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Objective: We aim to establish a deep learning model called multimodal

ultrasound fusion network (MUF-Net) based on gray-scale and contrast-

enhanced ultrasound (CEUS) images for classifying benign and malignant

solid renal tumors automatically and to compare the model’s performance

with the assessments by radiologists with different levels of experience.

Methods: A retrospective study included the CEUS videos of 181 patients with

solid renal tumors (81 benign and 100 malignant tumors) from June 2012 to

June 2021. A total of 9794 B-mode and CEUS-mode images were cropped

from the CEUS videos. The MUF-Net was proposed to combine gray-scale and

CEUS images to differentiate benign and malignant solid renal tumors. In this

network, two independent branches were designed to extract features from

each of the twomodalities, and the features were fused using adaptive weights.

Finally, the network output a classification score based on the fused features.

The model’s performance was evaluated using five-fold cross-validation and

compared with the assessments of the two groups of radiologists with different

levels of experience.

Results: For the discrimination between benign and malignant solid renal

tumors, the junior radiologist group, senior radiologist group, and MUF-Net

achieved accuracy of 70.6%, 75.7%, and 80.0%, sensitivity of 89.3%, 95.9%, and

80.4%, specificity of 58.7%, 62.9%, and 79.1%, and area under the receiver

operating characteristic curve of 0.740 (95% confidence internal (CI):

0.70–0.75), 0.794 (95% CI: 0.72–0.83), and 0.877 (95% CI: 0.83–0.93),

respectively.
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Conclusion: The MUF-Net model can accurately classify benign and malignant

solid renal tumors and achieve better performance than senior radiologists.

Key points: The CEUS video data contain the entire tumor microcirculation

perfusion characteristics. The proposedMUF-Net based on B-mode andCEUS-

mode images can accurately distinguish between benign and malignant solid

renal tumors with an area under the receiver operating characteristic curve of

0.877, which surpasses senior radiologists’ assessments by a large margin.

KEYWORDS

renal tumor, artificial intelligence, classification, deep learning, contrast-enhanced
ultrasound

Introduction

Nowadays, cancer remains a serious threat to human health

worldwide. The incidence of renal cancer is increasing annually,

with more than 400,000 new cases every year worldwide

(Shingarev and Jaimes, 2017; Sung et al., 2021). Clear cell

renal cell carcinoma (ccRCC) is the most common type of

renal cell carcinoma (RCC), accounting for 80% of all RCCs.

Most renal tumors do not cause obvious clinical symptoms

(Ljungberg et al., 2019). About 20%~30% of patients with

renal tumor resection were preoperatively misdiagnosed,

resulting in unnecessary surgery with a final post-surgical

diagnosis of being benign (Schachter et al., 2007). The

diagnostic accuracy needs to be improved, especially for

differentiating between hypoechoic benign solid tumors and

malignant tumors. Noninvasive imaging modalities such as

ultrasound, computed tomography (CT), and magnetic

resonance imaging (MRI) have improved sensitivity and

specificity in preoperatively differentiating among benign,

malignant, and borderline tumors. Compared with these

imaging modalities, contrast-enhanced ultrasound (CEUS) is

more sensitive in visualizing the microcirculatory perfusion

characteristics of renal tumors and thus is widely used.

However, the diagnostic accuracy varies in terms of different

lesion locations and radiologists.

Deep learning has shown promising results in the

classification and diagnosis of renal tumors over the past few

years (Oktay et al., 2018; Hussain et al., 2021; Wang et al., 2021),

which does not require subjectively defined features and can

capture the entirety of biological information from images

compared with traditional machine learning (Sun et al., 2020;

Bhandari et al., 2021; Giulietti et al., 2021; Khodabakhshi et al.,

2021). The literature indicates that deep learning algorithms are

better than human experts in diagnosing many kinds of diseases,

such as liver, breast, lung, fundus, skin lesions (Wu et al., 2017;

Lin et al., 2020; Li et al., 2021; Liu et al., 2021). These studies have

shown that deep learning is stable and generalizable and can

compensate for the diagnostic discrepancy among doctors with

different levels of experience. To the best of our knowledge, there

are no ultrasound-based radiomics studies for the differentiation

between benign and malignant solid renal tumors (Esteva et al.,

2017; Kokil and Sudharson, 2019; Zabihollahy et al., 2020; Hu

et al., 2021; Mi et al., 2021).

In this study, we aim to establish a multimodal fusion deep

neural network based on gray-scale ultrasound and CEUS images

to discriminate between benign and malignant solid renal

tumors. The performance of the multimodal fusion model is

compared with that of the models built on single-modal data, as

well as junior and senior radiologists’ assessments.

Materials and methods

Patients

This retrospective study was approved by our joint

institutional review boards, and anonymized data was shared

through a data-sharing agreement between institutions (The

Second Clinical Medical College, Jinan University, and The

Affiliated Nanchong Central Hospital of North Sichuan

Medical College) (No. 18PJ149 and No. 20SXQT0140).

Individual consent for this retrospective analysis was waived.

From June 2012 to June 2021, the information for 1547 cases was

FIGURE 1
Flow diagram of patient enrollment.
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obtained from the surgical pathology database in the Pathology

Department of The Second Clinical Medical College of Jinan

University and The Affiliated Nanchong Central Hospital of

North Sichuan Medical College.

The inclusion criteria were as follows: (1) preoperative CEUS

examinations were performed before surgery, and (2) all cases

were confirmed by pathological diagnosis after surgery. Patients

were excluded based on the following criteria: (1) renal pelvis

cancer and other rare types of renal malignancies; (2) patients did

not receive the ultrasound and CEUS examinations; (3) poor

image quality, and (4) pathologic stage ≥ T2b. Figure 1 shows the

flow diagram of patient enrollment for this study. Finally,

181 patients (100 solid malignant tumors and 81 solid benign

tumors) were left. Patients’ demographic and clinical

characteristics are shown in Table 1.

Contrast-enhanced ultrasound Imaging

CEUS examinations were performed using the following

three ultrasound systems: LOGIQ E9 (GE Healthcare, Unites

States), Resona7 (Mindray Ultrasound Systems, China), and

IU22 (Philips Medical Systems, Netherlands), with a

1.0–5.0 MHz convex probe. CEUS was carried out by

ultrasound machines with contrast-specific software and a

bolus of 1.0~1.2 ml microbubble contrast agent (SonoVue;

Bracco, Milan, Italy) via an antecubital vein followed by

5.0 ml normal saline with a peripheral 18~22 G needle. The

CEUS digital video was at least 3~5 min long each time.

During contrast-enhanced imaging, low-acoustic power modes

were used with a mechanical index of 0.05~0.11. All the CEUS

examination videos were retrospectively analyzed by two groups

of radiologists with different levels of experience (three junior

radiologists with more than 5~6 years of experience in CEUS

imaging and three senior radiologists with more than

10~15 years of experience in CEUS imaging).

In this study, we used the following phase terms: (1) cortical

phase began 10~15 s after injection, and (2) medullary phase

approximately began 30~45 s after injection until the

microbubble echoes disappeared. The entire course of CEUS was

saved as Digital Imaging and Communication in Medicine format.

Data annotation and preprocessing

CEUS videos were annotated using the Pair annotation

software package (Liang et al., 2022; Qian et al., 2022). In each

CEUS video, about 50~60 images were selected from the cortical

and medullary phases. A senior radiologist classified the tumor as

either benign or malignant and annotated its location in each

selected image by a bounding box. Then, according to the bounding

boxes, these images were cropped into smaller images as region of

interest to exclude the non-tumor regions (Figure 2). This resulted

in a total of 9794 images, of which 3659 images were benign

(including 1531 from 36 atypical benign cases and 2128 images

from 45 typical benign cases and 6135 images were malignant

(including 2964 images from 62 ccRCC cases; 2114 images from 25

pRCC cases; 1057 images from 13 chRCC cases) (Table 2).

Multimodal ultrasound fusion network

The dataset used in this study contained B-mode and CEUS-

mode images, and they were in one-to-one correspondence.

Therefore, we proposed the MUF-Net to take full advantage

of the multimodal features, which can independently extract

features from each of the two modalities and learn adaptive

weights to fuse features for each sample.

TABLE 1 Patient characteristics.

Malignant (n = 100) Benign (n = 81) p Value

Gender: n (%) ＜ 0.001*

Male 74 (74.0%) 23 (28.4%)

Female 26 (26.0%) 58 (71.6%)

Age: mean ± STD 58.36 ± 14.06 53.31 ± 14.00 0.017*

BMI: mean (IQR) 23.0 (22.0–25.0) 23.0 (21.0–24.0) 0.275

Tumor mean size: mean (IQR) 4.0 (3.0–6.0) 4.0 (3.0–5.0) 0.918

Clinical sign: n (%) 0.588

Waist discomfort/Fatigue 46 (46.0%) 34 (42.0%)

No symptoms 54 (54.0%) 47 (58.0%)

Surgery: n (%) 0.475

Partial nephrectomy 41 (41.0%) 29 (35.8%)

Radical nephrectomy 59 (59.0%) 52 (64.2%)

BMI, body mass index; IQR, interquartile range; STD, standard deviation.

*Statistically significant.
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The overall architecture of MUF-Net is shown in Figure 3,

IB−mode and ICEUS−mode represented the B-mode and CEUS-mode

images, respectively. We used two independent EffecientNet-b3

as the backbone to extract features from B-mode and CEUS-

mode images. The backbone had an input size of 300 × 300 ×

3 and an output size of 10 × 10 × 1536 after five down sampling

blocks. To reduce the parameters of the network and prevent

overfitting, we used a global average pooling layer to downsample

the output feature maps of each backbone from 10 × 10 × 1536 to

1 × 1 × 1536. Subsequently, we fused the features of the two

modalities. Considering that the features of the two modalities in

each sample may contribute differently to the final prediction, we

designed two attention blocks sharing weights to produce

adaptive weights α and β for modality fusion. The feature

maps of the two modalities were subsequently weighted and

summed based on the adaptive weights, yielding a fused feature

map of 1 × 1 × 1536. Finally, through a fully connected layer and

a softmax layer, the classification result was given.

Notably, to improve the feature learning ability of each

backbone, we added two classifiers CB−mode and CCEUS−mode

for each single modality, as shown in Figure 3, which

independently took B-mode features and CEUS-mode features

as input and calculated the loss of each mode (LB−mode and

LCEUS−mode), respectively. The total loss was defined by Eq. 1. The

two losses, LB−mode and LCEUS−mode, were only used during

training, and the final classification result was given by the

multimodal classifier, CB+CEUS. Due to this reason, the

multimodal loss, LB+CEUS, had a higher weight than the other

two losses. For the calculation of the three losses in Eq. 1, we

employed the class-balanced focal loss (Zhang et al., 2021).

Ltotal � 3LB+CEUS + LB−mode + LCEUS−mode (1)

Implementation details

All experiments were conducted using five-fold cross-

validation. For data splitting, we ensured that the images from

the same patient went into either the training set or the test set to

avoid the data leakage problem. To avoid model overfitting, data

FIGURE 2
Data annotation and preprocessing.

TABLE 2 Number distribution of patients and images among histologic types.

Benign Malignant

Total Atypical Typical Total ccRCC pRCC chRCC

Patients 81 36 45 100 62 25 13

Images 3659 1531 2128 6135 2964 2114 1057

ccRCC, clear cell Renal cell carcinoma; chRCC, chromophobe renal cell carcinomas; pRCC, papillary renal cell carcinomas.

Frontiers in Molecular Biosciences frontiersin.org04

Zhu et al. 10.3389/fmolb.2022.982703

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.982703


augmentation techniques were applied to the training set, which

included random spatial transformations, random non-rigid

body transformations, and random noise.

The dataset used in this study had a weak class imbalance

problem. The ratio of benign images tomalignant images was 3:5.

Re-sampling techniques (Zhang et al., 2021) were popularly used

for dealing with long-tailed problems. We used class-balanced

sampling to alleviate class imbalance by first sampling a class and

then selecting an instance from the chosen class (Kang et al.,

2019).

All backbones used in these experiments were pretrained

on ImageNet. All models used in the experiments were

implemented by PyTorch on a NVIDIA 3090 GPU. The

stochastic gradient descent optimizer was used with a

learning rate of 0.05 which was halved every 10 epochs. In

each round of five-fold cross-validation, models based on

B-mode, CEUS-mode, and B + CEUS mode were trained

for 100 epochs, respectively, and the models with the

highest accuracy on the validation set were saved.

Radiologists’ assessments

Original uncropped CEUS videos and images were evaluated

by three junior and three senior radiologists and manually

classified as benign or malignant. The radiologists were

blinded to any clinical information of the patients. Intraclass

correlation coefficients (ICCs) were used to evaluate the inter-

rater agreement within each radiologist group, with an ICC

greater than 0.75 indicating good agreement.

Statistical analysis

All statistical analyses were performed using the SciPy package

in Python (version 3.8). Depending on whether data conformed to a

normal distribution, continuous variables were compared using the

Student’s t-test or the Mann-Whitney U test. The non-ordered

categorical variables were compared by the chi-square test. Receiver

operating characteristic (ROC) curve analysis was used to evaluate

the performance of junior radiologists, senior radiologists, individual

modality-based networks, and MUF-Net. In addition, we also used

other metrics to evaluate model performance from various aspects,

including sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV). Comparison of the difference

between areas under the ROC curve (AUCs) was performed

using the Delong test. A two-sided p value ＜ 0.05 was

considered statistically significant.

Results

Patient characteristics

The age of the patients in the benign tumor group was less

than that of the patients in the malignant tumor group (58.36 ±

FIGURE 3
Overall architecture of the proposed MUF-Net framework.
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14.06 vs. 53.31 ± 14.00 years) (p = 0.017). Regarding gender

distribution, there was a significant difference between these two

groups (p＜0.001), withmale patients beingmore frequent in the

malignant group than in the benign group. Patient characteristics

are shown in Table 1.

Performance of radiologists’ assessments

The ICCs in the junior and senior radiologist groups were

0.81 and 0.83, respectively, indicating good inter-rater

agreement. Each radiologist classified a tumor as benign or

malignant, and the radiologists’ assessments in each group

were merged by majority voting. The performance of

radiologists’ assessments is shown in Table 3. The AUC,

accuracy, sensitivity, specificity, PPV, and NPV of junior

radiologists were 0.740 (95% confidence interval (CI):

0.70–0.75), 70.6%, 89.3%, 58.7%, 58.0%, and 89.5%,

respectively. The AUC, accuracy, sensitivity, specificity, PPV,

and NPV of senior radiologists were 0.794 (95% CI: 0.72–0.83),

75.7%, 95.9%, 62.9%, 62.3%, and 95.9%, respectively. The ROC

curves for the test set were shown in Figure 4.

Performance of deep learning models

The AUC, accuracy, sensitivity, specificity, PPV, and

NPV of EffecientNet-b3 network trained on B-mode

images were 0.820 (95% CI: 0.72–0.83), 74.5%, 75.0%,

77.0%, 73.4%, and 62.3%, respectively (Table 3). The AUC,

accuracy, sensitivity, specificity, PPV, and NPV of

EffecientNet-b3 network trained on CEUS-mode images

were 0.815 (95% CI: 0.75–0.89), 73.9%, 73.8%, 73.2%,

72.5%, and 62.2%, respectively. The AUC, accuracy,

sensitivity, specificity, PPV, and NPV of MUF-Net trained

on B-mode and CEUS-mode images were 0.877 (95% CI:

0.83–0.93), 80.0%, 80.4%, 79.1%, 86.9%, and 70.0%,

respectively. The proposed MUF-Net significantly

outperformed junior and senior radiologists (p < 0.001).

Discussion

This study explored the performance of deep learning based

on ultrasound images for benign/malignant classification of solid

renal tumors. We proposed the MUF-Net for fusing

complementary features of two modalities, which used two

independent EffecientNet-b3 as backbones to extract features

from B-mode and CEUS-mode ultrasound images. Our method

reached expert-level diagnostic performance and had a higher

diagnostic PPV compared with radiologists.

CEUS is an important supplement to conventional

ultrasound, CT, and MRI in diagnosing solid renal tumors.

Compared with conventional ultrasound, CEUS can display

perfusion characteristics of renal tumors in cortical and

medullary phases in real-time, which is an important tool for

improving differential diagnosis of benign and malignant renal

tumors. In this study, we observed that the deep learning models

built on either B-mode or CEUS-mode images achieved better

performance than junior or senior radiologists. Moreover, the

TABLE 3 Classification performance of deep learning models and radiologists.

AUC (95% CI) Accuracy (%) Sensitivity (% Specificity (%) PPV (%) NPV (%)

Junior radiologists 0.740 (0.70–0.75) 70.6 89.3 58.7 58.0 89.5

Senior radiologists 0.794 (0.72–0.83) 75.7 95.9 62.9 62.3 95.9

B-mode-Net 0.820 (0.70–0.83) 74.5 75.0 77.0 73.4 62.3

CEUS-mode-Net 0.815 (0.75–0.89) 73.9 73.8 73.2 72.5 62.2

MUF-Net 0.877 (0.83–0.93) 80.0 80.4 79.1 86.9 70.0

CI, confidence interval; CEUS-mode, contrast-enhanced ultrasound mode; MUF-Net, multimodal ultrasound fusion network; AUC, area under the receiver operating characteristic curve;

PPV, positive predictive value; NPV, negative predictive value.

FIGURE 4
The receiver operating characteristic curves of the MUF-Net,
single-mode models, and radiologists’ assessments in the test
cohort.

Frontiers in Molecular Biosciences frontiersin.org06

Zhu et al. 10.3389/fmolb.2022.982703

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.982703


deep learning model combing B-mode and CEUS-mode images

further improved the classification performance. This indicates

that B-mode and CEUS-mode images have complementary

information for diagnosing solid renal tumors. To verify this

point, we used class activation maps (Xu et al., 2022) to visualize

the important regions that the model paid attention to in B-mode

and CEUS-mode images. As shown in Figure 5, the important

regions contributing to the final prediction were different

between B-mode and CEUS-mode images. In other words, the

MUF-Net can automatically extract complementary features

from different modalities to improve the classification

performance.

According to the results from the comparative experiments,

we found that the performance was similar between the two

models built on B-mode or CEUS-mode images. The B-mode

images-based model had slightly better performance, which

might be due to the different microcirculatory perfusion

characteristics of solid renal tumors. Solid renal tumors of

different histopathological types have different vascular

density, fat content, blood flow velocity, and the severity of

arteriovenous fistulas.

Lin et al. reported an AUC of 0.846 for the classification of

benign and malignant renal tumors on enhanced CT images

using inception-v3 (Lin et al., 2020). Xu et al. used ResNet-18

to classify multimodal MRI images of renal tumors, with

AUCs of 0.906 and 0.846 on T2WI and DWI, respectively

(Xu et al., 2022). The AUC was improved to 0.925 by fusing

the two modalities, exceeding the diagnostic performance of

highly qualified radiologists. The results of this study were

similar. The MUF-Net based on multimodal data surpassed

the models based on individual modalities by a large margin.

Therefore, we inferred that the adaptive weights learned by

MUF-Net could help the network acquire the complementary

information from the two modalities to improve the

classification performance.

This study had several limitations. First, the classical and

well-established convolutional neural network, EffecientNet-b3,

was selected as the backbone based on previous experiments,

which may not be optimal. The characteristics of multimodal

ultrasound imaging data need to be analyzed in-depth, and other

deep neural networks will be attempted in the future to see if

better performance can be achieved. Second, only images of

tumor regions were cropped and used in data analyses, and

regions of tumor periphery might be able to provide more

information to improve model performance, which requires

further experimental analyses. Third, our model was

implemented using the ultrasound images collected from two

hospitals only. A larger dataset acquired from more hospitals

with different types or models of ultrasound equipment may have

the potential to further improve the performance and

generalization ability of our model.

Conclusion

In this study, the proposedMUF-Net is able to classify benign

and malignant solid renal tumors accurately, by extracting

complementary features from B-mode and CEUS-mode

images, which outperforms senior radiologists by a large margin.
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included in the article/supplementary material, further
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FIGURE 5
Feature heatmaps of a benign tumor and amalignant tumor to show B-mode and CEUS-mode images contain complementary information for
diagnosis. The red color represents higher weights (i.e., the network pays more attention to this region).

Frontiers in Molecular Biosciences frontiersin.org07

Zhu et al. 10.3389/fmolb.2022.982703

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.982703


Ethics statement

The studies involving human participants were reviewed and

approved by the studies were reviewed and approved by The

Second Clinical Medical College, Jinan University, and The

Affiliated Nanchong Central Hospital of North Sichuan

Medical College. Written informed consent for participation

was not required for this study in accordance with the

national legislation and the institutional requirements. Written

informed consent was not obtained from the individual(s) for the

publication of any potentially identifiable images or data

included in this article.

Author contributions

DZ and JC contributed to conception and design of the

study. DZ, YL, JW, LZ, JiL, and ZW collected the data. DZ,

JuL, and JC analyzed and interpreted the data. DZ and JL

wrote the first draft of the manuscript. JX, FD, and JC

supervised the project and revised the manuscript. All

authors contributed to the manuscript and approved the

submitted version.

Funding

This project was supported by the Scientific Research Program

of the Sichuan Health Commission and the Commission of Science

and Technology of Nanchong (No. 21PJ195 andNo. 20SXQT0140),

National Natural Science Foundation of China (No. 61901275), and

Shenzhen University Startup Fund (No. 2019131).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may bemade by its

manufacturer, is not guaranteed or endorsed by the publisher.

References

Bhandari, A., Ibrahim, M., Sharma, C., Liong, R., Gustafson, S., and Prior, M.
(2021). CT-Based radiomics for differentiating renal tumours: A systematic review.
Abdom. Radiol. 46 (5), 2052–2063. doi:10.1007/s00261-020-02832-9

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017).
Dermatologist-level classification of skin cancer with deep neural networks. Nature
542 (7639), 115–118. doi:10.1038/nature21056

Giulietti, M., Cecati, M., Sabanovic, B., Scirè, A., Cimadamore, A., Santoni,
M., et al. (2021). The role of artificial intelligence in the diagnosis and
prognosis of renal cell tumors. Diagn. (Basel, Switz. 11 (2), 206. doi:10.
3390/diagnostics11020206

Hu, H.-T., Wang, W., Chen, L.-D., Ruan, S.-M., Chen, S.-L., Li, X., et al. (2021).
Artificial intelligence assists identifying malignant versus benign liver lesions using
contrast-enhanced ultrasound. J. Gastroenterol. Hepatol. 36 (10), 2875–2883.
doi:10.1111/jgh.15522

Hussain, M. A., Hamarneh, G., and Garbi, R. (2021). Learnable image histograms-
based deep radiomics for renal cell carcinoma grading and staging. Comput. Med.
Imaging Graph. 90, 101924. doi:10.1016/j.compmedimag.2021.101924

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., et al. (2019).
Decoupling representation and classifier for long-tailed recognition. Available at:
http:/arXiv.org/abs/1910.09217. doi:10.48550/arXiv.1910.09217

Khodabakhshi, Z., Amini, M., Mostafaei, S., Haddadi Avval, A., Nazari, M.,
Oveisi, M., et al. (2021). Overall survival prediction in renal cell carcinoma patients
using computed tomography radiomic and clinical information. J. Digit. Imaging 34
(5), 1086–1098. doi:10.1007/s10278-021-00500-y

Li, W., Lv, X.-Z., Zheng, X., Ruan, S.-M., Hu, H.-T., Chen, L.-D., et al. (2021).
Machine learning-based ultrasomics improves the diagnostic performance in
differentiating focal nodular hyperplasia and atypical hepatocellular carcinoma.
Front. Oncol. 11, 544979. doi:10.3389/fonc.2021.544979

Liang, J., Yang, X., Huang, Y., Li, H., He, S., Hu, X., et al. (2022). Sketch guided
and progressive growing GAN for realistic and editable ultrasound image synthesis.
Med. Image Anal. 79, 102461. doi:10.1016/j.media.2022.102461

Lin, Y., Feng, Z., and Jiang, G. (2020). Gray-scale ultrasound-based radiomics in
distinguishing hepatocellular carcinoma from intrahepatic mass-forming
holangiocarcinoma. Chin. J. Med. Imaging 28 (4), 269–272. doi:10.3969/j.issn.
1005-5185.2020.04.007

Liu, Y., Zhou, Y., Xu, J., Luo, H., Zhu, Y., Zeng, X., et al. (2021). Ultrasound
molecular imaging-guided tumor gene therapy through dual-targeted cationic
microbubbles. Biomater. Sci. 9 (7), 2454–2466. doi:10.1039/d0bm01857k

Ljungberg, B., Albiges, L., Abu-Ghanem, Y., Bensalah, K., Dabestani, S.,
Fernández-Pello, S., et al. (2019). European association of urology guidelines on
renal cell carcinoma: The 2019 update. Eur. Urol. 75 (5), 799–810. doi:10.1016/j.
eururo.2019.02.011

Mi, S., Bao, Q., Wei, Z., Xu, F., and Yang, W. (2021). "MBFF-Net: Multi-Branch
feature fusion network for carotid plaque segmentation in ultrasound," in
International conference on medical image computing and computer-assisted
intervention. (Strasbourg, France. Springer, Cham), 313–322.

Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., et al.
(2018). Attention u-net: Learning where to look for the pancreas. Available at: http:/
arXiv.org/abs/1804.03999.doi:10.48550/arXiv.1804.03999

Qian, J., Li, R., Yang, X., Huang, Y., Luo, M., Lin, Z., et al. (2022). Hasa: Hybrid
architecture search with aggregation strategy for echinococcosis classification and
ovary segmentation in ultrasound images. Expert Syst. Appl. 202, 117242. doi:10.
1016/j.eswa.2022.117242

Schachter, L. R., Cookson, M. S., Chang, S. S., Smith, J. A., Dietrich, M. S.,
Jayaram, G., et al. (2007). Second prize: Frequency of benign renal cortical tumors
and histologic subtypes based on size in a contemporary series: What to tell our
patients. J. Endourol. 21 (8), 819–823. doi:10.1089/end.2006.9937

Shingarev, R., and Jaimes, E. A. (2017). Renal cell carcinoma: New insights and
challenges for a clinician scientist. Am. J. Physiol. Ren. Physiol. 313 (2), F145–F154.
doi:10.1152/ajprenal.00480.2016

Kokil, P., and Sudharson, S. (2019). Automatic detection of renal abnormalities by off-
the-shelf CNN features. IETE J. Edu. 60 (1), 14–23. doi:10.1080/09747338.2019.1613936

Frontiers in Molecular Biosciences frontiersin.org08

Zhu et al. 10.3389/fmolb.2022.982703

https://doi.org/10.1007/s00261-020-02832-9
https://doi.org/10.1038/nature21056
https://doi.org/10.3390/diagnostics11020206
https://doi.org/10.3390/diagnostics11020206
https://doi.org/10.1111/jgh.15522
https://doi.org/10.1016/j.compmedimag.2021.101924
http://http:/arXiv.org/abs/1910
https://doi.org/10.48550/arXiv.1910.09217
https://doi.org/10.1007/s10278-021-00500-y
https://doi.org/10.3389/fonc.2021.544979
https://doi.org/10.1016/j.media.2022.102461
https://doi.org/10.3969/j.issn.1005-5185.2020.04.007
https://doi.org/10.3969/j.issn.1005-5185.2020.04.007
https://doi.org/10.1039/d0bm01857k
https://doi.org/10.1016/j.eururo.2019.02.011
https://doi.org/10.1016/j.eururo.2019.02.011
http://http:/arXiv.org/abs/1804.03999
http://http:/arXiv.org/abs/1804.03999
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.1016/j.eswa.2022.117242
https://doi.org/10.1016/j.eswa.2022.117242
https://doi.org/10.1089/end.2006.9937
https://doi.org/10.1152/ajprenal.00480.2016
https://doi.org/10.1080/09747338.2019.1613936
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.982703


Sun, X.-Y., Feng, Q.-X., Xu, X., Zhang, J., Zhu, F.-P., Yang, Y.-H., et al. (2020).
Radiologic-radiomic machine learning models for differentiation of benign and
malignant solid renal masses: Comparison with expert-level radiologists. AJR. Am.
J. Roentgenol. 214 (1), W44–W54. doi:10.2214/AJR.19.21617

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., and Li, J. (2021). "TransBTS:
Multimodal brain tumor segmentation using transformer," in International
conference on medical image computing and computer-assisted intervention.
(Strasbourg, France. Springer, Cham), 109–119.

Wu, J., You, L., Lan, L., Lee, H. J., Chaudhry, S. T., Li, R., et al. (2017).
Semiconducting polymer nanoparticles for centimeters-deep photoacoustic

imaging in the Second near-infrared window. Adv. Mat. 29, 1703403. doi:10.
1002/adma.201703403

Xu, Q., Zhu, Q., Liu, H., Chang, L., Duan, S., Dou, W., et al. (2022).
Differentiating benign from malignant renal tumors using T2- and
diffusion-weighted images: A comparison of deep learning and radiomics
models versus assessment from radiologists. J. Magn. Reson. Imaging. 55
(4), 1251–1259. doi:10.1002/jmri.27900

Zabihollahy, F., Schieda, N., Krishna, S., and Ukwatta, E. (2020). Automated
classification of solid renal masses on contrast-enhanced computed tomography
images using convolutional neural network with decision fusion. Eur. Radiol. 30 (9),
5183–5190. doi:10.1007/s00330-020-06787-9

Zhang, Y., Wei, X.-S., Zhou, B., and Wu, J. (2021). Bag of tricks for long-tailed
visual recognition with deep convolutional neural networks. Proc. AAAI Conf. Artif.
Intell. 35 (4), 3447–3455.

Frontiers in Molecular Biosciences frontiersin.org09

Zhu et al. 10.3389/fmolb.2022.982703

https://doi.org/10.2214/AJR.19.21617
https://doi.org/10.3322/caac.21660
https://doi.org/10.1002/adma.201703403
https://doi.org/10.1002/adma.201703403
https://doi.org/10.1002/jmri.27900
https://doi.org/10.1007/s00330-020-06787-9
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.982703

	Multimodal ultrasound fusion network for differentiating between benign and malignant solid renal tumors
	Introduction
	Materials and methods
	Patients
	Contrast-enhanced ultrasound Imaging
	Data annotation and preprocessing
	Multimodal ultrasound fusion network
	Implementation details
	Radiologists’ assessments
	Statistical analysis

	Results
	Patient characteristics
	Performance of radiologists’ assessments
	Performance of deep learning models

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


