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The molecular consequences of cancer associated mutations in Acute myeloid

leukemia (AML) linked factors are not very well understood. Here, we

interrogated the COSMIC database for missense mutations associated with

the RUNX1 protein, that is frequently mis-regulated in AML, where we sought to

identify recurrently mutated positions at the DNA-interacting interface. Indeed,

six of themutated residues, out of a total 417 residues examined within the DNA

binding domain, evidenced reduced DNA association in in silico predictions.

Further, given the prominence of RUNX1’s compromised function in AML, we

asked the question if the mutations themselves might alter RUNX1’s interaction

(off-target) with known FDA-approved drug molecules, including three

currently used in treating AML. We identified several AML-associated

mutations in RUNX1 that were calculated to enhance RUNX1’s interaction

with specific drugs. Specifically, we retrieved data from the COSMIC

database for cancer-associated mutations of RUNX1 by using R package

“data.table” and “ggplot2” modules. In the presence of DNA and/or drug, we

used docking scores and energetics of the complexes as tools to evaluate

predicted interaction strengths with RUNX1. For example, we performed

predictions of drug binding pockets involving Enasidenib, Giltertinib, and

Midostaurin (AML associated), as well as ten different published cancer

associated drug compounds. Docking of wild type RUNX1 with these

13 different cancer-associated drugs indicates that wild-type RUNX1 has a

lower efficiency of binding while RUNX1 mutants R142K, D171N, R174Q,

P176H, and R177Q suggested higher affinity of drug association. Literature

evidence support our prediction and suggests the mutation R174Q affects

RUNX1 DNA binding and could lead to compromised function. We conclude

that specific RUNX1mutations that lessen DNA binding facilitate the binding of a
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number of tested drug molecules. Further, we propose that molecular

modeling and docking studies for RUNX1 in the presence of DNA and/or

drugs enables evaluation of the potential impact of RUNX1 cancer

associated mutations in AML.
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Introduction

Cancer associated missense mutations have functional roles

in lineage plasticity as well as in tumorigenesis (Srivastava et al.,

2020). AML is a hematopoietic malignancy caused by various

genetic abnormalities in hematopoietic stem cells (HSCs) that

provide obstacles to the normal differentiation process (Kumar

2011; Bonifer and Cockerill 2015). RUNX1 is the most highly

mutated gene among leukemias and is an important

transcription factor in hematological malignancies (Chin et al.,

2016; Menter and Tzankov 2019). RUNX1 consists of an

N-terminal RUNT domain important for DNA binding and

for forming heterodimers (Kagoshima et al., 1993), while its

C-terminal region contains a nuclear localization domain and

assists in DNA binding regulation (Mikhail et al., 2006).

Aberrations in the RUNX1 gene or its partner CBFB have

been involved in the pathogenesis of human myeloid

leukemias (Speck et al., 1999). Previous studies show that

germline and somatic mutations of RUNX1 are observed in

many hematological malignancies such as myelodysplastic

syndrome (MDS), acute lymphoblastic leukemia (ALL), acute

myeloid leukemia (AML), and chronic myelomonocytic

leukemia (CMML) (Sood et al., 2017). Complicated

mutational patterns in AML have made targeted therapies

difficult because of the arising differences in drug responses

(Tyner et al., 2018). Much progress has been made in

treatments, but the overall rate is still not satisfactory mainly

because of drug resistance. Thus, deeper knowledge is needed of

the gene mutations and targeted drug responses to further

improve treatments (Berardi et al., 1999). Advances in

technology such as NGS (Next Generation Sequencing) have

improved insight into the underling molecular mechanism of

AML, with the initial successful first-generation drug being

imatinib, a tyrosine kinase inhibitor (TKI) used to combat

CML (Chronic Myelogenous Leukemia). Second-generation

TKIs such as ponatinib, nilotinib and dasatinib then became

available for CML (DiNardo and Lachowiez 2019). Many drugs

were tested on cell lines to evaluate their efficacy, for example,

PTK787/ZK 222584, a molecule that inhibits VEGF (Vascular

Endothelial Growth Factor) tyrosine kinase activity, was found to

exhibit better activity when used with Idarubicin (Barbarroja

et al., 2009). Similarly, missense mutations in RUNX1 are found

to co-segregate with AML disease. In particular, the mutations

R201Q (Uniprot: R174Q) and R166Q (Uniprot: R139Q) are

predicted to disrupt DNA binding, and NMR-derived

structures show that both have arginine substitutions at

residue positions known to be important for DNA association

(Berardi et al., 1999; Song et al., 1999). These mutations provide

information that assists in predicting the likely outcome of AML

(prognosis) as well as in selecting therapies (DiNardo and

Lachowiez 2019).

RUNX1 shows allosteric functions, for example, promoting

Ets1–DNA binding through DNA-enhancer driven effects upon

the DNA (Shiina et al., 2015). That is, RUNX1 activates the

ETS1 transcription factor through the TCR enhancer, enabling

ETS1 to play a role in lymphoid differentiation, proliferation,

apoptosis, embryonic development, and angiogenesis (Dittmer

2003). This RUNX1-ETS model is helpful in addressing how

cancer mutations play roles in DNAmediated allosteric functions

and RUNX1-DNA binding.

Here, we asked what are the consequences of selected

RUNX1 missense mutations in relation to the association of

RUNX1 with DNA, and a range of FDA (Food and Drug

Administration) approved drugs, including three designed to

treat AML. To address these questions, we evaluated the cancer-

associated missense mutations of RUNX1 as obtained from the

comprehensive Catalogue Of Somatic Mutations In Cancer

(COSMIC) database (http://cancer.sanger.ac.uk) (Bamford

et al., 2004). In particular, using in silico methods

(Supplementary Figure S1), we identified those residues of

RUNX1, mutated in AML, that reside at the critical DNA

binding interface of RUNX1. Because the function of

RUNX1 is often compromised in AML, we asked the question

if these mutations might additionally alter RUNX1’s interaction

(off-target) with known FDA-approved drug molecules,

including three currently used in treating AML. Our major

approach was to map and dock a series of FDA-approved

drug compounds. We model two mutations that occur at the

same site as present in patient samples of RUNX1. Namely,

R174Q (COSM24805) and R177Q (COSM24731), that originate

from different tumor types, facilitate binding of the AML

associated drug Enasidenib. Our study is thus intended to

provide a glimpse of potential mechanisms of action of

RUNX1 mutations on DNA association, as well as

interactions with drug molecules. Our approach may prove

useful for designing targeted therapeutics for AML. Our work,

together with that of others, suggests that molecular mutation

modeling and docking will prove useful for understanding the
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molecular consequences of RUNX1 cancer associated mutations.

We predict that RUNX1 recurrent mutational hotspot sites

provide the field with a valuable guide for the design and

modeling of more selective and effective drug molecules.

Materials and methods

Data mining

Cancer associated mutation data for the RUNX family of

transcription factors were retrieved from COSMIC v85 (https://

cosmic-blog.sanger.ac.uk/cosmic-release-v85/). We extracted

RUNX1 DNA binding domain associated missense mutations

to map them on available RUNX1 complex crystal structures.

The mutations’ functionalities were checked and taken into

account on the basis of functional analysis through use of the

hidden Markov model (FATHMM), with scores provided by the

COSMIC database. The FATHMM score ranges from 0 to 1.

Mutations were classified as scoring below 0.5 score (neutral),

scoring above 0.5 and below 0.7 (deleterious), or scoring greater

than 0.7 (pathogenic) (https://cancer.sanger.ac.uk/cosmic). We

considered mutants within this pathologic (>0.7) range

(Supplementary Figure S1) that were supported by the

literature, or where there were indications of an interface

between RUNX1 and DNA. We used R packages, “ggplot2”

(https://ggplot2.tidyverse.org) (Wickham, 2016), and “data.

table” (https://cran.r-project.org/web/packages/data.table/

vignettes/datatable-intro.html) to process and visualize the

RUNX mutational data from the COSMIC dataset. To avoid

duplicates, we excluded different isoforms and evaluated only the

primary isoform of RUNX1 that is most widely expressed. We

used UNIPROT numbering schemes for the RUNX1 DNA

binding domains. Sequence logos for human RUNX1 DNA

binding domains were prepared with web logo (https://

weblogo.berkeley.edu/logo.cgi). Candidate drugs for docking

were selected by examining the literature for a notable

functional impact upon their targets. The structures of drug

compounds were downloaded from the PubChem database

(https://pubchem.ncbi.nlm.nih.gov/).

Structural modelling and mutation
mapping

Crystal structures used in this study were downloaded from

the protein data bank. We used structures of the RUNX1-ETS

complex on the TCR enhancer (PDB ID: 3WU1) (Shiina et al.,

2015), PARP1 (PDB ID: 5XSR) (Chen et al., 2018), EGFRTKI

(PDB ID: 5EDP) (Hanan et al., 2016), BCR (PDB ID: 2H32)

(Bankovich et al., 2007), and IDH (PDB ID: 6NZM) (Hopkins

et al., 2019). Cancer missense mutations were generated on

various mutation models for RUNX1 with UCSF Chimera

version 1.15 (Pettersen et al., 2004) (http://www.rbvi.ucsf.edu/

chimera). Newly generated mutation models of RUNX1-ETS on

the TCR enhancer complex were subjected to energy

minimization using 1,000 steps steepest decent and 500 steps

of the conjugate gradient algorithm with the step size 0.002 Å.

The AMBER FF14SB force field (Maier et al., 2015) was used for

all protein models, and parmBSC0 was used for all DNA

elements for energy minimization. Structural cartoons with

highlighted mutation residues were prepared with UCSF

Chimera.

Drug docking

Docking programs are critical for visual illustration of

protein-drug binding affinity. In the context of finding the

targets of drugs and protein engineering, the prediction of

molecular interactions between a protein and drugs or small

molecules suggests ways to rationalize the selection of amino

acids that could be used to design personalized drugs for specific

diseases or mutated to promote or disrupt given interactions

(Looger et al., 2003). Interestingly, such information is important

to predict the binding affinities of drugs/small molecules with

proteins, and thus to estimate biological activities or to help in

obtaining newmolecular lead compounds or drugs (Boehm et al.,

2000; Doman et al., 2002; Huang et al., 2006). For docking of drug

compounds with RUNX1, we selected 13 drugs, including three

associated with AML and 10 associated with other cancers. These

are known cancer drugs, but they do not have any published

study showing interactions with RUNX1. In this study we

performed blind docking using the Swiss Dock web server

(Grosdidier et al., 2011), using ranking of CHARMM energies

for all biomolecules (Brooks et al., 2009). We analyzed implicit

solvation model clusters of RUNX1 and drug compounds

(Haberthur and Caflisch 2008) by using ggplot2 and data.table

packages in R to make plots for docking energies. The

interpretation of docking results and model figures were

prepared by UCSF Chimera version 1.15 (Pettersen et al., 2004).

Electro-statistics and protein—protein
interaction analysis

We used the PDB2PQR tool (Dolinsky et al., 2004; Dolinsky

et al., 2007) from UCSF Chimera to prepare structures by adding

hydrogens, assigning charges and reconstructing missing atoms after

applying AMBER force fields (Ponder and Case 2003; Cheatham and

Case 2013; Maier et al., 2015) and generating PQR files. These force

fields were used for Poisson-Boltzmann calculations and to prepare

structures for APBS (Adaptive Poisson-Boltzmann Solver) for

electrostatic analysis (Jurrus et al., 2018). We performed surface

electrostatic calculations by applying the PDB2PQR and ABPS tools

to probe surface electrostatics difference created by point mutations.
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Functional prediction of mutation impacts

We used the SNAP2 tool from the Predict Protein server that

provides predictions for functional secondary-structure changes due

to single nucleotide polymorphisms (Reva et al., 2011). Predict

Protein server (Yachdav et al., 2014) (https://www.predictprotein.

org) Provides measures for transmembrane helices, intra-residue

contacts, protein-protein, protein-DNA contacts and clashes, solvent

accessibility, disorder regions, domain boundaries, cysteine bonds, di-

sulphide bridges, and metal binding sites.

Results

Selection and distribution of cancer-
associated missense mutations

We retrieved cancer-associated mutations to identify those

with the potential to alter RUNX1: DNA interactions. To this

end, we retrieved the COSMIC mutation dataset (release v85) for

missense mutations associated with the RUNX family, for which

RUNX1, RUNX2, and RUNX3 have 746, 125, and 108 missense

mutations, respectively. For RUNX1, out of 746 total mutations,

417 reside within what is defined as the DNA binding domain

(DBD). Based upon known RUNX1: DNA (co-crystal) structures

(PDB ID: 3WU1) (Shiina et al., 2015), we found a much more

restricted set of six mutations likely to have a direct impact upon

the DNA association of RUNX1 (Figure 1A). RUNX1 exhibits

the highest number of missense mutations in comparison with

RUNX2 and RUNX3 (Figure 1B). As noted, we mapped missense

mutations to the crystal structure of the RUNX1: DNA complex

(PDB ID: 3WU1) to identify interface-interacting amino acid

residues within RUNX1. Mutation mapping revealed that

positions Arg80, Arg142, Asp171, Arg174, Pro176, and

Arg177 interact with DNA, while COSMIC database analysis

suggests that these same positions are additionally associated

with cancer-associated missense mutations. Although mutations

at positions His78, Lys83, Arg135, Thr169, and Val170 are

FIGURE 1
RUNX1 cancer-associated mutation and distribution within its DBD. (A) Flow chart for the selection of RUNX1 missense mutations from the
COSMIC v85 database for our docking studies (B) Cancer-associated missense mutation across the RUNX family. RUNX1 contains approximately
746 missense mutations out of which 417 mutations reside within its DBD. The selection of candidate RUNX1 mutations for docking studies were
done based on potential direct DNA binding effects andmutational recurrence. RUNX1 has the highest number ofmutations in comparisonwith
RUNX2 and RUNX3. (C) Structural cartoon for RUNX1-ETS complex on TCR enhancer (PDB ID: 3WU1) with highlighted DNA-bound six amino acids
of RUNX1. (D) RUNX1-ETS DNA binding motif from published ChipSeq data (Accession: GSM1527839, GSE17954). (E) Conservation of amino acids
across the paralogs of RUNX1 followed by distribution of mutations across the DNA binding domain.
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likewise associated with DNA-interactions, they do not appear to

be associated with any type of cancer (Figure 1C). To see the

DNA binding consequences of cancer-associated missense

mutations of RUNX1 and wild type RUNX1, we respectively

explored Jurkat-cell RUNX1-ChIP-Seq (GSE17954) and LNCaP-

cell RUNX1 Chip-Seq (GSM1527839) (Dasari and Tchounwou

2014), and used the homer motif of the RUNX1-ETS complex for

the protein DNA model (Figure 1D). However, with these

structural analyses, we did not find visually significant

differences for the predicted binding of wildtype versus

RUNX1 mutants in binding to DNA. To identify possible

drug binding sites, (conceivably providing opportunities for

personalized medicine), we inspected the mutation recurrence

pattern within the conserved DNA binding domain (DBD) of

RUNX1. The amino acid positions Ser73, Trp79, Arg80, Lys83,

Pro86, Ser114, Asp133, Arg135, Gly138, Arg139, Gly141,

Asp171, Gly172, Arg174, and Arg177 showed highly recurrent

mutations while positions 142 and 176, corresponding to an Arg

and Pro residue, respectively, have less recurrence in comparison.

We also evaluated RUNX2 and RUNX3 for conservation of

mutations at the same residue positions as RUNX1

(Figure 1E). Mutations such as at residues Arg80, Asp171,

Arg171, Arg177, and Arg142 have been shown present at the

protein: DNA contact interface of RUNX1:DNA complex

(Bowers et al., 2010). Here, we asked if these mutation

positions are likely to actively participate or be relevant to the

binding of selected known anti-cancer drugs. To this end we

inspected the corresponding protein contact interface of

RUNX1 mutants for active drug binding pockets and

electrostatics to see the impact of these mutations on drug

association.

Cancer-associatedmutations predicted to
form active pockets for drug binding

We next performed electrostatic analysis for a restricted

region within the protein surface of RUNX1 to identify

potential active pockets for drug binding. Specifically, we

analyzed 46 recurrent cancer associated missense mutation

sites for RUNX1 within its DBD (Figure 2A). Out of

46 recurrent positions six sites were located in DBD regions

having critical roles in DNA interactions (Figure 2B). Arginine

(Arg) makes up 28% of the residues found to interact at the

minor groove of DNA only (Rohs et al., 2009). In the case of

RUNX1 in the context of its DNA-binding interface, out of the

six missense mutations we focused upon, four were Arginine

located at positions 80, 142, 174, and 177 that were mutated to

Cysteine (Cys), Lysine (Lys), Glutamine (Gln), and Glutamine

(Gln), respectively. Thus, the missense mutations under study at

FIGURE 2
Structural mapping of RUNX1 cancer-associated mutations. (A) Mutation sites within the RUNX1 protein structure, showing all 46 recurrent
mutations across the DNA binding domain. (B,C) Mutation positions associated with DNA binding; wild type amino acids are highlighted with their
labels reflecting the uniprot numbering scheme (uniprot ID: Q01196). (D) Predicted active pockets for drug binding within the RUNX1-ETS DNA
complex. Highlighted numbers show three major pockets for drug binding. (E) Electrostatics of RUNX1 and RUNX1 with DNA. Blue indicates
highly electropositive surfaces, while red color shows significantly electronegative surfaces for the protein.
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the RUNX1: DNA binding interface are Arg80Cys, Arg142Lys,

Asp171Asn, Arg174Gln, Pro176His, and Arg177Gln. Of these,

we predicted Arg80Cys to be a complete loss-of-contact mutation

that could lead to binding disruption of RUNX1 to the T cell

receptor (TCR) enhancer (Figure 2C). In contrast, Pro176His is

not predicted to alter binding efficiency. Importantly, these

mutations excluding Pro176His arose as potentially

contributing to forming active binding sites for anti-cancer

drugs, based upon predictions of active pockets using the

castp web server (Tian et al., 2018). We predicted from our

structural analysis that residues Arg80, Asp171, Arg174, and

Arg177 may be important positions contributing to active

pockets for drug binding to RUNX1. We predicted the

potential existence of 23 active pockets from applying the

castp web server, and out of these, we evaluated for drug-

compound binding at the three active pockets with larger

volumes, naming them: pocket 1; pocket2; and pocket 3. Of

these, pocket 1 is predicted to be the major pocket given its

surface area (Å2) (Figure 2D). Delta delta G (ΔΔG) is the

predicted binding free energy calculated for drug binding

modes and affinities. We used ΔΔG scores as a tool to

compare binding affinities of drug compound. Furthermore,

electrostatic data for RUNX1 without and with DNA shows

that RUNX1 has electropositive areas associated with DNA

binding, as well as exposed protein-protein interaction

surfaces that exhibit electronegative characteristics, whereas

DNA is electronegative in character. The color red is used to

depict an electronegative surface while the blue color indicates an

electropositive surface (Figure 2E). Importantly, within the

RUNX1 active pocket 1 for drug binding, those DNA-binding

amino acids that we are focused upon (see above) displayed an

electropositive surface. Here, we made predictions based on

modeling and docking, that drug binding with

RUNX1 inhibits its binding to DNA and thus results in

lessened RUNX1 function.

RUNX1 docking predictions with standard
anti-cancer drugs

In order to predict the stability and strength of interaction of

different drugs with RUNX1, an AML drug specific target, we

performedmolecular docking of standard published Abemaciclib

(Gelbert et al., 2014), Cisplatin (Dasari and Tchounwou 2014),

Dacarbazine (Serrone et al., 2000) Enasidenib (Del Principe et al.,

2019) Gefitinib (Baselga and Averbuch 2000), Gilteritinib (Lee

et al., 2017; McMahon and Perl 2019) Ibrutinib (Honigberg et al.,

2010) Lenvatinib/Pembrolizumab (Makker et al., 2019),

Midostaurin (Manley 2019), Zejula (niraparib), Regorafenib

(Carr et al., 2013), Sorafenib (Hotte and Hirte 2002), and

Triclabendazole (Fetterer 1986), are employed to treat various

cancers—with two being used towards lowering the activity of a

corresponding transcription factor in treating AML (Table 1).

However, these drugs’ activities and their molecular

consequences have not been previously considered in the

context of RUNX1-ETS DNA complex. To this end we

performed mutation modeling and molecular docking of drug

compounds with the RUNX1-ETS DNA complex. Our molecular

docking results indicate that with the exception of Dacarbazine,

Gefitinib, Cisplatin, and Triclabendazole, the remaining drugs

are predicted to have more favorable ΔΔG values when docking

wild-type relative to mutant RUNX1. Previous studies have

shown that Cisplatin has a number of functional targets

including DNA, RNA; sulfur-containing enzymes like

metallothionein and glutathione; as well as mitochondria in

the case of testicular cancer (Dasari and Tchounwou 2014).

Dacrbazine instead leads to the methylation of DNA in the

case of melanoma; Gefitinib targets the epidermal growth

factor receptor-tyrosine kinase in the case of lung cancer; and

Triclabendazole inhibits the binding of 3H-colchicine in the liver

fluke Fasciola hepatica (Fetterer 1986). A drug compound that is

directed towards RUNX1 is Ibrutinib, which affects signaling of

the B cell antigen receptor (BCR) in the case of Non-Hodgkin

Lymphoma [30]. Sorafenib targets Raf-1 in liver cancer (Wilhelm

et al., 2008); Niraparib predominantly binds and inhibits

PARP1 and PARP2 in ovarian cancers (From the American

Association of Neurological Surgeons et al., 2018); and

Enasidenib targets isocitrate dehydrogenase-2 (IDH2) in AML

(Del Principe et al., 2019). As the basis for our modeling, we

selected drug molecules based on their frequency of use in clinical

applications. As cancer drugs often have side effects, we began

testing drugs proposed to bind to a diversity of targets. Of the

13 drugs we tested, Enasidenib, Niraparib and Sorafenib

exhibited the best-calculated binding (highest ΔΔG) to

binding-pocket1 of RUNX1 (Figure 3A). Thus, our docking

results predicted that Enasidenib, Niraparib and/or Sorafenib

TABLE 1 Cancer-associated drug compounds used for docking to
RUNX1.

Compound name Pubchem id Related cancer

Abemaciclib 46220502 Breast cancer

Cisplatin 5702198 Testicular cancer

Dacarbazine 135398738 Melanoma

Enasidenib 89683805 Acute myeloid leukemia (AML)

Gefitinib 123631 Lung cancer

Gilteritinib 49803313 AML

Ibrutinib 24821094 Non-hodgkin lymphoma

Lenvatinib 9823820 Endometrial cancer

Midostaurin 9829523 AML

Niraparib 24958200 Ovarian cancer

Regorafenib 11167602 Colorectal cancer

Sorafenib 216239 Liver cancer

Triclabendazole 50248 Liver cancer
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might associate with RUNX1, possibly contributing to under-

appreciated off-target effects of these drugs. To this end, we

sought to model the binding capabilities of these drugs with wild

type RUNX1, versus the above-selected cancer associated

missense mutants of RUNX1.

Cancer drug associated targets and
RUNX1

We hypothesized that cancer-associated drugs would display

higher modeled ΔΔG values for their expected/known targets

and lesser ΔΔG values for RUNX1. On the basis of this

prediction, we subjected Gefitinib, Niraparib, Ibrutinib, and

Enasidenib for further docking studies with their respective

published targets (Figure 4A). We performed docking of

Gefitinib with its published target, the epidermal growth

factor receptor tyrosine kinase (EGFRTKI, PDB ID: 3W2S).

As expected, we found that Gefitinib exhibited more

significant ΔΔG values for binding to EGFRTKI in

comparison to RUNX1. RUNX1 residues Asp66, Met106,

Gly108, Tyr113, Thr147, Thr149, Val159, and Thr161 were

modeled to interact with Gefitinib (Figure 4A). Niraparib

docking with Poly [ADP-ribose] polymerase 1Poly [ADP-

ribose] polymerase 1 (PARP1) also showed a higher ΔΔG
value for association with PARP1 than with RUNX1.

RUNX1 amino acids Leu62, Asp57, His58, Leu62, Leu94,

Asp96, Asn126, Gln127 and Val128 were modeled to interact

with Niraparib (Figure 4A). Furthermore, we compared the

docking of Enasidenib with its known target isocitrate-

FIGURE 3
Cancer related drug molecule and their docking with RUNX1. (A) Docking of enasidenib (AML), sorafenib (AML), and niraparib (ovarian cancer)
with RUNX1-ETS DNA complex displaying the binding position of drug molecules with their ΔΔG values. Showing comparison of docking scores for
all 13 drug molecules with RUNX1, we took AML associated drug molecules as positive controls for docking with RUNX1. Sorafenib, regorafenib,
niraparib, and enasidenib were indicated by the modeling to have low ΔΔG values suggestive of their drug binding.
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dehydrogenase-2 (IDH2), versus this drug’s docking with

RUNX1. Similar to the other two comparisons, we found that

the ΔΔG value is higher for the IDH2: Enasidenib complex than

upon RUNX1: Enasidenib docking. RUNX1 amino acids Asp57,

His58, Glu61, Leu62, Ser73, Ile87, Ala88, Lys90, and Val92 were

modeled to interact with Enasidenib (Figure 4A). Ibrutinib

showed a similar pattern of ΔΔG values when comparing the

modeling of its binding to the B cell antigen receptor (BCR)

FIGURE 4
Drug associated targets and drug modeled binding with RUNX1. (A) Dot plots showing the comparative binding energy (ΔΔG) for gefitinib (lung
cancer), niraparib (ovarian cancer), and enasidenib (AML). Shown is the predicted gefitinib binding site versus the known binding area of gefitinib with
its target protein EGFRTKI. Similarly, comparisons are shown with niraparib with its known protein target PARP1, and enasidinib and its established
target IDH2. (B) Ibrutinib with its accepted targets BCR and BTK, versus that predicted with RUNX1.
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FIGURE 5
Mutation functional probability and DNA proximity.(A) Heatmap showing mutants’ probability of an impact upon functionality. Green color
indicates lesser predicted impact while red color indicates higher impact. The x axis shows all amino acids of the RUNX1 DNA binding domain while
the y axis shows the probability of mutation to each individual amino acid. Highlighted blue square boxes showing mutation probability scores for
selected mutation represented in Figure 5B. (B) Cancer-associated missense mutation effect on molecular interactions, with the modeled and
calculated distance between residues shown by dotted lines. DNA is shown as a gray ribbon and all residues are represented by ball and stickmodels.
(C)Comparative docking of the AML associated drugmolecule enasidenibwith cancer-associatedmutations of RUNX1 R142K, D171N, R174Q, P176H
and R177Q versus wild type (WT).
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relative to RUNX1. Ibrutinib is additionally known to inhibit

Bruton’s tyrosine kinase (BTK). Our results suggested an

equivalent ΔΔG value of Ibrutinib binding to the BCR

receptor as to the BTK protein (Figure 4B). This result is

consistent with Ibrutinib having more than one known target.

Additionally, it leaves open the possibility of Ibrutinib binding to

RUNX1 (pocket1). RUNX1 pocket1 residues Met106, Asn109,

Asp110, Asn112, Tyr113, Ser114, Lys144, Ser145, Thr147,

Leu148, Thr149, His163, and Arg164 suggested interactions

with Ibrutinib. These residues are in proximity with cancer-

associated mutations and are also located at the DNA binding

interface of RUNX1 (Figure 4B). All-together, the docking results

suggest that Gefitinib, Niraparib, and Enasidenib are more

specific to their respective targets EGFRTKI, PARP1, and

IDH2 in comparison to RUNX1. Here, we predicted that

RUNX1 may be an effective target in Non-Hodgkin

Lymphoma, and that the residues of RUNX1 that are involved

in interacting with Ibrutinib are also in proximity to the DNA

binding interface of RUNX1.

Functional probability of cancer-
associated mutations and their proximity
with DNA

Next, to evaluate the functional ability of RUNX1 mutants,

we applied structural coordinates of RUNX1 in the context of the

RUNX1-ETS TCR enhancer. We used the PredictProtein

prediction tool to score for the impact of selected amino acid

changes (Yachdav et al., 2014) (https://predictprotein.org/). The

color green indicates a lower likelihood of functional changes,

while the color red indicates a higher probability. The resulting

scores suggest a high probability of functional effects for all but

one of the evaluated residues (P176H) in RUNX1 that interact

with DNA (Figure 5A). Thus, our results suggest that known

mutations in RUNX1 that we predicted may affect its binding to

DNA are likely to alter its function. To better evaluate these

molecular interactions, we created a mutational model using

UCSF Chimera 1.13v. We investigated if changes in DNA-

binding likely occurred because of cancer-associated mutations

in the proximity of the DNA-binding interface. The binding

preferences for RUNX1 that harbor mutations, versus

RUNX1 that harbor the corresponding normal residue were

only slightly different in most cases. For example, when

evaluating the predicted DNA-binding mutations Arg142Lys,

Arg174Gln, and Arg177Gln, minor proximity differences were

observed for the DNA-binding interface, with Pro176Gln

showing no discernable difference relative to control/wild-type

RUNX1. However, mutations in Arg80 and Cys80 predicted

more significant differences in RUNX1 binding to DNA.

Especially these latter predicted differences for the interaction

of RUNX1 mutants with DNA could suggest RUNX1’s altered

molecular function (Figure 5B). On the basis of these calculations

to model molecular associations between RUNX1 and DNA, we

added the consideration of the impact upon drug binding. In the

context of the presence of the drug Enasidenib, we performed

RUNX1: DNA-docking interactions employing the AML-

associated RUNX1 mutants R142K, D171N, R174Q, P176H,

R177Q in comparison to wild type (WT) RUNX1.

Interestingly, we found that the docking scores of each of the

RUNX1 mutants with Enasidenib was better than that with wild-

type RUNX1, with R174Q and R177Q mutants having the

highest ΔΔG values (Figure 5C), similar to that modeled for

the docking of Enasidenib with its established target protein

IDH2 (Sweta et al., 2019). Thus, we speculate that at least certain

cancer-associated mutations in RUNX1B may exhibit the

capacity to alter drug binding, and thereby facilitate drug

binding to the RUNX1 protein.

Discussion

Here, defined cancer-associated missense mutations of

RUNX1 (R80C, R142K, D171, R174Q, P176H, and R177Q)

are predicted to be relevant for DNA binding, and

additionally in some cases, to drug binding. Mutation R80C

(COSM24736) recurred 17 times and is found only in AML

patients. Mutation R142K (COSM5028748) recurred 3 times and

is associated with breast ductal carcinoma. Mutation D171N

(COSM24721) recurred 26 times in AML patients

(Supplementary Table S1). Mutation R174Q (COSM24721)

recurred 33 times in AML patients. Indeed, amino acid

position R174 is conserved across the paralogs and its

recurrent mutation R174Q is significant for AML (Berardi

et al., 1999; Song et al., 1999). Similarly, we predict that the

mutations P176H (COSM5879709) and R177Q (COSM24731)

are relevant to the DNA binding of RUNX1, with R177Q being

highly recurring in AML patients. Although the specific

molecular consequences of missense mutations are often

unclear, here we attempt to address the impact of defined

missense mutations in RUNX1 with its association with DNA.

Additionally, we probe for effects upon the binding of drugs to

RUNX1. Some drugs are used at lower levels when given in

combination with other treatments because they would otherwise

have unacceptable side effects, including those that are off target.

Common drawbacks recognized from the application of more

generalized drugs has aided the concept of personalized

medicine. In common with many cancers, improved

treatments for AML will benefit from better prognosis and

available therapies (Lu et al., 2018). FDA-approved AML

drugs such as Gilteritinib and Enasidenib are, respectively

intended to target mutants of FLT3 or of IDH1/2 (Yang et al.,

2019). Differences in drug responses has been attributed to

corresponding differences in the classes of underlying driver

mutations involved, that for example may encode epigenetic

regulators, components of spliceosomes, or transcription factors
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such as IDH1, IDH2, SRSF2, U2AF, RUNX1, GATA2, and ETV6

(Ley et al., 2013; Metzeler et al., 2016; Papaemmanuil et al., 2016;

Bullinger et al., 2017). AML is characterized by a genetically

heterogeneous nature and a complex pattern of mutations which

makes its treatment challenging (Tyner et al., 2018). Here, we

combinedmolecular modeling and docking as tools to predict the

molecular-interaction consequences of cancer-associated

missense mutations of RUNX1 to binding DNA, as well as to

binding defined drugs. We initially focused upon missense

mutations predicted to be functionally relevant due to their

involvement in mediating the DNA binding interface of

RUNX1. For example, differences in drug binding efficacy

could arise from the presence of such mutations. Interestingly

our findings predict that the R174Q and R177Q mutations may

facilitate the AML-associated drug Enasidenib interaction with

RUNX1 (pocket1), and could provide additional deleterious

effect on its DNA binding (Song et al., 1999). That is, these

mutations may have combined effects, firstly at the DNA binding

interface which appears consistent with the field’s current

expectations, and conceivably also in regards to (off-target)

drug binding, potentially producing presently unknown effects.

Conclusion

In this study, we sought to identify RUNX1mutants that may

have a direct impact upon DNA association, and thus upon

RUNX1 function. We also took 13 cancer-associated published

drug compounds to model their possible binding to the

transcription factor RUNX1. Here, we propose that structural

molecular modeling and docking studies for RUNX1 in the

presence of DNA, and/or drugs, may facilitate assessment of

the potential impact of RUNX1 cancer associated mutations in

AML. For example, mutation of R174Q and R177Q is predicted

to compromise RUNX1:DNA binding interactions, while at the

same time, facilitate off-target binding of the drug Enasidenib to

RUNX1 (pocket1), with unknown consequences. Previously, this

drug had not been proposed to associate with RUNX1.

Enasidenib’s published target is IDH2, even though our

modeling and docking suggest possible interactions (similar

deltadeltaG scores) with the mutation R174Q or R177Q in

RUNX1. As the field moves forward, understanding the

molecular interaction consequences of RUNX1 mutations in

AML will be important both in the context of DNA-binding

as well as drug associations.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

Study designed by HU and YS. HU performed molecular

docking and functional mutational analysis with the help of BZ

and YS. Molecular modeling and docking were supervised by YS.

Figure preparation, electro-statistic analysis, active binding

pocket analysis and visualization of data done by YS with

contributions from HU. Manuscript was written by YS, PM,

NS, and HU. All authors read, edited and approved the final

manuscript.

Funding

This work was supported by the Guangxi science and

technology base and talent special fund (AD22035036).

Acknowledgments

YS thanks the Department of Genetics, University of Texas

MD Anderson Cancer Center, Houston Texas USA, as well as

prior support (while in China) from the outstanding doctoral

dissertation program of the University of Chinese Academy of

Sciences (UCAS), and the Guangzhou Institutes of Biomedicine

and Health (GIBH). HU was supported by UCAS. BZ

acknowledges the Guangzhou Institutes of Biomedicine and

Health (GIBH) for infrastructure and financial support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmolb.

2022.981020/full#supplementary-material

Frontiers in Molecular Biosciences frontiersin.org11

Ullah et al. 10.3389/fmolb.2022.981020

https://www.frontiersin.org/articles/10.3389/fmolb.2022.981020/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.981020/full#supplementary-material
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.981020


References

Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., et al.
(2004). The COSMIC (Catalogue of somatic mutations in cancer) database and
website. Br. J. Cancer 91 (2), 355–358. doi:10.1038/sj.bjc.6601894

Bankovich, A. J., Raunser, S., Juo, Z. S., Walz, T., Davis, M. M., and Garcia, K. C.
(2007). Structural insight into pre-B cell receptor function. Science 316 (5822),
291–294. doi:10.1126/science.1139412

Barbarroja, N., Torres, L. A., Luque, M. J., Carretero, R. M., Valverde-Estepa, A.,
Lopez-Sanchez, L. M., et al. (2009). Additive effect of PTK787/ZK 222584, a potent
inhibitor of VEGFR phosphorylation, with Idarubicin in the treatment of acute
myeloid leukemia. Exp. Hematol. 37 (6), 679–691. doi:10.1016/j.exphem.2009.
03.001

Baselga, J., and Averbuch, S. D. (2000). ZD1839 (’Iressa’) as an anticancer agent.
Drugs 60 (1), 33–40. doi:10.2165/00003495-200060001-00004

Berardi, M. J., Sun, C., Zehr, M., Abildgaard, F., Peng, J., Speck, N. A., et al. (1999).
The Ig fold of the core binding factor alpha Runt domain is a member of a family of
structurally and functionally related Ig-fold DNA-binding domains. Structure 7
(10), 1247–1256. doi:10.1016/s0969-2126(00)80058-1

Boehm, H. J., Boehringer, M., Bur, D., Gmuender, H., Huber, W., Klaus, W., et al.
(2000). Novel inhibitors of DNA gyrase: 3D structure based biased needle screening,
hit validation by biophysical methods, and 3D guided optimization. A promising
alternative to random screening. J. Med. Chem. 43 (14), 2664–2674. doi:10.1021/
jm000017s

Bonifer, C., and Cockerill, P. N. (2015). Chromatin structure profiling identifies
crucial regulators of tumor maintenance. Trends Cancer 1 (3), 157–160. doi:10.
1016/j.trecan.2015.10.003

Bowers, S. R., Calero-Nieto, F. J., Valeaux, S., Fernandez-Fuentes, N., and
Cockerill, P. N. (2010). Runx1 binds as a dimeric complex to overlapping
Runx1 sites within a palindromic element in the human GM-CSF enhancer.
Nucleic Acids Res. 38 (18), 6124–6134. doi:10.1093/nar/gkq356

Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J.,
Roux, B., et al. (2009). Charmm: The biomolecular simulation program. J. Comput.
Chem. 30 (10), 1545–1614. doi:10.1002/jcc.21287

Bullinger, L., Dohner, K., and Dohner, H. (2017). Genomics of acute myeloid
leukemia diagnosis and pathways. J. Clin. Oncol. 35 (9), 934–946. doi:10.1200/JCO.
2016.71.2208

Carr, B. I., D’Alessandro, R., Refolo, M. G., Iacovazzi, P. A., Lippolis, C., Messa, C.,
et al. (2013). Effects of low concentrations of regorafenib and sorafenib on human
HCC cell AFP, migration, invasion, and growth in vitro. J. Cell. Physiol. 228 (6),
1344–1350. doi:10.1002/jcp.24291

Cheatham, T. E., 3rd, and Case, D. A. (2013). Twenty-five years of nucleic acid
simulations. Biopolymers 99 (12), 969–977. doi:10.1002/bip.22331

Chen, X., Huan, X., Liu, Q., Wang, Y., He, Q., Tan, C., et al. (2018). Design and
synthesis of 2-(4, 5, 6, 7-tetrahydrothienopyridin-2-yl)-benzoimidazole
carboxamides as novel orally efficacious Poly(ADP-ribose)polymerase (PARP)
inhibitors. Eur. J. Med. Chem. 145, 389–403. doi:10.1016/j.ejmech.2018.01.018

Chin, D. W., Sakurai, M., Nah, G. S., Du, L., Jacob, B., Yokomizo, T., et al. (2016).
RUNX1 haploinsufficiency results in granulocyte colony-stimulating factor
hypersensitivity. Blood Cancer J. 6, e379. doi:10.1038/bcj.2015.105

Dasari, S., and Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular
mechanisms of action. Eur. J. Pharmacol. 740, 364–378. doi:10.1016/j.ejphar.2014.
07.025

Del Principe, M. I., Paterno, G., Palmieri, R., Maurillo, L., Buccisano, F., and
Venditti, A. (2019). An evaluation of enasidenib for the treatment of acute myeloid
leukemia. Expert Opin. Pharmacother. 20 (16), 1935–1942. doi:10.1080/14656566.
2019.1654456

DiNardo, C., and Lachowiez, C. (2019). Acute myeloid leukemia: From mutation
profiling to treatment decisions. Curr. Hematol. Malig. Rep. 14, 386–394. doi:10.
1007/s11899-019-00535-7

Dittmer, J. (2003). The biology of the Ets1 proto-oncogene. Mol. Cancer 2, 29.
doi:10.1186/1476-4598-2-29

Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., et al.
(2007). PDB2PQR: Expanding and upgrading automated preparation of
biomolecular structures for molecular simulations. Nucleic Acids Res. 35,
W522–W525. doi:10.1093/nar/gkm276

Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., and Baker, N. A. (2004).
PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann
electrostatics calculations. Nucleic Acids Res. 32, W665–W667. doi:10.1093/nar/
gkh381

Doman, T. N., McGovern, S. L., Witherbee, B. J., Kasten, T. P., Kurumbail, R.,
Stallings, W. C., et al. (2002). Molecular docking and high-throughput screening for
novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem. 45 (11),
2213–2221. doi:10.1021/jm010548w

Fetterer, R. H. (1986). The effect of albendazole and triclabendazole on colchicine
binding in the liver fluke Fasciola hepatica. J. Vet. Pharmacol. Ther. 9 (1), 49–54.
doi:10.1111/j.1365-2885.1986.tb00011.x

Gelbert, L. M., Cai, S., Lin, X., Sanchez-Martinez, C., Del Prado, M., Lallena, M. J.,
et al. (2014). Preclinical characterization of the CDK4/6 inhibitor LY2835219: In-
vivo cell cycle-dependent/independent anti-tumor activities alone/in combination
with gemcitabine. Invest. New Drugs 32 (5), 825–837. doi:10.1007/s10637-014-
0120-7

Grosdidier, A., Zoete, V., and Michielin, O. (2011). SwissDock, a protein-small
molecule docking web service based on EADock DSS. Nucleic Acids Res. 39,
W270–W277. doi:10.1093/nar/gkr366

Haberthur, U., and Caflisch, A. (2008). Facts: Fast analytical continuum
treatment of solvation. J. Comput. Chem. 29 (5), 701–715. doi:10.1002/jcc.20832

Hanan, E. J., Baumgardner, M., Bryan, M. C., Chen, Y., Eigenbrot, C., Fan, P., et al.
(2016). 4-Aminoindazolyl-dihydrofuro[3, 4-d]pyrimidines as non-covalent
inhibitors of mutant epidermal growth factor receptor tyrosine kinase. Bioorg.
Med. Chem. Lett. 26 (2), 534–539. doi:10.1016/j.bmcl.2015.11.078

Honigberg, L. A., Smith, A. M., Sirisawad, M., Verner, E., Loury, D., Chang, B.,
et al. (2010). The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell
activation and is efficacious in models of autoimmune disease and B-cell
malignancy. Proc. Natl. Acad. Sci. U. S. A. 107 (29), 13075–13080. doi:10.1073/
pnas.1004594107

Hopkins, B. T., Bame, E., Bell, N., Bohnert, T., Bowden-Verhoek, J. K., Bui, M.,
et al. (2019). Optimization of novel reversible Bruton’s tyrosine kinase inhibitors
identified using Tethering-fragment-based screens. Bioorg. Med. Chem. 27 (13),
2905–2913. doi:10.1016/j.bmc.2019.05.021

Hotte, S. J., and Hirte, H. W. (2002). Bay 43-9006: Early clinical data in patients
with advanced solid malignancies. Curr. Pharm. Des. 8 (25), 2249–2253. doi:10.
2174/1381612023393053

Huang, D., Luthi, U., Kolb, P., Cecchini, M., Barberis, A., and Caflisch, A. (2006).
In silico discovery of beta-secretase inhibitors. J. Am. Chem. Soc. 128 (16),
5436–5443. doi:10.1021/ja0573108

Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L. E., et al. (2018).
Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27
(1), 112–128. doi:10.1002/pro.3280

Kagoshima, H., Shigesada, K., Satake, M., Ito, Y., Miyoshi, H., Ohki, M., et al.
(1993). The Runt domain identifies a new family of heteromeric transcriptional
regulators. Trends Genet. 9 (10), 338–341. doi:10.1016/0168-9525(93)90026-e

Kumar, C. C. (2011). Genetic abnormalities and challenges in the treatment of
acute myeloid leukemia. Genes Cancer 2 (2), 95–107. doi:10.1177/
1947601911408076

Lee, L. Y., Hernandez, D., Rajkhowa, T., Smith, S. C., Raman, J. R., Nguyen, B.,
et al. (2017). Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor.
Blood 129 (2), 257–260. doi:10.1182/blood-2016-10-745133

Ley, T. J., Miller, C., Ding, L., Raphael, B. J., Mungall, A. J., Robertson, A., et al.
(2013). Genomic and epigenomic landscapes of adult de novo acute myeloid
leukemia. N. Engl. J. Med. 368 (22), 2059–2074. doi:10.1056/NEJMoa1301689

Looger, L. L., Dwyer, M. A., Smith, J. J., and Hellinga, H. W. (2003).
Computational design of receptor and sensor proteins with novel functions.
Nature 423 (6936), 185–190. doi:10.1038/nature01556

Lu, L., Wen, Y., Yao, Y., Chen, F., Wang, G., Wu, F., et al. (2018). Glucocorticoids
inhibit oncogenic RUNX1-ETO in acute myeloid leukemia with chromosome
translocation t(8;21. Theranostics 8 (8), 2189–2201. doi:10.7150/thno.22800

Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., and
Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and
backbone parameters from ff99SB. J. Chem. Theory Comput. 11 (8), 3696–3713.
doi:10.1021/acs.jctc.5b00255

Makker, V., Rasco, D., Vogelzang, N. J., Brose, M. S., Cohn, A. L., Mier, J., et al.
(2019). Lenvatinib plus pembrolizumab in patients with advanced endometrial
cancer: An interim analysis of a multicentre, open-label, single-arm, phase 2 trial.
Lancet. Oncol. 20 (5), 711–718. doi:10.1016/S1470-2045(19)30020-8

Manley, P. W. (2019). Investigations into the potential role of metabolites on the
anti-leukemic activity of imatinib, nilotinib and Midostaurin. Chim. (Aarau) 73 (7),
561–570. doi:10.2533/chimia.2019.561

Frontiers in Molecular Biosciences frontiersin.org12

Ullah et al. 10.3389/fmolb.2022.981020

https://doi.org/10.1038/sj.bjc.6601894
https://doi.org/10.1126/science.1139412
https://doi.org/10.1016/j.exphem.2009.03.001
https://doi.org/10.1016/j.exphem.2009.03.001
https://doi.org/10.2165/00003495-200060001-00004
https://doi.org/10.1016/s0969-2126(00)80058-1
https://doi.org/10.1021/jm000017s
https://doi.org/10.1021/jm000017s
https://doi.org/10.1016/j.trecan.2015.10.003
https://doi.org/10.1016/j.trecan.2015.10.003
https://doi.org/10.1093/nar/gkq356
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1200/JCO.2016.71.2208
https://doi.org/10.1200/JCO.2016.71.2208
https://doi.org/10.1002/jcp.24291
https://doi.org/10.1002/bip.22331
https://doi.org/10.1016/j.ejmech.2018.01.018
https://doi.org/10.1038/bcj.2015.105
https://doi.org/10.1016/j.ejphar.2014.07.025
https://doi.org/10.1016/j.ejphar.2014.07.025
https://doi.org/10.1080/14656566.2019.1654456
https://doi.org/10.1080/14656566.2019.1654456
https://doi.org/10.1007/s11899-019-00535-7
https://doi.org/10.1007/s11899-019-00535-7
https://doi.org/10.1186/1476-4598-2-29
https://doi.org/10.1093/nar/gkm276
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1021/jm010548w
https://doi.org/10.1111/j.1365-2885.1986.tb00011.x
https://doi.org/10.1007/s10637-014-0120-7
https://doi.org/10.1007/s10637-014-0120-7
https://doi.org/10.1093/nar/gkr366
https://doi.org/10.1002/jcc.20832
https://doi.org/10.1016/j.bmcl.2015.11.078
https://doi.org/10.1073/pnas.1004594107
https://doi.org/10.1073/pnas.1004594107
https://doi.org/10.1016/j.bmc.2019.05.021
https://doi.org/10.2174/1381612023393053
https://doi.org/10.2174/1381612023393053
https://doi.org/10.1021/ja0573108
https://doi.org/10.1002/pro.3280
https://doi.org/10.1016/0168-9525(93)90026-e
https://doi.org/10.1177/1947601911408076
https://doi.org/10.1177/1947601911408076
https://doi.org/10.1182/blood-2016-10-745133
https://doi.org/10.1056/NEJMoa1301689
https://doi.org/10.1038/nature01556
https://doi.org/10.7150/thno.22800
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1016/S1470-2045(19)30020-8
https://doi.org/10.2533/chimia.2019.561
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.981020


McMahon, C. M., and Perl, A. E. (2019). Gilteritinib for the treatment of relapsed
and/or refractory FLT3-mutated acute myeloid leukemia. Expert Rev. Clin.
Pharmacol. 12 (9), 841–849. doi:10.1080/17512433.2019.1657009

Menter, T., and Tzankov, A. (2019). Lymphomas and their microenvironment: A
multifaceted relationship. Pathobiology 86 (5-6), 225–236. doi:10.1159/000502912

Metzeler, K. H., Herold, T., Rothenberg-Thurley, M., Amler, S., Sauerland, M. C.,
Gorlich, D., et al. (2016). Spectrum and prognostic relevance of driver gene
mutations in acute myeloid leukemia. Blood 128 (5), 686–698. doi:10.1182/
blood-2016-01-693879

Mikhail, F. M., Sinha, K. K., Saunthararajah, Y., and Nucifora, G. (2006). Normal
and transforming functions of RUNX1: A perspective. J. Cell. Physiol. 207 (3),
582–593. doi:10.1002/jcp.20538

Papaemmanuil, E., Gerstung,M., Bullinger, L., Gaidzik, V. I., Paschka, P., Roberts, N. D.,
et al. (2016). Genomic classification and prognosis in acute myeloid leukemia. N. Engl.
J. Med. 374 (23), 2209–2221. doi:10.1056/NEJMoa1516192

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M.,
Meng, E. C., et al. (2004). UCSF Chimera--a visualization system for exploratory
research and analysis. J. Comput. Chem. 25 (13), 1605–1612. doi:10.1002/jcc.20084

Ponder, J. W., and Case, D. A. (2003). Force fields for protein simulations. Adv.
Protein Chem. 66, 27–85. doi:10.1016/s0065-3233(03)66002-x

Reva, B., Antipin, Y., and Sander, C. (2011). Predicting the functional impact of
protein mutations: Application to cancer genomics.Nucleic Acids Res. 39 (17), e118.
doi:10.1093/nar/gkr407

Rohs, R., West, S. M., Sosinsky, A., Liu, P., Mann, R. S., and Honig, B. (2009). The
role of DNA shape in protein-DNA recognition. Nature 461 (7268), 1248–1253.
doi:10.1038/nature08473

From the American Association of Neurological Surgeons, American Society of
Neuroradiology, Cardiovascular and Interventional Radiology Society of Europe,
Canadian Interventional Radiology Association, Congress of Neurological
Surgeons, European Society of Minimally Invasive Neurological Therapy,
European Society of Neuroradiology, Sacks, D., Baxter, B., Campbell, B. C. V.,
Carpenter, J. S., Cognard, C., Dippel, D., et al. (2018). Multisociety consensus
quality improvement revised consensus statement for endovascular therapy of acute
ischemic stroke. Int. J. Stroke 13 (6), 612–632. doi:10.1177/1747493018778713

Serrone, L., Zeuli, M., Sega, F. M., and Cognetti, F. (2000). Dacarbazine-based
chemotherapy for metastatic melanoma: Thirty-year experience overview.
J. Exp. Clin. Cancer Res. 19 (1), 21–34.

Shiina, M., Hamada, K., Inoue-Bungo, T., Shimamura, M., Uchiyama, A., Baba, S.,
et al. (2015). A novel allosteric mechanism on protein-DNA interactions underlying

the phosphorylation-dependent regulation of Ets1 target gene expressions. J. Mol.
Biol. 427 (8), 1655–1669. doi:10.1016/j.jmb.2014.07.020

Song, W. J., Sullivan, M. G., Legare, R. D., Hutchings, S., Tan, X., Kufrin, D., et al.
(1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with
propensity to develop acute myelogenous leukaemia. Nat. Genet. 23 (2),
166–175. doi:10.1038/13793

Sood, R., Kamikubo, Y., and Liu, P. (2017). Role of RUNX1 in hematological
malignancies. Blood 129 (15), 2070–2082. doi:10.1182/blood-2016-10-687830

Speck, N. A., Stacy, T., Wang, Q., North, T., Gu, T. L., Miller, J., et al. (1999). Core-
binding factor: A central player in hematopoiesis and leukemia. Cancer Res. 59 (7),
1789s–1793s.

Srivastava, Y., Tan, D. S., Malik, V., Weng, M., Javed, A., Cojocaru, V., et al.
(2020). Cancer-associated missense mutations enhance the pluripotency
reprogramming activity of OCT4 and SOX17. Febs J. 287 (1), 122–144. doi:10.
1111/febs.15076

Sweta, J., Khandelwal, R., Srinitha, S., Pancholi, R., Adhikary, R., Ali, M. A., et al.
(2019). Identification of high-affinity small molecule targeting IDH2 for the clinical
treatment of acute myeloid leukemia. Asian pac. J. Cancer Prev. 20 (8), 2287–2297.
doi:10.31557/APJCP.2019.20.8.2287

Tian, W., Chen, C., Lei, X., Zhao, J., and Liang, J. (2018). CASTp 3.0: Computed
atlas of surface topography of proteins. Nucleic Acids Res. 46 (W1), W363–w367.
doi:10.1093/nar/gky473

Tyner, J. W., Tognon, C. E., Bottomly, D., Wilmot, B., Kurtz, S. E., Savage, S. L.,
et al. (2018). Functional genomic landscape of acute myeloid leukaemia. Nature 562
(7728), 526–531. doi:10.1038/s41586-018-0623-z

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York:
Springer-Verlag.

Wilhelm, S. M., Adnane, L., Newell, P., Villanueva, A., Llovet, J. M., and
Lynch, M. (2008). Preclinical overview of sorafenib, a multikinase
inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine
kinase signaling. Mol. Cancer Ther. 7 (10), 3129–3140. doi:10.1158/1535-
7163.MCT-08-0013

Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., et al.
(2014). PredictProtein--an open resource for online prediction of protein structural
and functional features. Nucleic Acids Res. 42, W337–W343. doi:10.1093/nar/
gku366

Yang, F., Anekpuritanang, T., and Press, R. D. (2019). Clinical utility of next-
generation sequencing in acute myeloid leukemia. Mol. Diagn. Ther. 24, 1–13.
doi:10.1007/s40291-019-00443-9

Frontiers in Molecular Biosciences frontiersin.org13

Ullah et al. 10.3389/fmolb.2022.981020

https://doi.org/10.1080/17512433.2019.1657009
https://doi.org/10.1159/000502912
https://doi.org/10.1182/blood-2016-01-693879
https://doi.org/10.1182/blood-2016-01-693879
https://doi.org/10.1002/jcp.20538
https://doi.org/10.1056/NEJMoa1516192
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1016/s0065-3233(03)66002-x
https://doi.org/10.1093/nar/gkr407
https://doi.org/10.1038/nature08473
https://doi.org/10.1177/1747493018778713
https://doi.org/10.1016/j.jmb.2014.07.020
https://doi.org/10.1038/13793
https://doi.org/10.1182/blood-2016-10-687830
https://doi.org/10.1111/febs.15076
https://doi.org/10.1111/febs.15076
https://doi.org/10.31557/APJCP.2019.20.8.2287
https://doi.org/10.1093/nar/gky473
https://doi.org/10.1038/s41586-018-0623-z
https://doi.org/10.1158/1535-7163.MCT-08-0013
https://doi.org/10.1158/1535-7163.MCT-08-0013
https://doi.org/10.1093/nar/gku366
https://doi.org/10.1093/nar/gku366
https://doi.org/10.1007/s40291-019-00443-9
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.981020

	In-silico probing of AML related RUNX1 cancer-associated missense mutations: Predicted relationships to DNA binding and dru ...
	Introduction
	Materials and methods
	Data mining
	Structural modelling and mutation mapping
	Drug docking
	Electro-statistics and protein—protein interaction analysis
	Functional prediction of mutation impacts

	Results
	Selection and distribution of cancer-associated missense mutations
	Cancer-associated mutations predicted to form active pockets for drug binding
	RUNX1 docking predictions with standard anti-cancer drugs
	Cancer drug associated targets and RUNX1
	Functional probability of cancer-associated mutations and their proximity with DNA

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


