between PTBPI,
PTBP2, and PTBP3 genes, we excluded the tumor types with
less than three normal samples and then log2-transformed the
ratio of the mean expression of PTBPs in tumors and normal
samples of the remaining 21 tumor types. All details are shown in
Supplementary Table S2.

Copy number alterations and mutations

Copy number alterations and mutations of PTBP genes were
analyzed using the online database cBioPortal (http://www.

cbioportal.org).

Cox regression analysis, Kaplan—Meier
curve, time-dependent receiver operating
characteristic curve and prognostic
nomogram

First, univariate Cox regression analysis was performed on
the expressions of PTBP1, PTBP2, and PTBP3 in pan-cancer.
Factors with p < 0.05 were included in multivariate Cox
regression analysis and displayed in a forest plot. We used
Cox regression models to predict survival and plotted
Kaplan-Meier (KM) curves. The accuracy of the model in
predicting prognosis at a specific time was tested by a time-
dependent receiver operating characteristic (ROC) curve, and the
prognostic value of PTBPs in pan-cancer was determined. Taking
the tumor “ACC” as an example, we constructed prognostic
nomograms using PTBP expressions and pathological stage, and
the accuracy of the nomogram was evaluated by a calibration
curve. We examined overall survival (OS) in our analyses.

Analysis of PTBP expression and tumor
immune subtypes

We analyzed the associations between PTBP expression and
immune subtypes in human cancers using TISIDB, an online
integrated website (http://cis.hku.hk/TISIDB/index.php). p < 0.
05 was considered statistically significant.

Relationship between PTBP expression
and tumor-infiltrating lymphocytes in
pan-cancer

Using the ssGSEA algorithm to calculate the score of tumor-
infiltrated immune cells in TCGA database, we selected 24 TILs
to evaluate the relationship between PTBP expressions and
tumor-infiltrating lymphocytes (TILs) in pan-cancer. The TILs
included activated DCs (aDCs), B cells, CD8 T cells, cytotoxic
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cells, DC, eosinophils, immature DCs (iDCs), macrophages, mast
cells, neutrophils, NK CD56bright cells, NK CD56dim cells, NK
cells, plasmacytoid DCs (pDCs), T cells, T helper cells, T central
memory (Tcm), T effector memory (Tem), T follicular helper
(Tth), T gamma delta (Tgd), Thl cells, Th17 cells, Th2 cells, and
Tregs (Bindea et al., 2013). Neutrophils and macrophages were
selected for detailed display.

Correlation analysis of PTBP expressions
with immune checkpoint, tumor
mutational burden, and microsatellite
instability

Spearman correlation analysis was performed to examine the
relation of the expression levels of PTBPs and four immune
checkpoint (ICP) genes (PD-1, CTLA4, LAG3, and TIM-3
genes). We used Spearman correlation analysis to determine
the correlation of PTBP expressions with tumor mutational
burden (TMB) and MSI in human cancers. RNA-seq data and
clinical information were obtained from TCGA database. The
TMB data and microsatellite instability (MSI) data were derived
from the studies of Thorsson et al. (2018) and Bonneville et al.
(2017), respectively. p < 0.05 was considered statistically
significant.

Correlation analysis with drug
susceptibility

Transcriptome data (RNA: RNA-seq) and drug sensitivity
data (compound activity: DTP NCI-60) were downloaded from
Cellminer (https://discover.nci.nih.gov/cellminer); these data are
derived from the same 60 samples. Only FDA approved samples
were analyzed. A positive correlation indicated that the higher
the expression of PTBP, the more sensitive that the cells were to
the drugs.

Protein-protein interaction network
analysis

We performed the analysis of Protein-Protein Interaction
(PPI) networks using the STRING website (https://string-db.org/
). The parameters for finding the interacting proteins of PTBPs
were set as follows: minimum required interaction score
[“Medium confidence (0.400)”], meaning of network edges
(“evidence”) and active interaction sources (“experiments”).
The parameters for finding the interaction relationship among
PTBP1, PTBP2 and PTBP3 were set as follows: minimum
required interaction score [“Medium confidence (0.400)7],
meaning of network edges (“evidence”), active interaction
sources (“textmining, experiments, databases, co-expression,
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co-occurrence”), and max number of interactors to show (“no
more than 10 interactors”).

Co-expressed genes of PTBPs in pan-
cancer

We downloaded the dataset “Pan-cancer analysis of whole
genomes (ICGC/TCGA, Nature 2020)” on cBioPortal and
screened several mRNAs co-expressed with PTBPs using the
absolute value of Spearman’s correlation coefficient >0.4 and p <
0.05. Data were obtained from 991 samples.

GO enrichment and KEGG pathway
analysis

We performed ID conversion on 926 PTBPI-related mRNAs,
657 PTBP2-related mRNAs, and 874 PTBP3-related mRNAs
obtained in the previous step and analyzed their functions by
GO and KEGG enrichment analysis. After correcting the p-value
by the BH method, items with p. adjust <0.05 were selected for
partial visualization.

Statistical analysis

R (version 3.6.3) was used for statistical analysis and
visualization. The following R packages were used in this
study: ggplot2 package [version 3.3.3], ggpubr package
[version 0.1.4] for basic drawing, limma package [version
3.28.14] for differential analysis, survminer package [version
0.4.9], survival package [version 3.2-10] for statistical analysis
of survival data, timeROC package [version 0.4] for ROC curve
analysis, rms package [version 6.2-0] for building nomograms,
impute package [version 1.68.0] for processing the missing
GSVA  package 1.34.0]
infiltration analysis, org. Hs.eg.db package [version 3.10.0]

value, [version for immune
for id conversion, and the clusterProfiler package [version

3.14.3] for enrichment analysis.

Results

Expression levels of PTBPs in tissues of
pan-cancer

We analyzed the expression levels of PTBPs in tumor
tissues and normal/adjacent tissues from 30 cancer types, and
the abbreviations of tumor types are shown in Supplementary
Table S1. Paired differential expression analysis was then
performed for 18 cancer types with more than three normal
samples. Among PTBPs, PTBP1 showed the highest RNA
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expression level in tumor tissues, followed by PTBP3; the
expression level of PTBP2 was the lowest among the three
genes. PTBPI was upregulated in tumor tissues compared
with normal tissues in BLCA, BRCA, CESC, CHOL, COAD,
ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC,
PRAD, READ, STAD, and UCEC. PTBP2 was upregulated
in CHOL, HNSC, KIRC, LIHC, LUAD, and LUSC and
downregulated in BLCA, BRCA, CESC, GBM, KICH,
PCPG, PRAD, READ, THCA, and UCEC. PTBP3 was
upregulated in BLCA, BRCA, CESC, CHOL, COAD,
ESCA, GBM, HNSC, LIHC, LUAD, LUSC, READ, STAD,
and UCEC and downregulated in KICH, KIRC, KIRP, and
THCA (Figures 1A-C). The results of differential expression
analysis for paired samples are shown in Figures 1D-F.
Furthermore, we predicted the structures of these three
proteins based on AlphaFold (Jumper et al., 2021; Varadi
et al., 2022) (Supplementary Figures 52-54), among which,
PTBP1 and PTBP2 were highly similar in structure.

Expression correlation among PTBP1,
PTBP2, and PTBP3

Expression correlation analysis was performed on
21 cancer types with more than three normal samples. As
shown in the circular heatmap in Figure 1G, PTBPI and
PTBP3 are expressed similarly, while PTBP2 and PTBP1/3
have the opposite expression in multiple cancers.

Genetic alterations of PTBPs

We next used the public dataset “Pan-cancer analysis of
whole genomes (ICGC/TCGA, Nature 2020)” from cBioPortal
to examine copy number alterations and mutations. The
dataset includes a total of 2565 patients, and information
on these three genes was available in 174 patients. The copy
number alterations and mutation data of PTBPs in pan-cancer
are shown in Figure 2A. PTBPI was the most altered among
the PTBPs, with the main genetic alteration types being
amplifications and deep deletions. PTBPI was frequently
altered in colorectal cancer, pancreatic cancer, and ovarian
cancer; PTBP2 was frequently altered in non-small cell lung
cancer, lung cancer, and ovarian cancer; and PTBP3 was
frequently altered in pancreatic cancer, soft tissue sarcoma,
and colorectal cancer (Figures 2B-D).

PTBPs are clinically significant tumor-
associated factors

We next analyzed the relationship between PTBP
expression and stage, grade, or other clinical features in
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FIGURE 1

The expression levels of PTBP in pan-cancer tissues and the expression correlation among the three PTBP genes. RNA-seq data were obtained
from the TCGA database. (A—C) Differential expression of PTBPs in unpaired samples of 30 tumor types. (D—F) Differential expression of PTBPs in
paired samples of 30 tumor types (*p < 0.05; **p < 0.01; ***p < 0.001; ns: not significant). (G) Correlation analysis of the expressions of PTBP1, PTBP2,

and PTBP3 in various tumor types.

pan-cancer and drew violin plots using data from TCGA
(Figure 3). The expression of PTBP has a strong correlation
with the clinical characteristics of various tumors, indicating
that PTBPs are related to the occurrence and development of
For example, the expression of PTBP3 was
significantly higher in high-grade BLCA than that in low-
grade BLCA (p = 0.002). PTBP2 expression in IDH-mutant
GBM was significantly higher than that in IDH-wildtype GBM
(p < 0.001). The expression of PTBPI was related to the
pathological stage of ACC: PTBPI expression in stage IV
ACC was significantly higher than that in stage I ACC (
0.004). Multivariate Cox regression analysis showed that the
HR of PTBP1 in ACC was 3.97 (p = 0.01) (Figure 4A). Patients
with high expression of PTBPI had a lower probability of
survival (Figure 4D), indicating that PTBPI is an independent
risk factor for ACC and has the potential to be a prognostic
indicator.

tumors.
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Prognostic value of PTBPs in pan-cancer

We downloaded RNA-seq data and corresponding clinical
information of tumor tissues from 30 cancer types in TCGA
database. Univariate and multivariate Cox regression analyses
were performed on the OS data to analyze the hazard ratio
(HR), 95% confidence interval (95%CI), and p value of PTBPs in
pan-cancer (Table 1). Through multivariate Cox regression analysis,
we found that PTBPI was significantly associated with poor
prognosis in ACC, KIRP, LGG, LUAD, MESO, PRAD, and
SKCM (HR > 1, p < 0.05). PTBP2 is a risk factor for ACC,
KICH, LIHC, and UCEC (HR > 1, p < 0.05) and a protective
factor for OV, SKCM, and UCS (HR < 1, p < 0.05). PTBP3 was
significantly associated with poor prognosis in ACC, LGG, PAAD,
and PCPG (HR > 1, p < 0.05), but predicted better prognosis in
KICH and KIRC (HR < 1, p < 0.05). The above-listed tumors were
chosen to make the forest plots (Figures 4A-C).
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FIGURE 2
Characterization of genetic alterations in PTBPs. (A) General profile of genetic alterations in PTBPs in the pan-cancer dataset from cBioPortal.
(B—D) Genetic alterations of PTBPs in specific tumor types, in descending order of alteration frequency.
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FIGURE 3
Expression levels of PTBPs in clinical parameters of interest (*p < 0.05; **p < 0.01; ***p < 0.001; ns: not significant).
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Evaluation of the prognostic value of PTBPs in pan-cancer. The multivariate Cox regression analysis results of (A) PTBP1, (B) PTBP2, and (C)
PTBP3 were visualized and presented as forest plots (*p < 0.05; **p < 0.01; ***p < 0.001). (D—F) OS-KM survival curves of PTBPs in multiple cancers.
(G-1) Time-dependent ROC curves of PTBPs to evaluate the utility of PTBPs as prognostic markers in selected tumor types. (J—0) Prognostic
nomograms of PTBP expression combined with pathological stage in ACC. (M-0) The calibration curves for nomograms.
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Cancer
(08)

ACC
BLCA
BRCA
CESC
CHOL
COAD
ESCA
GBM
HNSC
KICH
KIRC
KIRP
LGG
LIHC
LUAD
LUSC
MESO

ov

n

79

413

1082

306

36

477

162

168

501

64

539

288

527

373

526

496

85

377

PTBP1 univariate

PTBP1 multivariate

PTBP2 univariate

PTBP2 multivariate

PTBP3 univariate

PTBP3 multivariate

analysis analysis analysis analysis analysis analysis
HR (95%CI) p HR (95%CI) p HR (95%CI) p HR (95%CI) p HR HR

value value value value (95%CI) value (95%CI) value
6.748 <0.001 3970 0010 ** 4346 <0.001  *** 3089 0017 % 4343 <0.001 2723 0.004  **
(2.433-18.713) (1.384-11.390) (1.859-10.159) (1.226-7.782) (2.376-7.940) (1.387-5.344)
0.849 0457 0.828 0357 0.892 0325
(0.551-1.308) (0.554-1.237) (0.711-1.120)
0911 0.733 0.787 0238 1.226 0.158
(0.532-1.560) (0.529-1.171) (0.924-1.628)
1.139 0.771 0.640 0.173 1.012 0.96
(0.475-2.732) (0.338-1.215) (0.641-1.598)
0.450 0.416 0.711 0491 0.464 0.151
(0.066-3.089) (0.269-1.876) (0.163-1.322)
1.239 0.406 0.906 0711 0.890 0392
(0.747-2.056) (0.537-1.529) (0.682-1.162)
1121 0.783 0.931 0.814 1.208 0.463
(0.496-2.536) (0.514-1.687) (0.729-2.001)
1.061 0.723 0.684 0.051 1.012 0.954
(0.765-1.472) (0.468-1.002) (0.672-1.523)
0.988 0.950 0.640 0.054 1.054 0.675
(0.670-1.456) (0.406-1.007) (0.823-1.350)
38.073 0008  ** 4222 0298 ns 44174 <0.001  **  19.281 0012 * 0425 003  * 0429 0.046  *
(2.640-549.096) (0.280-63.719) (6.571-296.980) (1.913-194.340) (0.191-0.945) (0.187-0.985)
1.267 0353 1.232 0.298 0578 <0.001 ** 0578 <0.001
(0.769-2.086) (0.832-1.825) (0.434-0.770) (0.434-0.770)
4.002 0010  ** 4002 0010  **  0.692 0.306 1318 0233
(1.391-11.511) (1.391-11.511) (0.342-1.402) (0.837-2.076)
2.424 <0.001 ** 1801 0001 *** 0.684 0.089 2.702 <0.001 1717 0011  *
(1.802-3.262) (1.260-2.574) (0.442-1.060) (1.900-3.844) (1.134-2.599)
1.850 0002 ** 1663 0053 ns 2087 <0001 1792 0027 % 1382 0014  * 0909 0627  ns
(1.256-2.725) (0.994-2.782) (1.370-3.179) (1.067-3.010) (1.068-1.789) (0.617-1.338)
1.866 <0.001  **  1.866 <0.001 0792 0.131 1.184 0.183
(1.293-2.693) (1.293-2.693) (0.586-1.072) (0.923-1.517)
1.030 0.868 0934 0.695 1.238 0123
(0.728-1.456) (0.666-1.311) (0.944-1.625)
3.760 0003  ** 3760 0003 ** 0964 0925 1.377 0.124
(1.568-9.015) (1.568-9.015) (0.448-2.072) (0.916-2.070)

0.723 0033 % 0033 % 0.205

(Continued on following page)
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TABLE 1 (Continued) Univariate and multivariate Cox regression analysis of PTBP expressions and overall survival in pan-cancer.

Cancer n PTBP1 univariate PTBP1 multivariate PTBP2 univariate PTBP2 multivariate PTBP3 univariate PTBP3 multivariate
(08) analysis analysis analysis analysis analysis analysis
HR (95%CI) p HR (95%CI) p HR (95%CI) p HR (95%CI) p HR P HR P
value value value value (95%CI) value (95%CI) value
0.948 0.811 0.811 1.160
(0.707-1.272) (0.670-0.983) (0.670-0.983) (0.922-1.458)
PAAD 178 1.082 0.814 0.600 0.102 2.101 <0.001 2,101 <0.001 o
(0.561-2.087) (0.326-1.106) (1.369-3.223) (1.369-3.223)
PCPG 183 7.151 0.240 0.053 0.113 3.819 0.038 * 3819 0.038  *
(0.269-190.171) (0.001-2.006) (1.074-13.581) (1.074-13.581)
PRAD 499 23975 0.010  ** 16775 0.023  * 5099 0.173 3.753 0.061
(2.154-266.880) (1.486-189.408) (0.489-53.212) (0.941-14.970)
READ 166 0.448 0.122 1.281 0.745 0.629 0.149
(0.162-1.238) (0.287-5.718) (0.335-1.180)
SARC 263 2.586 <0.001  *** 3207 0.159 ns 0918 0.554 1278 0.163
(1.552-4.310) (0.635-16.210) (0.690-1.220) (0.905-1.806)
SKCM 456 1.491 0.026 * 1456 0.039 * 0685 0023 * 0703 0.034 * 0892 0.292
(1.048-2.122) (1.020-2.081) (0.494-0.950) (0.508-0.974) (0.722-1.103)
STAD 370 0.742 0.079 1.193 0.326 0.856 0.232
(0.532-1.036) (0.838-1.699) (0.663-1.105)
THCA 510  1.098 0.942 2.768 0.140 1.960 0.255
(0.088-13.772) (0.717-10.688) (0.615-6.249)
TGCT 139 0476 0.594 0.364 0.393 3.799 0.161
(0.031-7.289) (0.036-3.691) (0.587-24.563)
UCEC 551 0.716 0.209 1.588 0.007  **  1.588 0.007  ** 1.008 0.955
(0.425-1.206) (1.137-2.220) (1.137-2.220) (0.777-1.307)
ucs 56 1.653 0.280 0.337 0.006  ** 0337 0.006  ** 1335 0.285
(0.665-4.110) (0.156-0.728) (0.156-0.728) (0.786-2.268)
UVM 80 1319 0.688 0.891 0.805 1.822 0.064
(0.341-5.098) (0.356-2.231) (0.967-3.434)
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We divided samples into high and low expression groups
using the median value of PTBP expression, predicted survival
possibility, and plotted OS-KM curves. Except for PRAD (p >
0.05), the survival time of patients with ACC, KIRP, LGG, LUAD,
MESO, and SKCM was shorter when PTBPI was highly
expressed, with statistical significance (HR > 1, p < 0.05)
(Figure 4D). Patients with ACC, KICH, and LIHC with high
PTBP2 expression had a shorter OS (HR > 1, p < 0.05), while
patients with UCS with high PTBP2 expression had a longer
survival time (HR = 0.32, p = 0.003). No significant differences in
OS were observed in OV, SKCM, and UCEC (p > 0.05)
(Figure 4E). When PTBP3 was highly expressed, patients with
ACC, LGG, and PAAD had lower survival probability and poorer
prognosis (HR > 1, p < 0.05), while patients with KIRC had a
longer OS and better prognosis (HR = 0.55, p < 0.001); there was
no significant differences observed in patients with KICH and
PCPG (p > 0.05) (Figure 4F).

By comprehensively analyzing the results of multivariate Cox
regression and the OS-KM curve, we concluded that PTBP] is a
risk factor for ACC, KIRP, LGG, LUAD, MESO, and SKCM, and
high expression of PTBPI predicts a shorter survival time. PTBP2
is a risk factor in ACC, KICH, and LTHC and a protective factor
in UCS. PTBP3 is a risk factor for ACC, LGG, and PAAD but a
protective factor for KIRC.

Next, we assessed the prognostic value of the three genes in
the above tumors. We analyzed the predictive ability of PTBP
genes for prognosis at 1, 3, and 5 years by time-dependent
ROC curves to confirm the accuracy of these candidate
markers (Supplementary Table S3). Our results indicated
that PTBP1 may serve as a prognostic biomarker for ACC,
KIRP, and LGG at the three time points according to the
criterion of AUC >0.7 (Figure 4G). PTBP2 showed good
prognostic value in ACC and KICH (Figure 4H), and
PTBP3 showed good prognostic value in ACC, LGG, and
PAAD (Figure 41), indicating these PTBPs may function as
prognostic biomarkers in these tumors.

Our results showed that all three PTBPs were associated
with poor prognosis in ACC, and therefore we determined the
prognostic nomogram of ACC. Pathologic stage and PTBP
expression were included in Cox regression analysis to
establish prognostic nomograms. A vertical line was drawn
to connect corresponding points and calculate the total score
to estimate the 3-, 5-, and 8-years survival probability of ACC
patients (Figures 4]-L). Calibration curves used to observe the
predictive effect of the
Figures 4M-O.

nomogram are shown in

The expression of PTBPs in tumor immune
subtypes

In 2018, Scientists performed an extensive immune genomic
analysis of 33 cancer types (Thorsson et al., 2018). Six immune
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subtypes, including Cl (wound healing), C2 (IFN-gamma
dominant), C3 (inflammatory), C4 (Ilymphocyte depleted), C5
(immunologically quiet), and C6 (TGF-p dominant), were
identified by macrophage and lymphocyte markers, the ratio
of Thl cells to Th2 cells, and immune regulatory genes. This
tumor heterogeneity leads to suboptimal outcomes of
immunotherapy in the clinic.

We investigated the expression levels of PTBPs in
different tumor immune subtypes by TISIDB. The results
showed that PTBPI expression was associated with tumor
immune subtypes of BLCA, BRCA, COAD, ESCA, GBM,
KIRC, KIRP, LGG, LIHC, LUAD, LUSC, PRAD, SARC,
SKCM, STAD, TGCT, and UCEC (Figure 5A). PTBP2
expression correlated with tumor immune subtypes of
BLCA, BRCA, LGG, LUAD, PAAD, PCPG, PRAD, READ,
SARC, SKCM, STAD, TGCT, THCA, and UCEC (Figure 5B).
PTBP3 expression correlated with tumor immune subtypes
of BLCA, BRCA, ESCA, KIRC, KIRP, LGG, LIHC, LUAD,
LUSC, OV, SARC, SKCM, STAD, TGCT, and UCEC
(Figure 5C). The expression of PTBPs in immune subtypes

of other cancers is shown in Supplementary Figures S5-57.

PTBP expression and immune infiltrating
cells in the tumor microenvironment

The Spearman correlations between PTBPs and TILs in
various tumor types were further investigated. We found
strong positive correlations of PTBPI with Th2 cells
(Figure 6A), PTBP2 with T helper cells and Tem (Figure 6B),
and PTBP3 with T helper cells, Tcm, and Th2 cells (Figure 6C) in
most tumor types. Overall, the expression of PTBPs was highly
correlated with the number of TILs in the TME. These results
suggest that PTBPs may have a regulatory effect on the tumor
microenvironment (TME) (Geng et al., 2021).

We also examined PTBP expression with macrophages
and neutrophils (Figures 6D-F). Most tumor types had an
infiltration of macrophages and neutrophils, and this was
inversely linked with the expression of PTBPI and PTBP2.
However, in many tumor types, PTBP3 levels were favorably
linked with macrophage and neutrophil counts. These details
are shown in Supplementary Table S4.

Correlation analysis of PTBPs and immune
checkpoint

Studies have shown that the immune checkpoint (ICP) genes
have a great influence on the efficacy of immunotherapy. PD-1,
CTLA4, LAG3, and TIM-3 are four ICPs that are frequently
examined in the clinic, and inhibitors targeting these factors have
shown potent tumor-killing effects in a variety of tumors (Sun et al,
2021; Yang et al., 2021; Gaikwad et al,, 2022; Tian et al,, 2022). To
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Correlation of PTBP expression with tumor-infiltrating lymphocytes in the tumor microenvironment in pan-cancer. (A—C) Heatmap of the
correlation of PTBP expression with 24 TILs in pan-cancer. (D—F) The correlation of PTBP expression with macrophages and neutrophils in various

tumors is shown in detail in lollipop plots (*p < 0.05; **p < 0.01).

explore the potential of PTBPs in immunotherapy, we analyzed the
relationship between PTBPs and four ICP genes in pan-cancer
(Supplementary Table S5). In the 30 tumor types, PTBPI
expression had the most prevalent positive correlation with LAG3
and PD-1 expression (in Figure 7A). Similarly, PTBP2 was generally
positively correlated with CTLA4 and PTBP3 with CTLA4 and TIM-
3. These results suggest that PTBPs may serve as potential targets for

immunotherapy.

PTBP expression correlates with tumor
mutational burden and microsatellite
instability and can predict immunotherapy

efficacy

TMB and MSI are demonstrated biomarkers that predict the
efficacy of immunotherapy, with higher TMB or MSI indicating a
better response to ICP inhibitors (Chan et al., 2019; Diao et al,
2021). Using the criteria of [R| > 0.3 and p < 0.05, the radar chart
showed that the expression of PTBPI in ACC, LGG, MESO, and
STAD was positively correlated with TMB. PTBP2 expression was
negatively correlated with TMB in UVM. PTBP3 expression was
positively correlated with TMB in ACC and STAD (Figure 7B).

In KICH and LUSC, PTBPI expression associated favorably
with MSI, but it correlated negatively in READ. PTBP2 expression
was positively correlated with MSI in READ (Figure 7C). The
detailed expression data were presented in Supplementary Table

Frontiers in Molecular Biosciences

S6, and the correlations were shown in Supplementary Table S7.
These evidences supported the finding that PTBPs may predict

response to immunotherapy and play a role in tumor immunity.

Correlation analysis of PTBPs and
chemical drug sensitivity

We next analyzed the Pearson correlation of PTBP
expression with the sensitivity of 263 FDA-approved
drugs in 60 tumor cell lines using the Cellminer database
(Figures 8A-C) and obtained the top six drugs with the
strongest correlation with PTBPs. For example, the
expression of PTBPI was proportional to the sensitivity of
cells to gemcitabine (R = 0.409, p = 0.001): the higher the
expression of PTBPI, the more sensitive the cell was to
gemcitabine. Therefore, the expression of PTBPs may be a
predictor of tumor response to chemotherapeutic drugs.

The analysis of protein-protein interaction

We mapped the PPI networks of PTBP1, PTBP2, and PTBP3
(Figure 9A) respectively and visualized the interaction among these
three molecules using STRING (Figure 9B). It showed that
PTBP1 was closely related to heterogeneous nuclear
ribonucleoproteins (hnRNPs), YBX1, and SFPQ (Meissner et al.,

12 frontiersin.org


https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.968458

Chen et al.

10.3389/fmolb.2022.968458

2000; King et al, 2014). There are four relationships between 657 mRNAs co-expressed with PTBP2, and 874 mRNAs co-
PTBP1 and PTBP2: experimentally determined interactions, expressed with PTBP3 (|R| > 04, p < 0.05) (Supplementary
databases recorded interactions, protein homology, and text Table S8). We further analyzed PTBP-related mRNAs using GO

mining. However, PTBP3 did not seem
PTBP1 and PTBP2 (Figure 9B).

to interact with (including BP, CC, and MF) and KEGG enrichment analyses
(Figures 9C-E). The results revealed that PTBP1 may function
through “Cell cycle,” “Human T-cell leukemia virus one infection,”
“RNA transport,” “Spliceosome,” “DNA replication,” “Cellular

Functional enrichment analysis of PTBP- senescence” and “Apoptosis.” PTBP2 may be associated with

related genes

“Herpes simplex virus one infection” and “Spliceosome”
pathways, while PTBP3 may affect tumor progression through

Spearman correlation analysis on the pan-cancer dataset from “Amyotrophic lateral sclerosis,” “Viral carcinogenesis,” “Cell

cBioPortal yielded 926 mRNAs co-expressed with PTBPI, cycle” and  “Homologous  recombination”  pathways

*p<0.01
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FIGURE 7

Spearman correlation analysis of PTBP expression with immune checkpoint genes, tumor mutational burden and microsatellite instability in
pan-cancer. (A) Correlation of PTBP expression with ICPs (PD-1, CTLA4, LAG3 and TIM-3) in pan-cancer (*p < 0.05; **p < 0.01). (B) Correlation of
PTBP expression with TMB. (C) Correlation of PTBP expression with MSI. p values are marked in the figures.
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FIGURE 8
Pearson correlation of PTBP expression with drug sensitivity scores in various tumor cell lines in Cellminer. The top six drugs with the largest

absolute value of the correlation coefficient are displayed. (A) Correlation of PTBP1 with drug sensitivity. (B) Correlation of PTBP2 with drug
sensitivity. (C) Correlation of PTBP3 with drug sensitivity. The correlation coefficient and p value are marked in the figure.
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FIGURE 9

Protein-protein interaction networks and functional enrichment analysis of PTBPs in pan-cancer. (A) Experimentally validated interacting
proteins of PTBPs using STRING. (B) The interaction relationship among the three protein molecules. Line colors in the legend indicate different
relationships. (C—E) GO enrichment and KEGG pathway analysis results for co-expressed mRNAs of PTBPs.
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(Supplementary Table S9). Together, the results above have
established a novel theoretical framework for the investigation of
PTBP regulation mechanism in malignancies.

Discussion

PTBPs are RNA-binding proteins that are involved in
alternative splicing, mRNA stability, and translation. The PTBP
family includes PTBP1, PTBP2 and PTBP3. PTBP1 can be expressed
in almost all types of cells; PTBP2 is only expressed in the
neurological system while PTBP3 is found mostly in immune
cells (Spellman et al, 2007). Among the PTBP family members,
PTBP1 is most frequently linked with cancer, followed by PTBP3. It
is reported that PTBP1 promotes lung cancer metastasis by
regulating the alternative splicing of Mena mRNA (Li et al,
2019). PTBP3 is upregulated in breast cancer and regulates ZEBI
mRNA stability to promote epithelial-mesenchymal transition in
BRCA (Hou et al, 2018; Liang et al., 2020). Most research has
focused on the function of PTBPs in tumor cells, but little attention
has been paid to their interaction with immune cells in the TME
(Sasanuma et al, 2019; Geng et al,, 2021). In addition, reports of
PTBPs in uncommon tumors are rare. Thus, we investigated the
expression, function, and immune characterization of PTBPI,
PTBP2, and PTBP3 in pan-cancer.

We first performed differentiation analysis and correlation
analysis on the expression of the PTBPI, PTBP2, and PTBP3
genes in 30 tumor types using TCGA. The results showed that in
most tumor types, the expression levels of PTBP1 and PTBP3 in
tumor tissues were significantly higher than that in non-tumor
tissues. In contrast, the expression level of PTBP2 was lower in
tumor tissues compared with that in normal tissues.
Interestingly, when we analyzed the expression correlation of
PTBPs, we found that PTBPI1/3 appeared to have opposite
expression trends to PTBP2 in pan-cancer. Our results were
consistent with other scholars’ findings. Previous studies
suggested that PTBP1 is a repressor of PTBP2 and that there
was a “switch” between the two molecules (Boutz et al., 2007;
Spellman et al., 2007). SON may be an on-off regulator of the
expression of PTBP1 and PTBP2 in GBM (Kim et al., 2021), and
PTBP2 compensates for the absence of Ptbpl during B cell
2020).
Furthermore, we found a co-expression trend between PTBPI
and PTBP3 which deserved to be further investigated.

It has been reported in the literature that PTBP1 can be used
as a biomarker for poor prognosis in bladder cancer (Bielli et al.,

development in mice (Monzén-Casanova et al,

2018), and PTBP3 as a therapeutic target for gastric cancer (Liang
et al, 2017). Here we further comprehensively explored the
association of PTBP expression with prognosis in pan-cancer.
Through multivariate Cox regression analysis and OS-KM
survival curves, we found that patients with ACC, LGG, and
PAAD had poor prognosis when PTBP3 was highly expressed,
but patients with KIRC had better prognosis. Given that the
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expression of PTBP3 in KIRC tumor tissues was significantly
lower than that in control tissues, PTBP3 may be a tumor
suppressor molecule in KIRC. Thus, more research is required
to examine the function and molecular mechanism of PTBP3 in
KIRC. Time-dependent ROC curves were used to verify the
prognostic value of PTBPs in pan-cancer. Compared with the
ordinary ROC curve, the time-dependent ROC curve detects the
accuracy of candidate markers at specified times. We finally
identified PTBPI in ACC, KIRP, and LGG; PTBP2 in ACC and
KICH; and PTBP3 in ACC, LGG, and PAAD as potential
prognostic biomarkers that may be involved in tumor
progression in these tumor types.

We then analyzed the expression of PTBPs in different immune
subtypes. The results indicated that PTBPs might participate in
immune regulation. The expression of PTBPs was significantly
different across multiple immune subtypes and strongly correlated
with the number of TILs in the TME. Remarkably, PTBPI on
Th2 cells, PTBP2 on T helper cells and Tcm, and PTBP3 on T
helper cells, Tcm, and Th2 cells may have broad positive regulatory
effects in pan-cancer. PTBPs are also strongly associated with
macrophages and neutrophils in the TME. For example, PTBP3
expression was positively correlated with macrophages and
neutrophils in GBM, LGG, PRAD, SARC, MESO, KIRC, OV,
and THCA. These results demonstrated the important role of
PTBPs in tumor immunity and the tumor microenvironment.

The immune microenvironment in tumor tissues leads to
tumor heterogeneity, which influences the clinical efficacy of
anticancer drugs. Immune checkpoint inhibitors are used as
treatment options for cancer patients. We found that PTBP
expression showed a strong correlation with PD-1, CTLA4,
LAG3, or TIM-3 in pan-cancer. Therefore, PTBPs may be a
class of potential therapeutic targets, providing a new direction
for combined targeted immunotherapy in the future.

We also analyzed the correlation of PTBPs with TMB and
MSI. Tumor cells with high TMB usually have higher levels of
neoantigens, which help the immune system to recognize the
tumor and activate the anti-tumor effect of T cells. Therefore,
higher TMB generally better of
immunotherapy, and TMB is highly correlated with the
efficacy of PD-1/PD-L1 inhibitors (Yarchoan et al, 2017
Chan et al,, 2019). MSI works similarly. TMB and MSI have
become predictive markers of tumor immunotherapy efficacy in

indicates outcome

recent years. The correlation of PTBP expression with TMB and
MSI in pan-cancer suggests that PTBPs may become novel
biomarkers for predicting patients’ response to immunotherapy.

We also made other notable findings. Gemcitabine is an effective
anti-tumor drug for NSCLC (stage IIT and IV), OV, BRCA, BLCA,
and other malignant tumors (Ferrazzi and Stievano, 2006; Mornex
and Girard, 2006), and 5-fluorodeoxyuridine is a common
chemotherapeutic drug for BRCA, STAD, READ, and BLCA
(Koizumi et al., 1993). PTBPI expression was proportional to the
sensitivity of cells to gemcitabine (R = 0.409, p = 0.001) and 5-
fluorodeoxyuridine (R = 0.407, p = 0.001). This result indicates that
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the expression of PTBPs may predict the therapeutic effect of
chemotherapeutic drugs.

When we investigated “interacting proteins”, we found that all
PTBP family proteins can tightly interacts with hnRNPs and ELAVLI
(also known as HuR), which was verified by co-immunoprecipitation
or reported in literature (Hegele et al,, 2012). The presence of such
protein complexes may increase their effect. For example, PTBP1 can
interact with HuR and jointly upregulate the translation of HIF-Iex
mRNA in human cervical carcinoma HeLa cells (Galbédn et al., 2008).

In the enrichment analysis of co-expressed genes, we inferred
that PTBPs may function in the cell cycle, RNA splicing and RNA
localization. PTBP1 and PTBP3 were enriched in telomere-related
signaling pathways, suggesting that they may be involved in cellular
senescence pathways. Scientists found that PTBP1 can regulate
alternative splicing of genes involved in intracellular trafficking to
control the senescence-associated secretory phenotype (SASP).
Inhibition of PTBP1 blocks the tumor-promoting effect of SASP
and impair immune surveillance (Georgilis et al., 2018). Sayed et al.
also found that knockdown of PTBP1I in cancer cells reduced h'TERT
full-length splicing and telomerase activity (Sayed et al., 2019). The
important role of PTBP1 and PTBP3 in cellular senescence and
immunity should be further explored.

This study has several limitations. First, our conclusions are
limited by sequencing technologies and analytical methodologies
from the database, and the data may be lacking in granularity and
precision. This has become a pervasive problem in bioinformatics
research. Second, whether PTBPs can be used as biomarkers for
prognosis and immunotherapy requires validation in more clinical
samples. At present, there is no immune-targeted drug against
PTBPs, so it is not possible to clinically verify the effect of these
targets. Third, the involvement of PTBPs in immune regulation and
cellular senescence need to be supported by in vitro and in vivo
experimental evidence.

Conclusion

This study comprehensively and systematically analyzed the
prognostic value, genetic variation, and signaling pathways of
PTBP1, PTBP2, and PTBP3 and the correlation of PTBP
expression with TILs, ICP, TMB, MSI, and drug sensitivity from
a pan-cancer perspective. Our results indicate that PTBPs may be
promising prognostic biomarkers and predict the response to
immunotherapy in pan-cancer. We found that PTBPs are closely
related to tumor progression and cell senescence, which provides a
theoretical reference for subsequent research.
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