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Glioblastoma (GBM) is the most common malignant craniocerebral tumor. The

treatment of this cancer is difficult due to its high heterogeneity and

immunosuppressive microenvironment. Ferroptosis is a newly found non-

apoptotic regulatory cell death process that plays a vital role in a variety of

brain diseases, including cerebral hemorrhage, neurodegenerative diseases,

and primary or metastatic brain tumors. Recent studies have shown that

targeting ferroptosis can be an effective strategy to overcome resistance to

tumor therapy and immune escape mechanisms. This suggests that combining

ferroptosis-based therapies with other treatments may be an effective strategy

to improve the treatment of GBM. Here, we critically reviewed existing studies

on the effect of ferroptosis on GBM therapies such as chemotherapy,

radiotherapy, immunotherapy, and targeted therapy. In particular, this review

discussed the potential of ferroptosis inducers to reverse drug resistance and

enhance the sensitivity of conventional cancer therapy in combination with

ferroptosis. Finally, we highlighted the therapeutic opportunities and challenges

facing the clinical application of ferroptosis-based therapies in GBM. The data

generated here provide new insights and directions for future research on the

significance of ferroptosis-based therapies in GBM.
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1 Introduction

Glioblastoma (GBM) is the most prevalent malignant tumor of the central nervous

system, accounting for 54% of adult malignant cases (Miller et al., 2021). In the past

4 decades, limited significant strides have beenmade in its prevention, early detection, and

treatment (Miller et al., 2021). Although several therapies have been developed for the

treatment of GBM including surgery, radiation, and chemotherapy, patients with GBM

have a poor prognosis, only 5.5% of patients survived 5 years post-diagnosis (Ostrom

et al., 2016). GBM treatment faces significant challenges, such as blood-brain barrier (Xie
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et al., 2021), high intra-tumoral or inter-tumoral heterogeneity

(Patel et al., 2014; Jacob et al., 2020), and immunosuppressive

microenvironment (Fu et al., 2020). Nonetheless, an increasing

understanding of the complex and interrelated tumor

microenvironment (TME) has expanded the range of

therapeutic strategies (Fu et al., 2020). So far, the outcomes of

monotherapy have been disappointing therefore, combination

therapy is required to achieve a broad and lasting anti-tumor

response. Therefore, the present study focuses on the

development of effective molecular targeted therapy,

immunotherapy, gene therapy, and novel drug delivery

technology.

Tumor cells resist cell death and evade immune destruction,

which is different from normal tissue cells. Regulatory cell death

(RCD) is a type of death initiated by gene regulation that

originates from the intracellular or extracellular

microenvironment when other adaptive responses cannot

restore cell homeostasis. RCD can be subdivided into

necroptosis, pyroptosis, ferroptosis, and other types of cell

death as per its mechanism (Galluzzi et al., 2018). In 2012,

researchers found lethal compounds responsible for

ferroptosis, a new model of cell death. Ferroptosis is

morphologically, genetically, and biochemically distinct from

necrosis, apoptosis, and autophagy; it is characterized by iron

dependence and reactive oxygen species (ROS) accumulation

(Dixon et al., 2012). Cell morphological changes include rupture

and blistering of the cell membrane; contraction and increase of

membrane density; decrease or disappearance of the

mitochondrial ridge; rupture of the mitochondrial outer

membrane and normal size nucleus without chromatin

agglutination. Under the induction of iron ions, ROS

accumulation causes an imbalance of redox in cells, resulting

in the occurrence of ferroptosis (Dixon et al., 2012). Iron-

dependent tumor cells are vulnerable to ferroptosis inducers

(FINs). Ferroptosis influences the efficacy of chemotherapy,

radiotherapy, and immunotherapy, hence drug combination

targeting ferroptosis signals improves the current efficacy of

these treatments (Sato et al., 2018; Lang et al., 2019).

Therefore, drug combination with drugs targeting the

pathways of ferroptosis is a novel therapeutic strategy.

Ferroptosis is closely associated with cerebral ischemia-

reperfusion injury (Tuo et al., 2022), neurodegenerative

diseases (Park et al., 2021), and tumors (Dixon et al., 2012).

Besides its role in acquired drug resistance and cancer

immunosuppression, ferroptosis is involved in metabolic

reprogramming, providing a novel opportunity for drug-

resistant tumors (Tarangelo et al., 2018). Noteworthy, GBM

cells have strong anti-apoptosis capacity and inhibitory tumor

immune microenvironment (TIME) as an immune-desert

tumor, resulting in a poor response to immunotherapy.

T cells showed particularly severe exhaustion signature in

GBM (Woroniecka et al., 2018). At present, GBM treatments

transform “cold” tumors into “hot” tumors, hence stimulating

the immune system to fight tumors (Zhang J. et al., 2021). Studies

indicate that ROS levels significantly increase after anti-PD-

L1 treatment, hence decreasing the sensitivity of

immunotherapy after suppressing ferroptosis (Wang W. et al.,

2019). Therefore, therapeutic approaches targeting ferroptosis

may provide a novel and promising approach for killing GBM

cells.

Recent bioinformatics studies have shown that

ferroptosis-related genes (FRGs) can be used to predict the

treatment response in GBM (Zhuo et al., 2020; Xiao et al.,

2021; Dong et al., 2022; Tian et al., 2022; Zhang et al., 2022).

Therefore, ferroptosis plays an important role in GBM.

Evasion of ferroptosis may increase GBM invasiveness and

development of drug resistance. Previous review has

indicated that alterations in glucose, lipid, glutamine, and

iron metabolism in GBM may increase sensitivity to

ferroptosis due to the enhanced reliance on the antioxidant

system and iron ions (Huang et al., 2021). Thus, targeting

ferroptosis can be a potential treatment for GBM. This review

describes the role of ferroptosis in GBM treatment, including

chemotherapy, radiotherapy, immunotherapy, and targeted

therapy, as well as its opportunities and challenges.

2 Molecular mechanisms of
ferroptosis

2.1 Drivers of ferroptosis

Ferroptosis is driven by lethal phospholipid peroxidation

resulting from imbalanced redox homeostasis and cellular

metabolism. This RCD process relies on phospholipids

containing polyunsaturated fatty acid chains (PUFA-PLs),

transition metal iron and ROS (Figure 1). This paragraph

discusses mechanisms of liposynthesis, storage, utilization,

and peroxidation during ferroptosis modulation. As a key

metabolic substrate for fatty acid synthesis, acetyl-CoA is

mainly converted from mitochondria-derived citrate through

the action of ATP citrate lyase (ACLY) (Wei et al., 2020). The

rate-limiting step in fatty acid synthesis is the synthesis of

malonyl-CoA from acetyl-CoA by acetyl-CoA carboxylase

(ACC) (Wang et al., 2022). Then malonyl-CoA and acetyl-

CoA are catalyzed and condensed by fatty acid synthase

(FASN) to form 16-carbon fatty acid palmitate. After

palmitate is elongated by ELOVL fatty acid elongase

(ELOVL), the initial product of fatty acid synthesis is

further desaturated by fatty acid desaturases. Among them,

delta-5 desaturase (D5D) and delta-6 desaturase (D6D) are

rate-limiting enzymes for PUFAs conversion and are

considered to be the main determinants of PUFA levels

(Tosi et al., 2014), whereas Stearoyl-CoA Desaturase

(SCD) catalyzes the formation of monounsaturated fatty

acids (MUFAs) (Ntambi, 2004). Exogenous MUFAs induce
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a ferroptosis-resistant cell state by decreasing levels of

oxidizable PUFAs and suppressing the accumulation of

lipid peroxides (Magtanong et al., 2019). Lipid droplets

can buffer and store excess lipids. Increased lipid droplet

degradation promotes ferroptosis (Bai et al., 2019). Fatty

acids are catabolized by fatty acid beta-oxidation (FAO) in

mitochondria through a series of reactions that shorten them.

Carnitine palmitoyltransferase 1 (CPT1) present in

mitochondrial outer membrane can catalyze carnitine

esters from acyl-CoA as a rate-limiting step of FAO (van

der Leij et al., 1999). Lipid peroxidation is a process in which

carbon-carbon double bonds of lipids (especially PUFAs) are

attacked by oxidants (such as free radicals). Two membrane

remodeling enzymes, an Acyl-CoA synthetase long-chain

family member 4 (ACSL4) and lysophosphatidylcholine

acyltransferase 3 (LPCAT3), are key drivers of iron ptosis,

as revealed by genome-wide haploid and CRISPR-Cas9

screening (Dixon et al., 2015; Doll et al., 2017). ACSL4 can

catalyze the connection between CoA and long-chain PUFAs

(including arachidonic acid (AA) and adrenic acid (AdA)).

LPCAT3 will re-esterify these products into phospholipids

(PL), increasing the cellular incorporation of long-chain

PUFAs into membranes and lipids. It has been found that

some arachidonate lipoxygenases (ALOXs) have the

capability of directly oxygenating PUFAs and PUFA-

containing lipids within biological membranes, promoting

the production of phospholipid hydroperoxides (PLOOHs), a

lipid-based form of ROS, thereby mediating ferroptosis (Yang

et al., 2016). Furthermore, cytochrome P450 oxidoreductase

(POR) (Zou et al., 2020) and NADPH oxidases (NOXs)

(Dixon et al., 2012) play a role in lipid peroxidation and

contribute to ferroptosis.

Iron homeostasis is an important factor that determines

ferroptosis sensitivity. It has been described in detail in a

prior review that ferroptosis is tightly controlled by processes

associated with iron metabolism including iron uptake, storage,

utilization, and efflux (Chen X. et al., 2020). Besides initiating the

non-enzymatic Fenton reaction to peroxidize PUFA-PLs, iron

also acts as an essential cofactor for enzymes involved in lipid

peroxidation, such as POR and ALOXs, which in turn also

regulate ferroptosis. Ferroptosis susceptibility can be affected

by cellular labile iron content. Ferroptosis, for instance, is

triggered by increased cellular iron availability as a result of

autophagic degradation of ferritin, the iron storage protein (Hou

et al., 2016). Similarly, transferrin receptor and glutaminolysis

also contribute to ferroptosis (Gao et al., 2015).

FIGURE 1
Molecular mechanisms of ferroptosis. Ferroptosis is driven by accumulation of polyunsaturated fatty acid-containing phospholipids (PUFA-
PLs), transition metal iron and reactive oxygen species (ROS). Ferroptosis defense systems include cyst(e)ine/GSH/GPX4 axis, NAD(P)H/FSP1/CoQ10

axis, DHODH/CoQ10 axis, GCH1/BH4 axis, and iPLA2β, etc. AA, arachidonic acid; ACSL4, Acyl-coenzyme A synthetase long-chain family member 4;
AdA, adrenic acid; ALOXs, arachidonate lipoxygenases; BH2, dihydrobiopterin; BH4, tetrahydrobiopterin; CoQ10, ubiquinone; CoQ10H2,
ubiquinol; CP, ceruloplasmin; DHODH, dihydroorotate dehydrogenase; ESCRT-III, endosomal sorting complex required for transport-III; FA, fatty
acid; FSP1, ferroptosis suppressor protein 1; GCH1, GTP cyclohydrolase 1; GCLC, glutamate-cysteine ligase catalytic subunit; GPX4, glutathione
peroxidase 4; GSH, glutathione; GTP, guanosine triphosphate; H2O2, hydrogen peroxide; iPLA2β, calcium-independent phospholipase A2β; LPCAT3,
lysophosphatidylcholine acyltransferase 3; NOXs, NADPH oxidases; PL, phospholipids; POR, cytochrome P450 oxidoreductase; SLC11A2, solute
carrier family 11 member 2; SLC40A1, solute carrier family 40 member 1; STEAP3, STEAP family member 3, metalloreductase; TF, transferrin; TFRC,
transferrin receptor.
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2.2 Ferroptosis defense systems

Reports have been made of multiple ferroptosis defense

systems (Figure 1). Among them, cyst(e)ine/GSH/GPX4 axis

is the primary regulator of ferroptosis. The cystine/glutamate

reverse transporter (system XC–), is composed of a heavy chain

solute carrier family 3 members 2 (SLC3A2) and a light chain

solute carrier family 7 member 11 (SLC7A11), plays a role in

cysteine synthesis (Koppula et al., 2021). Cysteine is converted

into glutathione (GSH) with the help of gamma-glutamylcysteine

synthetase and GSH synthetase. Glutathione Peroxidase 4

(GPX4) acts as a phospholipid hydroperoxidase to convert

PLOOH into phospholipid alcohol (PLOH), preventing

ferroptosis from occurring (Yang et al., 2014). Inhibition of

SLC7A11 prevents glutamate/cystine exchange and reduces

intracellular GSH synthesis, which further inhibits the activity

of GPX4, impairs intracellular antioxidant system, and triggers

ferroptosis (Koppula et al., 2021). Notably, erastin

(SLC7A11 inhibitor) and RSL3 (GPX4 inhibitor) can induce

ferroptosis (Dixon et al., 2012; Yang et al., 2014). The ubiquinone

(CoQ10) oxidoreductase ferroptosis suppressor protein 1 (FSP1)

is a glutathione-independent ferroptosis suppressor. FSP1 can

directly reduce lipid radicals and terminate lipid peroxidation by

reducing CoQ10 to ubiquinol (CoQ10H2, the reduced and active

antioxidant form of CoQ10) and/or regenerating oxidized alpha-

tocopherol radical (vitamin E) to its non-radical form (Bersuker

et al., 2019; Doll et al., 2019). In some cases, the membrane repair

mechanisms of ESCRT-III (a protein complex) may also allow

FSP1 to inhibit ferroptosis in a pathway parallel to that of

CoQ10H2 (Dai et al., 2020). Further, a recent study revealed

that dihydroorotate dehydrogenase (DHODH) is located in the

inner mitochondrial membrane and operates in parallel with

mitochondrial GPX4 (but independent of cytosolic FSP1 or

GPX4) to inhibit ferroptosis by reducing CoQ10 to CoQ10H2

(Mao et al., 2021).

In another study, it was reported the metabolic products

tetrahydrobiopterin (BH4) and dihydrobiopterin (BH2) derived

by GTP cyclohydrolase 1 (GCH1) were shown to protect against

ferroptosis by acting as a direct radical-trapping antioxidant and

being involved in CoQ10 synthesis (Kraft et al., 2020). Recent

studies indicated that calcium-independent phospholipase A2β
(iPLA2β) preferentially hydrolyzes peroxidized PUFA-PLs and

that it represses ferroptosis induced by p53 in a GPX4-

independent manner (Chen D. et al., 2021; Sun et al., 2021).

As summarized in the previous review, oxidative-stress-

responsive transcription factor nuclear factor erythroid 2-

related factor 2 (NRF2) can mitigate ferroptosis by stimulating

the expression of many of its canonical target genes (Anandhan

et al., 2020). Additionally, the accumulation of squalene (a

metabolite of the cholesterol pathway) has been reported to

have anti-ferroptotic effects in cholesterol auxotrophic

lymphoma cell lines and primary tumors (Garcia-Bermudez

et al., 2019).

3 The role of ferroptosis in GBM
treatment

3.1 Chemotherapy

One of the major reasons for cancer treatment failure is the

resistance of malignant tumor cells to chemotherapeutic drugs.

Unlike apoptosis, ferroptosis, a special cell death process resolves

the inefficiency of apoptosis-inducing drugs. The use of FINs

provides a new approach to addressing drug resistance to tumor

chemotherapeutic drugs. The integrated use of FINs and

chemotherapy yields a synergistic response and improves

cancer sensitivity to chemotherapeutic drugs. For instance, the

combination of cisplatin and erastin significantly improves anti-

tumor activity, indicating the significance of ferroptosis in tumor

treatment (Sato et al., 2018). Additionally, GPX4 inhibitors show

a certain degree of lethality in drug-resistant cells via ferroptosis,

and targeting GPX4 could be a therapeutic approach, preventing

acquired drug resistance (Hangauer et al., 2017).

Recent studies have shown that the balance of oxidation and

antioxidation, including ROS and GSH, is linked to its resistance

to temozolomide (TMZ) treatment for GBM (Zhu et al., 2018;

Wu et al., 2020). High expression of SLC7A11, a subunit of the

glutamate/cystine transporter is related to poor GBM prognosis

(Robert et al., 2015). TMZ increases GSH synthesis and decreases

ROS levels by improving SLC7A11 expression. The combination

therapy of TMZ and SLC7A11 inhibitor erastin are potentially

effective GBM treatments (Chen et al., 2015). Sulfasalazine (SAS),

another SLC7A11 inhibitor causes ferroptosis in GBM cells

(Sehm et al., 2016). The effect of SAS on the survival of

glioma cells does not seem to depend on significant changes

in autophagy, different from the cell death pathway induced by

TMZ (Sehm et al., 2016). This indicates that their combination

has a synergistic effect. Induction of ferroptosis is potentially one

of the promising therapies against TMZ resistance. One study

revealed that inhibiting autophagy causes ferroptosis and

improves the sensitivity of glioblastoma stem cells (GSCs) to

TMZ (Buccarelli et al., 2018). Elsewhere, GPX4 is significant in

tumor resistance. One previous study reported that highly

mesenchymal therapy-resistant cancer cells depend on

GPX4 for survival and GPX4 function loss causes ferroptosis

in these cells. This suggests that targeting GPX4 induce

ferroptosis in drug-resistant cells, thereby improving their

sensitivity to chemotherapy medication (Hangauer et al.,

2017). Considering that RSL3 inhibits GPX4 activity, the use

of RSL3 improves ferroptosis in GBM cells (Fan et al., 2017; Li

et al., 2021). The CRISPR-based genome-wide genetic screening

andmicroarray analysis of ferroptosis-resistant cell lines revealed

that ACSL4 dictates ferroptosis sensitivity as an essential

component of ferroptosis execution by shaping cellular lipid

composition (Doll et al., 2017). Additionally, ACSL4 is linked to

sorafenib resistance in liver cancer (Lu et al., 2022).

ACSL4 suppresses glioma cell proliferation by activating
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ferroptosis (Cheng et al., 2020). Moreover, ACSL4 is linked to

TMZ chemosensitivity in GBM cells (Bao et al., 2021).

Furthermore, NRF2 (Fan et al., 2017; Zhang and Wang, 2017)

and oxidative metabolism driver activating transcription factor 4

(ATF4) (Chen et al., 2017a; Chen et al., 2017b; Gao et al., 2021)

and tumor protein P53 (P53) (Blough et al., 2011; Jiang et al.,

2015; Tarangelo et al., 2018) are associated with ferroptosis and

TMZ resistance. Therefore, ferroptosis is closely correlated to

GBM chemotherapy and significantly promotes TMZ resistance.

A better understanding of the ferroptotic mechanism in TMZ

resistance may provide new insights and targets in the clinical

reversal of GBM.

3.2 Radiotherapy

Recent studies have found that radiotherapy directly causes

ferroptosis in cancer cells (Lang et al., 2019; Lei et al., 2020). Cells

exposed to ionizing radiation (IR) activate ROS-generating

oxidases, regulate antioxidants, and disrupt metabolic activity

in response to oxidative damage, thereby influencing

mitochondrial function (Yang P. et al., 2021). A previous

review summarized that during radiation exposure and tumor

microenvironment, different types of cell death occur in

irradiated tumor cells due to several factors, including cell

type, oxygen tension, DNA repair capacity, P53 status,

radiation dose, quality, and cell cycle stage (Sia et al., 2020).

Mechanistically, IR promotes ferroptosis by generating excess

ROS to induce lipid peroxidation, and ACSL4 expression to

promote PUFAs biosynthesis. Ferroptosis inhibitors, including

GPX4 and SLC7A11, are expressed as an adaptive response to IR

(Lei et al., 2020). Moreover, ataxia telangiectasia mutated (ATM)

kinase acts upstream of p53 and regulates the DNA damage

response (DDR) pathway, which is critical in resolving double-

strand DNA breaks (Matsuoka et al., 2007). The expression level

of SLC7A11 is lowered by IR in an ATM-dependent manner and

promotes ferroptosis by suppressing SLC7A11-mediated cystine

uptake and GSH synthesis (Lang et al., 2019). Since

SLC7A11 expression is antagonized by radiotherapy-mediated

P53 activation, GSH synthesis is inhibited, hence promoting

radiotherapy-induced lipid peroxidation and ferroptosis (Lei

et al., 2021). Many studies have shown that ferroptosis

improves the sensitivity of multiple tumor cells to

radiotherapy (Lei et al., 2020; Zhang Z. et al., 2021; Feng

et al., 2021; Yuan et al., 2021). Targeting GPX4 or SLC7A11 is

a ferroptosis-inducing radiosensitizing approach that improves

radiotherapy-induced lipid peroxidation and ferroptosis. For

instance, radiotherapy-induced GPX4 and

SLC7A11 expression and ACSL4 deficiency or low expression

trigger radioresistance (Lei et al., 2020; Feng et al., 2021). These

studies reveal a synergy between radiotherapy and ferroptosis.

Induction of ferroptosis improves radiotherapy efficacy, while its

inhibition reduces radiotherapy toxicity.

Radioresistance in GBM is associated with hypoxia

(Marampon et al., 2014), DDR (Carruthers et al., 2018), GSCs

(Osuka et al., 2021), and fatty acid oxidation (Jiang et al., 2022).

Previous research has shown that doranidazole as a

radiosensitizer improves radiation-induced DDR in hypoxic

GSCs in a mouse model of GBM and confers survival benefits

to GSC-derived tumor-bearing mice. Meanwhile, doranidazole

also causes mitochondrial dysfunction and ROS accumulation in

GSCs, resulting in ferroptosis (Koike et al., 2020). Radiation-

induced lipid peroxidation triggers ferroptosis, which

synergistically acts with FINs in GBM (Ye et al., 2020). The

system XC–inhibitor SAS improves radiation therapy efficacy in

glioma; SAS and radiation synergistically increase DNA double-

strand breaks and glioma cell death. Meanwhile, SAS integrated

with gamma knife radiosurgery provides a survival benefit in

human GBM xenografted rats. Thus, SAS potentially acts as a

radiosensitizer to improve radiotherapy efficacy in glioma

patients (Sleire et al., 2015). SAS has been clinically used as a

monotherapy for GBM (NCT01577966) (Robert et al., 2015) and

in combination with radiosurgery (NCT04205357). Thus, these

findings indicate that exploring the integrated therapeutic

approach of radiotherapy and targeting ferroptosis will resolve

the radiation resistance in GBM.

3.3 Immunotherapy

Immunogenic cell death (ICD), a cell death process that

induces an immune response, allows the release or exposure of

intracellular molecules from dead or dying cells and stimulates

adaptive immunity, which promotes immune responses against

intracellular pathogens and tumor-associated antigens (Galluzzi

et al., 2018). Cell death is an integral component of an immune

response, and the type and activity of damage-associated

molecular patterns (DAMPs) released during ICD elicit an

immune response (Galluzzi et al., 2018). A previous review

noted that cell death including necroptosis, pyroptosis, and

ferroptosis causes the release of DAMPs and these 3 cell death

forms are potentially new mechanisms of ICD; there is an

interplay between antitumor immune activation (Tang et al.,

2020). As a DAMP, high mobility group box 1 protein (HMGB1)

is a crucial protein necessary for the immunogenicity of cancer

cells. HMGB1 binds to toll-like receptor 4 (TLR4) on DC cells,

accelerating phagocytosis of DC cells as well as process and

promoting antigen presentation to T cells (Yamazaki et al., 2014).

FINs cause HMGB1 release in cancer cells and non-cancer cells

(Wen et al., 2019). The cell death stage is crucial in the

immunogenicity of ferroptotic cancer cells, and early

ferroptotic cancer cells undergo ICD, accompanied by

adenosine triphosphate and HMGB1 release, which stimulates

bone marrow-derived dendritic cell maturation to exert anti-

tumor immunity (Efimova et al., 2020). These results have

narrowed the distance between ferroptosis and anti-tumor

Frontiers in Molecular Biosciences frontiersin.org05

Zhuo et al. 10.3389/fmolb.2022.974156

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.974156


immunotherapy, laying a theoretical reference for the synergistic

treatment of malignant tumors with ferroptosis and

immunotherapy.

Tumor cells evade immune surveillance through various

strategies, and the primary obstacle to effective antitumor

immunity is highly heterogeneous, immunosuppressive, and

metabolically stressful TME. Understanding the dynamic

functional interactions in this intricate microenvironmental

system comprising multiple immune cells, stromal cells,

vascular networks, and acellular components provides vital

insights into the design of precise anticancer combinatorial

strategies. The capacity of iron to regulate antitumor immune

response is closely linked to its significant role in tumor

development (Sottile et al., 2019; Song et al., 2021).

Ferroptosis modulate immune cells in the TME and in

crosstalk between tumor and immune cells, which are new

insights into targeting ferroptosis in cancer immunotherapy

(Wang W. et al., 2019; Lang et al., 2019; Ma et al., 2021).

Interferon Gamma (IFN-γ) secreted by cytotoxic CD8+ T cells

downregulates the expression of system XC–, sensitizing cancer

cells to ferroptosis. PD-L1 antibodies and FINs synergistically

suppress tumor growth in vitro and in vivo, and melanoma

patients with clinical benefit from immunotherapy express a

genetic signature of T-cell-induced ferroptosis, highlighting the

potential of targeting the ferroptosis pathway to improve cancer

immunotherapy (Wang W. et al., 2019). IFN-γ derived from

immunotherapy-activated CD8+ T cells synergizes with

radiotherapy-activated ATM to cause ferroptosis in cancer

cells (Lang et al., 2019). Importantly, CD36 mediates fatty

acid uptake by CD8+ T cells, causes lipid peroxidation and

ferroptosis, and reduces cytotoxic factor production, impairing

CD8+ T antitumor function (Ma et al., 2021). Targeting CD36 or

inducing ferroptosis improves CD8+ T efficacy of cellular and

immune checkpoint blockade-based tumor immunotherapy (Ma

et al., 2021). Conditional deletion of Gpx4 induces ferroptosis in

T cells by lipid peroxidation in mice (Matsushita et al., 2015). The

fate of tumor cells appears to be determined by whether tumor

cells and tumor suppressor immune cells coexist, as well as the

sequence of ferroptosis. On the one hand, ferroptosis of tumor

cells produce DAMPs and promote an immune response.

Conversely, tumor-suppressing immune cells undergo

ferroptosis, whereas tumor cells escape death. Therefore, in-

depth studies of these crosstalk relationships are necessary to

elucidate the role of ferroptosis as an ICD or inhibition of tumor

suppressor immune cells in inducing or inhibiting immune

responses.

As a low-immunogenic tumor, GBM has numerous

immunosuppressive mechanisms such as low mutational

burden (Hodges et al., 2017) and immunosuppressive

microenvironment (Fu et al., 2020). In mouse glioma cells,

ferroptosis inhibitors target photodynamic therapy-induced

ICD (Turubanova et al., 2019). Relevant studies based on

public databases indicate that risk scores based on the

ferroptosis-related genes predict prognosis and

immunotherapy response in GBM (Zhuo et al., 2020; Xiao

et al., 2021). Stimulator of interferon genes (STING) is crucial

for promoting anti-tumor immune responses against cancer

(Mender et al., 2020). GPX4 promotes STING activation by

maintaining lipid redox homeostasis (Jia et al., 2020). STING

promotes anti-glioma immunity by causing type I IFN signaling

(Ohkuri et al., 2014). RSL3 exerts antitumor effects via NF-κB
pathway activation and GPX4 depletion driving ferroptosis in

GBM (Li et al., 2021). These findings indicate that GPX4, a key

ferroptotic gene, is closely related to an immune response in the

TME, and its role in GBM antitumor immunotherapy remains

uninvestigated.

In the initial GBM microenvironment, glioma-associated

microglia/macrophages (GAMs) account for 59% of the total

TME cells (Fu et al., 2020). Through symbiosis with GBM cells,

GAMs regulate GSCs stemness (Shi et al., 2017), angiogenesis

(Wei et al., 2021), and T cell activity (Takenaka et al., 2019). ICD

is caused by ferroptosis, which polarizes tumor-promoting

M2 type tumor-associated macrophages (TAMs) into anti-

tumor M1 type TAMs, changes the immunosuppressive

microenvironment, and enables synergistic effects of

ferroptosis and immune regulation (Li and Rong, 2020; Wan

et al., 2020). Elsewhere, one study revealed that ferroptosis, a

predominant type of programmed cell death in gliomas, is linked

to poor prognosis and immunosuppression in gliomas.

Ferroptosis promotes the recruitment and polarization of

TAMs to an M2-like phenotype, whereas inhibition of

ferroptosis improves the sensitivity of mouse GBM to anti-

PD1/L1 immunotherapy (Liu et al., 2022). A previous review

summarized that cancer-associated fibroblasts (CAFs), as a vital

component of TME stromal cells, modulate solid tumor growth,

metastasis, immunosuppression, and drug resistance, and are

linked to poor prognosis (Chen and Song, 2019). In gliomas, high

expression of CAFs is linked to poor prognosis, and a risk model

constructed by CAFs-related genes predicts immunotherapy

response (Chen Z. et al., 2021). Exosome-like nanovesicle

tumor vaccines (eNVs) targeting fibroblast activation protein-

α (FAP)-positive CAFs cause-specific cytotoxic T lymphocyte

immune responses that release IFN-γ and deplete FAP+ CAF to

promote tumor ferroptosis. RSL3 improves eNVs-FAP-induced

antitumor effects (Hu et al., 2021). Extensive tumor necrosis

predicts a poor prognosis in GBM, and neutrophils trigger

ferroptosis in GBM cells by transferring myeloperoxidase,

thereby resulting in further necrosis and malignant

progression of GBM (Yee et al., 2020).

In summary, the different compositions between tumor cells

and immune cells in the TME could exert a certain effect on the

response to immunotherapy. The relationship between

ferroptosis and TIME in GBM is complex, rather than

resulting in outright positive or negative effects. Furthermore,

ICDs should have a balanced combination of adjuvant (DAMP-

related effects) and antigenic (mainly due to tumor antigens) to
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induce effective antitumor immunity. In highly heterogeneous

GBM, ferroptotic cells could exhibit different roles by releasing

different “find me” and “eat me” signals. Therefore, investigating

the molecular mechanism of ferroptosis to improve the efficacy

of GBM immunotherapy is problematic.

3.4 Targeted therapy

The WHO 2021 classification of the central nervous system

(CNS) tumors highlights the role of molecular features in the

diagnosis of adult diffuse gliomas, which are important for

individualized treatment and clinical prognosis of gliomas.

These molecular features include isocitrate dehydrogenase

(IDH) mutation status, 1p/19q co-deletion, O-6-

Methylguanine-DNA Methyltransferase (MGMT) promoter

methylation status, telomerase reverse transcriptase (TERT)

promoter mutation, and epidermal growth factor receptor

(EGFR) amplification, among others (Louis et al., 2021). A

clear path to precise glioma-targeted therapy can be found by

combining WHO grading, histology, and molecular

characterization. Nonetheless, as a result of complex

regulatory networks, classical targets such as EGFR gene

alteration have failed (NCT01480479) (Weller et al., 2017).

The mechanism of making targeted therapy an ideal weapon

for personalized and precision medicine for GBM patients is a

matter of concern. Studies indicate that targeting truncal

alterations/mutations in GBM provide the greatest efficacy,

providing new information for selecting GBM-targeted

therapy (Lee et al., 2017). Cancer cells are therapeutically

vulnerable to ferroptosis due to altered metabolic profiles,

genetic mutations, and an imbalance in the ferroptotic defense

system (Dixon et al., 2012). A previous review concluded that

targeting ferroptosis as an anticancer strategy was effective and

potential, as demonstrated by several clinical trials and

preclinical drugs (Wang et al., 2021). Additionally, the

mechanism of action of various targeted drugs is linked to

ferroptosis, such as sorafenib (Lu et al., 2022), neratinib

(Nagpal et al., 2019), and APR-246 (Birsen et al., 2022). This

section describes the relationship of ferroptosis to classical

therapeutic targets in GBM, including EGFR and IDHmutations.

GBM is characterized by a high frequency of EGFR

amplification and/or mutation and EGFRvⅢ mutation is the

most common extracellular region mutation. In contrast with

wild-type EGFR, EGFRvⅢ is a more stable constitutively

activated receptor (Brennan et al., 2013). EGFR/EGFRvⅢ
regulates the occurrence and development of GBM by

activating downstream signaling pathways, affecting GBM

invasion (Micallef et al., 2009) and angiogenesis (Bonavia

et al., 2012). A recent study discovered that EGFR mutants in

GBM alter its function of distinguishing between different

ligands and transducing biased signals by changing the

extracellular structure, suggesting a new direction for the

development of EGFR inhibitors (Hu C. et al., 2022).

EGFRvⅢ GBM growth is dependent on lipogenesis (Guo

et al., 2011). The use of fatty acid synthase inhibitors targets

in vivo tumor growth in EGFRvⅢ GBM (Guo et al., 2009b).

Additionally, the AMP-activated protein kinase (AMPK)

regulates cellular energy metabolism, linking growth factor

receptor signaling to cellular energy status; its activation

inhibits the growth of EGFRvⅢ-expressing GBMs by targeting

adipogenesis (Guo et al., 2009a). EGFR-mutated cancer cells, on

the other hand, are cystine-dependent, and ferroptosis can be

induced in EGFR-mutated human breast epithelial cells and non-

small cell lung cancer cells after cystine deprivation (Poursaitidis

et al., 2017). EGFR inhibitors including gefitinib (Song et al.,

2020), erlotinib (You et al., 2021), and imatinib (Ishida et al.,

2021), are associated with ferroptosis. Additionally, cetuximab,

an IgG1-type human/mouse chimeric monoclonal antibody

targeting the extracellular region of EGFR is closely associated

with ferroptosis (Chen P. et al., 2020; Yang J. et al., 2021).

Transcriptomic and genomic analyses in GBM cells with

mutated activating EGFR demonstrate a range of novel

resistance mechanisms, including ferroptosis and oxidative

stress (Kadioglu et al., 2021). These findings suggest that

treatment with ferroptosis may be more effective in

overcoming the current therapeutic dilemma in GBM with

EGFR amplification/mutation activation, particularly EGFRvIII.

IDH mutation status is a critical diagnostic marker for adult

diffuse glioma (Louis et al., 2021). Targeting IDH mutations has

certain therapeutic potential in IDH-mutant gliomas or other

tumors, and various IDH mutation inhibitors have been

developed. Among them, the FDA has approved enasidenib

and ivosidenib (Karpel-Massler et al., 2019). Based on a

previous review, multiple clinical trials have demonstrated that

the IDH1-mutant small molecule inhibitor ivosidenib is

biologically active and well-tolerated in patients with

hematological and solid IDH1-mutant malignancies (Zarei

et al., 2022). Also, the application of ivosidenib demonstrated

a therapeutic effect in IDH1-mutant low-grade glioma and

recurrent GBM (Mellinghoff et al., 2020; Tejera et al., 2020).

A drug-transcriptome-based analysis reveals a signature of

ferroptotic genes enriched in IDH-mutated brain tumors,

indicating that IDH-mutated brain tumors may be uniquely

vulnerable to FINs (Yang et al., 2020). IDH1 mutation

improves erastin-induced lipid ROS accumulation and

glutathione depletion, and its metabolite 2-

Hydroxyglutarate (2-HG) sensitizes cells to ferroptosis

(Wang T. X. et al., 2019). In IDH1-mutant gliomas, 2-HG

inhibits glutamate levels, rendering GSH synthesis more

dependent on glutaminase; suppressing glutaminase

specifically improves the response of IDH-mutant glioma

cells to oxidative stress and radiation sensitivity (McBrayer

et al., 2018). Collectively, these studies suggest that targeting

IDH mutations and inducing ferroptosis could be an effective

therapeutic strategy.
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4 Opportunities for ferroptosis in
GBM treatment

4.1 The therapeutic potential of
ferroptosis modulated by natural
compounds

With the advancement of research on ferroptosis-related

drugs, various natural compounds have been discovered to

induce ferroptosis. Some review articles summarize the roles

of various natural compounds in the regulation of ferroptosis

(Zhang S. et al., 2021; Ge et al., 2022). Artemisinin and its

derivatives extracted from Artemisia annua are terpenoids

that cause ferroptosis in cancer patients via various

mechanisms including iron-related gene expression regulation,

increased intracellular iron levels, promotion of ROS production,

and intracellular GSH depletion (Ooko et al., 2015; Efferth, 2017;

Hu Y. et al., 2022). Interestingly, the artemisinin derivative

dihydroartemisinin causes ferroptosis in GBM cells (Chen

et al., 2019; Yi et al., 2020). The phenolic compound

curcumin has antioxidant and antitumor properties, exerting

anti-ferroptotic or pro-ferroptotic activity in different diseases or

conditions (Zhang S. et al., 2021). The curcumin analog

ALZ003 induces ferroptosis in GBM cells by disrupting

GPX4-mediated redox homeostasis (Chen T. C. et al., 2020).

Additionally, pseudolaric acid B (diterpene acid from Cortex

Pseudolaricis) (Wang et al., 2018) and amentoflavone (Chen Y.

et al., 2020) (a polyphenol from Selaginella) have been confirmed

in vitro and in vivo to cause ferroptosis in GBM and suppress

tumor growth (Figure 2). These natural compounds have

demonstrated significant therapeutic potential by causing

ferroptosis in GBM. Future studies should investigate whether

FIGURE 2
Opportunities for ferroptosis in glioblastoma therapy. Contribution of natural compounds to the treatment of glioblastoma such as
dihydroartemisinin, curcumin, pseudolaric acid B and amentoflavone. The upper box shows the chemical structures of these four compounds and
the associated mechanisms that regulate ferroptosis in glioblastoma. The below box lists the potential advantages of nanomedicine in the diagnosis
and therapy of glioblastoma. ATF4, activating transcription factor 4; ER, endoplasmic reticulum; FTH, ferritin heavy chain. GPX4, glutathione
peroxidase 4; HSPA5, heat shock protein family A (Hsp70) member 5; NOX4, NADPH oxidase 4; PERK, protein kinase R-like ER kinase; xCT, SLC7A11,
solute carrier family 7 member 11.
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these natural compounds synergize with chemoradiotherapy and

overcome resistance. Whether they also promote the effect of

immunotherapy and targeted therapy warrants additional

investigation. It is undeniable that these natural compounds

may act via other pathways than ferroptosis in the treatment

of GBM.

4.2 Application of nanomedicine in
ferroptosis detection and treatment

The current traditional treatment methods have certain

shortcomings in cancer treatment. With the advancement of

science and technology, nanomedicine has enabled precise

cancer treatment. Nanomedicine and delivery systems based

on nanotechnology have numerous benefits, including high

targeting efficiency, low systemic toxicity, and long half-life

(Klochkov et al., 2021). Many antitumor nano-drug delivery

systems have recently been developed, including strategies for

causing ferroptosis and eliciting effective antitumor responses

(Fu et al., 2021; Gu et al., 2021). For instance, nanoformulations

combined with ferroptosis drive many pro-inflammatory

signaling pathways to activate TAMs to antitumor

M1 phenotype, thereby improving antitumor capacities (Gu

et al., 2021). Nanotechnology-based theranostics can

simultaneously diagnose and treat patients, combining

different treatment modalities to improve efficacy and safety,

with a wide range of applications in GBM diagnosis, drug

delivery, and treatment (Tang et al., 2019) (Figure 2). Several

nanotechnology-based strategies for targeting ferroptosis have

been developed in GBM and have shown significant antitumor

effects (Zhang et al., 2020; Zhang Y. et al., 2021). This provides

additional options for preclinical research, including

nanotechnology application in developing strategies for

ferroptosis combined with immunotherapy that prevent off-

target effects, thereby increasing the possibility of ferroptosis

in GBM treatment.

5 Challenges of ferroptosis in GBM
treatment

5.1 Tumor heterogeneity and stem cell
characteristics

Broad tumor heterogeneity is a feature of GBM, including

genetic, epigenetic, and environmental heterogeneity. Besides

inter-tumoral heterogeneity, there is spatial and temporal

intra-tumoral heterogeneity, which is considered a key

determinant of GBM treatment failure (Patel et al., 2014;

Jacob et al., 2020). Furthermore, the presence of GSCs

contributes to treatment failure and disease progression for

this lethal tumor (Osuka et al., 2021). Meanwhile, these two

factors, along with angiogenesis and the hypoxic niche,

contribute to treatment resistance (Cheng et al., 2013; Hubert

et al., 2016) (Figure 3). Nevertheless, ferroptosis studies based on

2-D cell culture using only a few classical GBM cell lines do not

sufficiently reflect the complex tumor heterogeneity and stem cell

characteristics. In this regard, induction or inhibition of

ferroptosis can hinder GBM growth; however, this is a one-

sided argument. In the future, additional studies should be

performed under the premise of fully understanding tumor

heterogeneity and stem cell characteristics. Novel therapeutic

strategies for “State Selective Lethality”, as proposed by James G

et al. (Nicholson and Fine, 2021), could provide an opportunity

to address this issue. This strategy could render drug discovery

and precision therapy that target ferroptosis in GBM more

feasible, by inducing or inhibiting ferroptosis in GBM cells to

“trap” them in a state that increases their susceptibility to specific

treatments.

5.2 The complex tumor immune
microenvironment

Ferroptosis appears to play a dual role in the TME, causing

changes in the function and viability of immune infiltrating cells.

The resulting balance between immune evasion and immune

elimination directly affects the efficacy of immunotherapy (Xu H.

et al., 2021). Differential responses of antitumor T cells to

ferroptosis (Drijvers et al., 2021; Ma et al., 2021),

GPX4 protects Treg cell survival (Xu C. et al., 2021),

differential resistance to ferroptosis of M1 and

M2 macrophages and changes in their polarization state

(Kapralov et al., 2020; Li and Rong, 2020; Wan et al., 2020),

additionally including myeloid-derived suppressor cells

(MDSCs) (Zhu et al., 2021), natural killer (NK) cells

(Poznanski et al., 2021), dendritic cells (Han et al., 2021), and

B cells (Muri et al., 2019) are withal linked to ferroptosis

(Figure 3). These current findings demonstrate complex and

variable ferroptosis-based crosstalk among individual cells in the

TME. In GBM, tumor cells cooperate with peritumoral cells to

promote angiogenesis, tumor proliferation, immunosuppression,

and brain invasion via multiple communication modes, thereby

forming an immune microenvironment conducive to aggressive

tumor growth (Broekman et al., 2018). Interactions between

immune cells and cancer cells drive GBM transition to a

mesenchymal-like state (Hara et al., 2021). As previously

mentioned, various immune cells in GBM are involved in the

regulation of ferroptosis (Yee et al., 2020; Liu et al., 2022).

Nonetheless, the relationship between various immune cells

and ferroptosis in their TME remains unknown. Future

research should investigate the complex TME cell-to-cell

interactions based on ferroptosis and develop strategies to

exploit the immunogenic potential of ferroptosis with respect

to FINs or inhibitors. Besides, GBM type sensitive to combined
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ferroptosis modulation and immunotherapy should be identified

for effective individualized treatment.

5.3 Toxic side effects of ferroptosis

The toxic side effects of ferroptosis are another significant

hurdle. Ferroptotic-induced neuronal death and the associated

side effects of peripheral nervous system disease,

neurodegeneration, and cognitive impairment have been

described in a previous review study (Dahlmanns et al., 2021). In

addition to chronic injury, acute toxic side effects caused by

ferroptosis deserve high attention, including causing brain

cytokine storm and necroinflammation, eventually resulting in

irreversible brain edema, brain dysfunction, and death. Necrosis

is one of the primary manifestations of poor prognosis in GBM and

is closely related to thrombosis, hypoxia, and GSCs (Tehrani et al.,

2008; Papale et al., 2020). Previous review has highlighted that the

effect of treatment-induced necrosis on the CNS is a major clinical

challenge in neuro-oncology (Winter et al., 2019). There is a strong

relationship between ferroptosis and necroinflammation or

neuroinflammation (Friedmann Angeli et al., 2014; Ingold et al.,

2018). It should be noted that some subtypes of GBMs possess

ferroptosis features. Necrosis in GBMwas previously associated with

neutrophil-triggered ferroptosis. Moreover, intratumoral

GPX4 overexpression or ACSL4 depletion reduced tumor

necrosis and invasiveness (Yee et al., 2020). Following the

principle of fundamental importance, it is worth considering

whether inhibiting ferroptosis prevents tumor necrosis from

causing a cascade of irreversible toxic and side effects, thereby

benefiting GBM patients. Whether certain methods (such as

avoiding thrombosis and improving hypoxia, etc.) can effectively

treat GBM by promoting ferroptosis while reducing the occurrence

of therapeutic necrosis remains a mystery. Therefore, additional

studies are urgently required to address these unanswered questions.

6 Conclusions and perspectives

Accumulating evidence suggests that ferroptosis plays a

pivotal role in tumor biology and therapy. Moreover, its role

is complex and highly context-dependent. Over the past decade,

several studies have investigated the role of ferroptosis in cancer.

It is expected that further research will unravel deeper regulatory

mechanisms of ferroptosis and provide ideas for developing

ferroptosis-based strategies for the prevention, diagnosis, and

treatment of cancer. Here, we comprehensively describe the role

of ferroptosis in the treatment of GBM. The opportunities and

challenges facing its clinical application. The data presented here

lays the foundation for future basic and clinical research on

ferroptosis in GBM. This review focused on ferroptosis

peroxidation pathway in GBM therapy. Given the important

role of iron homeostasis in ferroptosis and cancer therapy

(Brown et al., 2019; Chen G. Q. et al., 2020), this pathway

should be considered when targeting ferroptosis in GBM.

Other factors influence the role of ferroptosis. As ferroptosis is

inherently compatible with synthetic lethal strategies (Kinowaki et al.,

2021), their relationship should be fully considered in the

development of anti-tumor drugs. Another factor affecting the

effects of ferroptosis is epigenetic regulation. Some epigenetic

modulators have been shown to exert anti-cancer effects by

targeting ferroptosis. For example, inhibitors of class I histone

deacetylases (HDACs) were found to promote ferroptosis in

fibrosarcoma cells and prevent ferroptosis in neurons (Zille et al.,

2019). A clinical trial (NCT03127514) revealed that HDAC inhibitor

sodium phenylbutyrate combined with taurursodiol induced

FIGURE 3
Challenges of ferroptosis in GBM treatment. Ferroptosis in glioblastoma treatment faces several challenges, such as heterogeneity,
glioblastoma stem cells (GSCs), angiogenesis, hypoxic niche and a complex immune microenvironment composed of various immune cells.
Peritumoral immune cells can be either sensitive or resistant to ferroptosis. Some cell types are sensitive to ferroptosis, such as M2 Macrophages,
B1 and marginal zone (MZ) B cells, dendritic cells, and CD8+T cells, while others show resistance, such as M1 Macrophages, myeloid-derived
suppressor cells (MDSCs), natural killer cells and Treg cells. ASAH2, N-Acylsphingosine Amidohydrolase 2; CD36, CD36molecule; GPX4, glutathione
peroxidase 4; iNOS, inducible nitric oxide (NO) synthase; NRF2, nuclear factor E2-related factor 2; PPARG, peroxisome proliferator-activated
receptor gamma; xCT, SLC7A11, solute carrier family 7 member 11.
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amyotrophic lateral sclerosis in patients (Paganoni et al., 2020). This

suggests that HDACs inhibitors may induce ferroptosis in GBM

without causing neurotoxic side effects. However, this needs to be

clarified experimentally in future studies.

Overall, ferroptosis-based therapy is an emerging clinical

intervention with the potential to overcome resistance to

currently used treatments such as immunotherapy.

Considering that evidence supporting the clinical benefit of

ferroptosis-based therapy has been generated from preclinical

studies, there is a need for clinical trials to test efficacy and safety

of such therapy in GBM patients. Future studies should

incorporate organoid model systems, nanotechnology, single-

cell sequencing, and spatial transcriptome sequencing to fully

exploit the therapeutic potential of ferroptosis in GBM.
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