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PTK2 is highly expressed in many cancers and is involved in cell growth,

survival, migration, and invasion. However, the prognostic value of PTK2 and

its potential function remain unclear in breast cancer. Therefore, we

performed a comprehensive analysis of multiple public databases to

explore the roles of PTK2. By integrating multiple datasets, we found that

PTK2 mRNA expression in breast cancer tissue was higher than that in

normal breast tissue or adjacent tissue. High PTK2 expression was

associated with lymph node metastasis stage, tumor stage, breast cancer

type, age, TP53 mutation, and gender and significantly predicted a poor

survival outcome in breast cancer patients. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) results suggested that

PTK2 and co-expressed genes participated in the cell cycle. Immune

infiltration analysis clarified that high PTK2 expression was positively

correlated with infiltrating levels of CD8+ T cells, CD4+ T cells,

macrophages, neutrophils, and dendritic cells. The DNA methylation of

PTK2 in breast cancer tissues was higher than that in normal tissues, and

high PTK2 methylation was correlated with poor prognosis in breast cancer

patients. Furthermore, 16 possible ceRNA networks related to PTK2 were

constructed for breast cancer. Additionally, PTK2 knockdown could

suppress the proliferation and migration ability of MCF-7 cells. These

results suggest that PTK2 can be used as a prognostic biomarker for

breast cancer.
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Introduction

Breast cancer is the most common cancer that threatens

women’s health worldwide (Anastasiadi et al., 2017). Numerous

studies have made tremendous strides in the breast cancer field;

breast cancer patients have been able to receive treatment with a

combination of surgery, chemotherapy, and radiation therapy.

Although personalized treatment protocols have been used to

improve overall survival, breast cancer remains a major public

health problem, and its morbidity and mortality rates are

expected to increase significantly in the coming years (Sieg

et al., 2000; Batista et al., 2014). Thus, the search for new

diagnostic and prognostic biomarkers of breast cancer remains

of great importance.

Nonreceptor protein tyrosine kinase 2 (PTK2), also

known as focal adhesion kinase (FAK), regulates the signal

transduction of integrin and growth factor receptors (Sieg

et al., 2000; Zhao and Guan, 2011; Batista et al., 2014).

Activated PTK2 can regulate multiple cellular functions,

including cell adhesion, proliferation, and migration

(Miyasaka et al., 2001; Itoh et al., 2004; McLean et al.,

2005; Zhao and Guan, 2011; Batista et al., 2014; Sulzmaier

et al., 2014). Previous studies have shown that

PTK2 overexpression may be associated with tumor cell

migration and activation of the extracellular-signal-

regulated kinase signaling pathway. A previous study

showed that PTK2 activates the survival signaling pathway

in breast cancer and may inhibit tumor growth (Sethuraman

et al., 2016). In addition, PTK2 is overexpressed in many

major cancer types, including lung cancer, hepatocellular

carcinoma, and lymphocytic leukemia (Weisser et al., 2014;

Fan et al., 2019). Upregulation of PTK2 expression in cancer

has been linked to malignant progression and poor prognosis

(Miyasaka et al., 2001; Fujii et al., 2004; Itoh et al., 2004;

McLean et al., 2005). Moreover, the expression of PTK2 genes

in hepatocellular carcinoma is inversely correlated with its

promoter methylation level. As a prototypic oncogene,

PTK2 can regulate cancer stem cells to enhance the

tumorigenesis of hepatocellular carcinoma (Fan et al.,

2019). However, the exact function and mechanism of

PTK2 in breast cancer remain unknown.

In this study, we used various public databases to explore

the differential expression of PTK2 in breast cancer tissues

and normal tissues, its diagnostic value in breast cancer, and

its correlation with clinicopathological parameters.

Multidimensional analysis was used to evaluate the gene

alterations and gene and protein functional networks

related to the expression of PTK2 in breast cancer and to

explore the relationship between its differential expression

and methylation and the ceRNA regulatory network. Our

study provides novel insights that show the potential role

of PTK2 in breast cancer and its potential role as a prognostic

biomarker.

Materials and methods

PTK2 expression across human cancers in
TIMER

TIMER (https://cistrome.shinyapps.io/timer/) is a website

that enables comprehensive analysis of gene expression in

various cancers (Li et al., 2017). The TIMER website allows

users to explore gene expression profiles in tumor and normal

tissues. In this database, 10,897 samples across 32 cancer types

from the TCGA dataset were integrated to estimate the

abundance of immune infiltrates. We used the “Diff Exp

module” to analyze PTK2 expression in various types of

cancer. The Wilcoxon test was used to assess differential

PTK2 expression. In addition, the “Correlation module” was

used to assess the correlations between PTK2 transcription levels

and immune cell infiltration, including B cells, neutrophils, CD4+

T cells, macrophages, CD8+ T cells, and dendritic cells. The

correlation between PTK2 expression and immune infiltration

was evaluated using Spearman’s correlation.

Correlations between PTK2 expression
and clinicopathological parameters in
UALCAN

The UALCAN online database (http://ualcan.path.uab.edu/

index.html) is a website for effective online analysis and mining

of cancer data. The database enables analysis of TCGA RNA-

sequencing results (TPM data) of 31 tumors and differential

expression of 31 malignant and normal tissues. In addition,

biomarker identification, expression profiling, survival

analysis, etc., can also be performed (Chandrashekar et al.,

2017). In this study, we analyzed PTK2 expression differences

between breast cancer tissue and normal tissue, the correlation

between PTK2 mRNA expression and clinicopathological

parameters, and the methylation levels of PTK2 in a breast

cancer dataset. Wilcoxon tests were performed to analyze the

association between clinicopathological parameters and

PTK2 mRNA expression in breast cancer.

TCGA data acquisition

The Cancer Genome Atlas Project (TCGA) is an effort by the

National Cancer Institute. The TCGA database includes whole-

genome sequences (WGS), survival data, methylation, RNA

expression, proteomics, and clinical data (Chandran et al.,

2016). The RNA sequence data and the corresponding

clinicopathological information for 1,109 breast cancer

patients were downloaded from the TCGA database (https://

portal.gdc.cancer.gov/). The fragments per kilobase per million

(FPKM) data were transformed to TPM (transcriptions per
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million reads) for the analyses. In this study, we analyzed the

mRNA expression of PTK2 in breast cancer and normal tissues

from the TGCA breast cancer database.

Human Protein Atlas

The Human Protein Atlas (HPA) (https://www.proteinatlas.

org/) is a public database that uses transcriptomic and proteomic

technologies to study protein expression in different human

tissues and organs at the RNA and protein levels (Thul and

Lindskog, 2018). In this study, we used the “Tissue Atlas” and

“Cell Line Atlas” to show the distribution of PTK2 in human

tissues and cell lines.

PrognoScan database analysis

The PrognoScan database (http://www.abren.net/

PrognoScan/) explores the gene expression and clinical

prognosis of patients by collecting a large number of publicly

available cancer microarray datasets (Mizuno et al., 2009). We

used the PrognoScan database to analyze the prognostic value of

PTK2 expression in breast cancer patients using parameters such

as overall survival (OS) and relapse-free survival (RFS). The

threshold was adjusted to a Cox p-value < 0.05.

Gene alteration in cBioPortal

The cBio Cancer Genomics Portal (cBioPortal, www.

cbioportal.org) is an open-access resource that explores

multidimensional cancer genomics datasets from more than

5,000 tumor samples from 20 cancer studies (Fang et al.,

2020). We selected log RNA Seq V2 RSEM data from TCGA-

breast cancer on this website to perform a mutation analysis and

co-expression gene analysis. The genomic alteration types and

alteration frequency of PTK2 in breast cancer were analyzed

through the “OncoPrint module”. The Kaplan‒Meier survival

curve of PTK2 was analyzed through the “Comparison/Survival”

module in cBioPortal.

GeneMANIA and STRING analysis

The STRING database can provide researchers with the

mechanism of disease development and can also explore

protein–protein interactions (von Mering et al., 2003). In

addition, GeneMANIA is capable of constructing complex

gene–gene function interaction networks from gene lists

(Montojo et al., 2014). Therefore, we used the GeneMANIA

database (http://www.genemania.org) and STRING online

database (https://string-db.org/) to construct the gene–gene

interaction network and protein–protein interaction network,

respectively.

LinkedOmics analysis

The LinkedOmics online database (http://www.linkedomics.

org/login.php) is a multi-omics database that integrates mass

spectrometry (MS) proteomic data for selected TCGA tumor

samples (Vasaikar et al., 2018). Moreover, the LinkedOmics

online tool contains multi-omics and clinical data for

32 malignancies and more than 10,000 patients. The Pearson

correlation coefficient was used for statistical analysis of

PTK2 co-expression and is represented by a volcano map.

The PTK2 co-expression genes are represented by a heatmap.

Gene Ontology analysis and KEGG pathway analysis of

PTK2 and its co-expression genes were accomplished using

the gene set enrichment analysis (GSEA) module. The rank

criterion was a false discovery rate (FDR) < 0.05.

MethSurv analysis

MethSurv (https://biit.cs.ut.ee/methsurv/) is a web tool for

survival analysis based on CpG methylation patterns using

TCGA data for 25 different types of cancer and 7,358 patients

(Modhukur et al., 2018). The DNA methylation of PTK2 at CpG

sites and the prognostic value of these CpG sites in breast cancer

were analyzed using MethSurv.

Prediction of lncRNAs and ceRNA network
construction

The target miRNAs of PTK2 were predicted using the

starBase 3.0 database (www.starbase.sysu.edu.cn), and the

prediction results included analysis from the following

databases: PITA, miRmap, and TargetScan. In addition, the

TargetScan (http://www.targetscan.org/vert_72) database was

used to predict potential binding sites for target miRNAs and

PTK2. Finally, we used the miRNet2.0 (www.mirnet.ca/miRNet/

home.xhtml) database and starBase online analysis tool to

predict the target lncRNAs of miRNAs. We also established

the key lncRNA–miRNA–mRNA (PTK2) ceRNA network for

breast cancer.

Cell culture and transfection

Human breast cancer cell lines (MCF-7, BT-549, and MDA-

MB-231) and normal human mammary epithelial cell line

(MCF-10A) were obtained from Precell Biotechnology Co.,

Ltd. All cell lines were cultured in DMEM with 10% fetal
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bovine serum (FBS; C0400, VivaCell, Shanghai, China) and 1%

penicillin and streptomycin (C0222, Beyotime, China) and

incubated at 37°C and 5% CO2 in a humidified incubator. The

MCF-7 cells were seeded in a 6-well plate at 2,000 cells per well

and incubated for 16 h. The MCF-7 cells were then transfected

with the specific small interfering RNAs (siRNAs) using

JetPrime® transfection reagent (114–15, Polyplus Transfection,

United States) according to the protocol of the manufacturer.

The siRNA sequences were as follows: Human si-PTK2 #1: 5′-
GCCCAGGUUUACUGAACUUAA -3′; Human si-PTK2 #1: 5′-
GAUGUUGGUUUAAAGCGAUUU -3′.

Western blot

The cell protein was homogenized in RIPA buffer, and then, the

protein was quantified by bicinchoninic acid assay (P0010,

Beyotime, China). Total protein was separated using 8% SDS-

PAGE gel and transferred to polyvinylidene difluoride

membranes. The membranes were blocked with 5% skimmed

milk in TBST for 2 h at room temperature. The membranes

were incubated with the following primary antibodies at 4°C

overnight: anti-FAK (1:1,000, ab40794, Abcam, United States)

and anti-GAPDH (1:1,000, ab9485, Abcam, United States). After

washing, the membranes were incubated with secondary antibodies

for 2 h at room temperature and visualized by the enhanced

chemiluminescence reagent (BL523, Biosharp, China). Relative

protein expression levels were assessed using ImageJ software.

RNA extraction and RT–qPCR assay

The total RNA was extracted using TRIzol reagent (15596018,

Invitrogen, United States) according to the manufacturer’s protocol.

Total RNA (1 μg) was retro-transcribed into cDNA using the

HiScript III RT SuperMix for qPCR (+gDNA wiper) (R323-01,

Vazyme, China). RT–qPCR was performed in LightCycler 96

(Roche, United States) according to instructions from TB Green®

Premix ExTaq™ II (RR820A, Takara, Japan). GAPDHwas used as a

reference control. Relative quantification was performed using the

2−ΔΔCTmethod. The primer sequenceswere as follows: PTK2 forward

ACACATCTTGCTGACTTCACTC, PTK2 reverse GACTGCGAG

GTTCCATTCAC, GAPDH forward TGACTTCAACAGCGACAC

CCA, and GAPDH reverse CACCCTGTTGCTGTAGCCAAA.

Cell proliferation test

Cell proliferation was detected by using the Cell Counting

Kit-8 (CCK8) (C0037, Beyotime, China). Briefly, the MCF-7 cells

were seeded into a 96-well culture plate at 2,000 cells per well.

The 450 nm absorbances of cells at 24, 48, and 72 h were

examined according to the manufacturer’s instructions.

Colony formation experiment

The MCF-7 cells were seeded into a 6-well culture plate at

5,000 cells per well and cultured for 5–10 days. Then, the

medium was discarded, and cells were fixed with 4%

paraformaldehyde for 20 min at room temperature. The cells

were washed twice with phosphate buffer solution (PBS) before

staining with crystal violet for 15 min at room temperature. The

image was captured using a microscope. ImageJ software was

used for analysis.

Wound-healing assay

The MCF-7 cells were seeded into a 6-well culture plate at

30,000 cells per well. After the cells reached 100% confluence, the

200-μL yellow straw tip was used to make a straight line. Images

were captured at 0, 12, and 24 h after making the scratch by using

a microscope. The cell migration ability was assessed by

calculating the scratch healing rate (the area of scratch at

0 h–the area of scratch at 24 h)/the area of scratch at 0 h.

Statistical analysis

Statistical analysis was performed using the Statistical

Package for Social Sciences (SPSS 19.0 for Windows, SPSS,

Chicago, IL). The Wilcoxon test was used to analyze the

relationships between clinicopathological characteristics and

PTK2 expression. The survival curve results of PrognoScan

and TCGA are displayed with HR and P or Cox p values

from a log-rank test. The correlation between

PTK2 expression and other genes or immune infiltration

levels was evaluated by a Pearson correlation or Spearman

correlation. Data were expressed as mean ± SEM of three

independent repeats. One-way ANOVA with Tukey’s post hoc

test was applied for multiple comparisons. p < 0.05 indicated

statistically significant differences.

Results

PTK2 expression is increased in breast
cancer patients

PTK2 gene expression in human cancers and normal tissues

was assessed using the TIMER online database. High

PTK2 mRNA expression was observed in urothelial bladder

carcinoma (BLCA), invasive breast carcinoma (BRCA),

urothelial bladder carcinoma (BLCA), cholangiocarcinoma

(CHOL), colon adenocarcinoma (COAD), esophageal

carcinoma (ESCA), head–neck squamous cell carcinoma

(HNSC), hepatocellular carcinoma (LIHC), lung
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adenocarcinoma (LUAD), rectum adenocarcinoma (READ),

stomach adenocarcinoma (STAD), thyroid carcinoma

(THCA), and uterine corpus endometrial carcinoma (UCEC)

(Figure 1A). To further evaluate PTK2 expression in breast

cancer, we used the UALCAN database for analysis. We

found that PTK2 expression was higher in breast cancer

tissues than in normal tissues (Figure 1B). In addition, we

examined PTK2 mRNA expression in breast cancer using

RNA-seq data from TCGA. PTK2 mRNA expression was

significantly elevated in breast cancer tissues compared with

that in adjacent normal tissues (Figure 1C). Furthermore, a

significant increase in PTK2 expression was observed in

paired tumor samples compared with adjacent normal

samples (Figure 1D). PTK2 mRNA expression was relatively

high in breast cancer cell lines (Supplementary Figure S1A).

Analysis of the HPA database showed that PTK2 expression in

normal breast tissue was higher than that in the majority of

human tissues (Supplementary Figure S1B). In addition, the

expression of PTK2 was highest in C-14 smooth muscle cells

(Supplementary Figure S1C).

PTK2 expression is associated with
clinicopathological features in breast
cancer

The UALCAN online tool was used to analyze the association

of PTK2 mRNA expression with clinicopathological parameters,

including nodal metastasis status, breast cancer subclasses, age,

sex, race, and menopausal status. PTK2 mRNA expression was

significantly elevated in breast cancer patients compared with

that in healthy individuals. Regarding cancer stages, a significant

FIGURE 1
Expression of PTK2 in breast cancer. (A) Expression of PTK2 in different cancers in the TIMER database. (B) PTK2 expression in breast cancer was
assessed by using the UALCAN database. (C) PTK2 expression levels in breast cancer from the TCGA database. (D) PTK2 expression in paired tissues.
*p < 0.05 and ***p < 0.001.
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increase in PTK2 mRNA expression was observed in breast

cancer patients in stages 1, 2, and 3. In terms of tumor

histology, PTK2 mRNA expression was higher in patients

with breast cancer classified as LDC, ILC, mixed, other, and

medullary than the expression in other classification categories.

The expression of PTK2 in LDCs was higher than those in ILCs,

mucinous cells, and metaplastic cells. In addition, PTK2 mRNA

expression was significantly increased in both TP53-mutant and

TP53-nonmutant breast cancer patients compared with that in

normal controls. The expression of PTK2 in TP53-mutant cells

was higher than that in TP53-nonmutant cells (Figure 2).

High PTK2 expression is associated with
poor prognosis in breast cancer

The expression level of PTK2 is closely related to breast

cancer progression. We subsequently tested the prognostic value

of PTK2. According to the Kaplan‒Meier survival curves, breast

cancer patients with high PTK2 expression exhibited poor overall

survival (OS) (Figure 3A), but disease-specific survival (DSS) and

progression-free interval (PFI) were not affected (Figures 3B,C).

Furthermore, according to the PrognoScan online tool, elevated

PTK2 expression was significantly associated with poorer OS,

DSS, and recurrence-free survival (RFS) in the GSE9893,

GSE3494, and GSE1456 cohorts, respectively (Figures 3D–F).

The results suggest that PTK2 is significantly correlated with the

prognosis of breast cancer.

Genomic alterations of PTK2 and the gene
and protein networks

Given that the genomic alteration of PTK2 is pathogenic, the

cBioPortal database was used to investigate the genetic alteration of

PTK2. PTK2 alterations were found in 28 of 360 patients (19%)

using the database (Figure 4A). Among these patients, PTK2 gene

alterations were mainly amplified in breast cancer, invasive breast

cancer, andmetastatic breast cancer (Supplementary Figure S2A). In

addition, we assessed the association of PTK2 gene alterations with

the survival of breast cancer patients. There was a significant

relationship between overall survival (OS) and relapse-free

survival (RFS) of breast cancer patients with PTK2 gene

alterations, but not with disease-free survival (Supplementary

Figure S2B). In addition, the gene–gene interaction network for

PTK2 and the altered neighboring genes was constructed using

GeneMANIA. The results showed that the 20 most frequently

altered genes were closely correlated with PTK2. Functional

analysis suggested that these genes were significantly associated

with cell–substrate adhesion (Figure 4B). A protein–protein

FIGURE 2
Box plot evaluating PTK2 expression of patients with breast cancer according to different clinical characteristics using the UALCANdatabase. (A)
Nodal metastasis, (B) tumor stage, (C) breast cancer subclasses, (D) age, (E) T53 mutation status, and (F) gender.
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interaction network of PTK2 was generated using the STRING

database, and the strongest interactions were found with the PXN,

GRB2, ITGB1, BCAR1, CRK, VCL, ITGB3, PTEN, PIK3R1, and

SRC proteins (Figure 4C).

Enrichment analysis of PTK2 gene co-
expression network in breast cancer

To understand the biological significance of PTK2 in breast

cancer, we analyzed the positively and negatively correlated co-

expressed genes of PTK2 in breast cancer utilizing the

LinkedOmics database. As shown in Figure 5A, we found that

5,584 genes were positively correlated with PTK2 and that

7,984 genes were negatively correlated with PTK2

(FDR <0.05). The top 50 significant genes with positive

PTK2 correlations (Figure 5B) and negative correlations

(Figure 5C) are shown in the heatmap. As shown in

Figure 5D, Gene Ontology analysis carried out by GSEA

revealed that PTK2 co-expressed genes were mainly involved

in the following biological processes (BPs): chromosome

segregation, meiotic cell cycle, organelle fission, DNA

replication, protein localization to chromosome, protein

localization to endoplasmic reticulum, myeloid dendritic cell

activation, interleukin-8 production, NADH dehydrogenase

complex assembly, and the protein activation cascade. In

terms of cellular components (CCs), the chromosomal region,

condensed chromosome, spindle, replication fork, nuclear

periphery, extracellular matrix, protein–lipid complex, collagen

trimer, respiratory chain, and NADH dehydrogenase complex

were the most prominent (Supplementary Figure S3A). In terms

of molecular functions (MFs), histone binding, single-stranded

DNA binding, double-stranded RNA binding, ATPase activity,

helicase activity, extracellular matrix structural constituent,

structural constituent of ribosome, oxidoreductase activity,

acting on peroxide as acceptor, serine hydrolase activity, and

antioxidant activity were the most significant (Supplementary

Figure S3B). The KEGG pathway analysis showed that PTK2 and

co-expressed genes were significantly enriched in homologous

recombination, mRNA surveillance pathway, ribosome

FIGURE 3
Prognostic value of PTK2 in breast cancer. (A–C) Survival curves of OS, DSS, and PFI from the TCGA database. (D–F) Survival curves using the
PrognoScan database are shown for OS, DSS, and RFS.
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biogenesis in eukaryotes, oocyte meiosis, RNA transport, cell

cycle, ribosome, complement, and coagulation cascades,

Staphylococcus aureus infection, hematopoietic cell lineage,

and arachidonic acid metabolism (Figure 5E).

Correlation between PTK2 expression and
immune signatures in breast cancer

Tumor-infiltrating lymphocytes have been considered to be

an independent predictor of cancer prognosis. Consequently, to

deepen the understanding of PTK2 crosstalk with the immune

response, we used the TIMER database to validate the

relationship between PTK2 expression and diverse immune

signatures in breast cancer. As shown in Figure 6A, PTK2 was

positively correlated with infiltrating levels of CD8+ T cells, CD4+

T cells, macrophages, neutrophils, and dendritic cells. However,

PTK2 CNV was also found to be significantly correlated with the

infiltration levels of CD4+ T cells, macrophages, neutrophils, and

dendritic cells (Figure 6B). We estimated the correlation between

PTK2 and immune infiltration using ssGSEA. Notably,

PTK2 was correlated with the infiltration levels of most

immune cells (Figure 6C). In addition, PTK2 was significantly

correlated with the gene markers of B cells, T cells, CD8+ T cells,

monocytes, tumor-associated macrophages (TAMs),

M1 macrophages, M2 macrophages, neutrophils, natural killer

(NK) cells, and dendritic cells (Table 1).

Methylation analysis of PTK2 in breast
cancer

To further explore the potential role of PTK2 in breast cancer

tumorigenesis, the methylation level of PTK2 was assessed in

FIGURE 4
Genomic alterations of PTK2 in breast cancer. (A)Overview of genomic alterations of the PTK2 in breast cancer using OncoPrint schematic. (B)
Gene–gene interaction network of PTK2 was constructed using GeneMania. (C) PPI network of PTK2 was generated using STRING.
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breast cancer. As shown in Figure 7A, the methylation level of the

PTK2 gene in breast cancer was higher than that in normal tissue.

In addition, it was also found that the methylation levels of breast

cancer tumor stages 1–3 were higher than those of normal tissue

(Figure 7B), and invasive duct carcinoma, invasive lobular

carcinoma, and mixed breast cancer showed higher

methylation expression than normal breast tissue (Figure 7C).

We then analyzed the correlation between PTK2 expression and

methylation levels. As shown in Figure 7D, PTK2 mRNA

expression was positively correlated with DNA methylation.

The MethSurv database was used to further validate the

higher methylation level in breast cancer. As shown in

Figure 7E, PTK2 has 12 methylation sites, of which

cg23913941, cg10996527, cg09722517, cg06944982,

cg24143495, cg17957094, and cg11559446 have the highest

methylation level. Among 12 CpG sites of PTK2, cg11398680,

cg11559446, cg23913941, and cg24143495 were associated with

poor prognosis in breast cancer patients (Table 2).

PTK2-related ceRNA network
construction in breast cancer

With increasing evidence that the lncRNA–miRNA–mRNA

ceRNA network plays a critical role in multiple human cancers,

we sought to analyze and construct a breast cancer ceRNA

network involving PTK2. A total of 106, 47, and

11 PTK2 target miRNAs were analyzed and predicted using

FIGURE 5
PTK2 co-expressed genes and functional enrichment analysis (LinkedOmics). (A) Volcano plot of co-expressed profiling of PTK2 in breast
cancer; red (positive) and green (negative). (B,C) Heat maps showing the top 50 positively and 50 negatively correlated genes with PTK2 in breast
cancer. The BP (D) and KEGG (E) of PTK2 were analyzed by LinkedOmics.
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three respective databases: PITA, miRmap, and TargetScan. The

predicted results of PTK2 target miRNAs in PITA, miRmap, and

TargetScan software are shown in the Venn diagram (Figure 8A).

A total of six target miRNAs were found in the database: hsa-

miR-199a-5p, hsa-miR-7-5p, hsa-miR-135a-5p, hsa-miR-

138–5p, hsa-miR-410–3p, and hsa-miR-505–3p. In addition,

we also analyzed the correlation between target miRNA and

PTK2 expression and screened out a miRNA that was more

suitable for ceRNA conditions. The expression levels of hsa-miR-

199a-5p (r = −0.124, p < 0.0001) and hsa-miR-410–3p

(r = −0.175, p < 0.0001) were negatively correlated with

PTK2 expression (Figure 8B). We also used TargetScan

software to predict the potential binding sites of PTK2 and

target miRNAs (Figure 8B). Moreover, we further predicted

lncRNAs that might bind to the targets hsa-miR-199a-5p and

hsa-miR-410–3p using the miRNet2.0 and starBase online

databases and presented them in a Venn diagram (Figures

9A,B). The regulatory network of lncRNA–miRNA (hsa-miR-

199a-5p)–mRNA (PTK2) and lncRNA–miRNA (hsa-miR-

410–3p)–mRNA (PTK2) is shown in Figure 9C.

Effects of PTK2 knockdown on the
proliferation and migration in breast
cancer cells

Next, we performed in vitro experiments to explore the

effects of PTK2 on the biological behavior of breast cancer.

We first examined PTK2 expression in breast cancer cell lines

(MCF-7, BT-549, and MDA-MB-231) and the normal

human mammary epithelial cell line, MCF-10A. The

results revealed that PTK2 mRNA expression level was

significantly increased in MCF-7, BT-549, and MDA-MB-

231 compared with MCF-10A. Subsequently, MCF-7 was

transfected with siRNA (si-PTK2 #1, si-PTK2 #2) to

knockdown PTK2 expression. As shown in Figure 10B, the

PTK2 mRNA level in MCF-7 cells was significantly decreased

after transfection with si-PTK2 #1, with si-PTK2

#1 knockdown efficiency being the highest. Meanwhile,

the PTK2 protein level in MCF-7 cells was significantly

decreased after transfection with si-PTK2 #1 (Figure 10C).

CCK8 assay was used to assess the effect of PTK2 on the

FIGURE 6
Correlations of PTK2 expression with immune infiltration level in breast cancer. (A) PTK2 is significantly associated with tumor purity and is
correlated with the infiltration of different immune cells using the TIMER database. (B) PTK2 CNV affects the infiltrating levels of CD4+ T cells,
macrophages, neutrophils, and dendritic cells in breast cancer. (C) PTK2 expression has a significant correlation with the infiltration of immune cells
in breast cancer using the ssGSEA analyses. *p < 0.05; **p < 0.01; ***p < 0.001.
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proliferation of MCF-7 cells, and results suggested that cell

proliferation was significantly decreased in the si-PTK2

group (Figure 10D). Colony formation assay showed that

knockdown of PTK2 suppressed the clone-forming

capability of MCF-7 cells (Figure 10E). Wound healing

assay showed that the cell migration ability of the si-PTK2

group was significantly reduced compared with that of the si-

NC and control groups (Figure 10F). Collectively, these

results indicated that the knockdown of PTK2 could

suppress proliferation and migration in MCF7 cells.

Discussion

Breast cancer remains the most common cancer among

women worldwide with high rates of recurrence and disease

progression (Jemal et al., 2012; Anastasiadi et al., 2017).

Therefore, there is an urgent need to develop reliable

diagnostic, prognostic, and therapeutic biomarkers for

breast cancer. In this study, we explored the prognostic

value and biological functions of PTK2 in breast cancer

using various public databases. A growing amount of

TABLE 1 Correlation analysis between PTK2 and gene markers of immune cells in breast cancer by TIMER.

Description Gene markers COAD

None Purity

Cor p Cor p

B cell CD19 −0.08839 0.003348 −0.09285 0.003375

CD79A −0.10338 0.000595 −0.10656 0.000761

T cell (general) CD3D −0.13937 3.49E-06 −0.13548 1.80E-05

CD3E −0.10682 0.000387 −0.10027 0.001541

CD2 −0.06981 0.020584 −0.06365 0.044733

CD8+T cell CD8A −0.05036 0.095041 −0.03971 0.210697

CD8B −0.09437 0.001728 −0.08105 0.010539

CD86 0.016308 0.588989 0.028653 0.366594

CSF1R −0.11389 0.000154 −0.11095 0.000455

TAM CCL2 −0.00687 0.819946 −0.00354 0.911194

CD68 −0.01119 0.710859 −0.00157 0.960514

IL10 0.07919 0.008599 0.076086 0.016374

M1 macrophage IRF5 0.052933 0.07929 0.047974 0.130474

PTGS2 −0.00977 0.746287 −0.00586 0.853481

NOS2 0.028841 0.339251 0.03489 0.271541

M2 macrophage CD163 0.081293 0.006985 0.094037 0.002987

VSIG4 −0.03805 0.207337 −0.03162 0.319007

MS4A4A 0.004292 0.88692 0.013319 0.67476

Neutrophils CEACAM8 0.018107 0.548559 0.018593 0.558018

ITGAM −0.05845 0.052638 −0.05024 0.113223

CCR7 −0.05281 0.080001 −0.04714 0.137308

Natural killer cell KIR2DL1 −0.0171 0.571048 −0.01495 0.637722

KIR2DL3 0.002502 0.933931 −0.00878 0.78202

KIR2DL4 −0.00051 0.986422 0.016328 0.606951

KIR3DL1 −0.01973 0.513238 −0.01226 0.699244

KIR3DL2 −0.01648 0.585005 −0.01677 0.59724

KIR3DL3 0.006761 0.822772 0.006832 0.829587

KIR2DS4 −0.01138 0.706045 0.00992 0.754646

Dendritic cell HLA-DPB1 −0.26164 1.13E-18 −0.25584 2.47E-16

HLA-DQB1 −0.16645 2.81E-08 −0.15597 7.66E-07

HLA-DRA −0.09266 0.002096 −0.08427 0.007822

HLA-DPA1 −0.11428 0.000146 −0.1031 0.001126
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FIGURE 7
DNA methylation level and its prognostic value of PTK2 in breast cancer. (A) Promoter methylation of PTK2 in normal and cancer tissues from
TCGA-breast cancer data. (B,C) Promoter methylation level of PTK2 in breast cancer of different tumor stages and tumor types using the UALCAN
database. (D) Correlation between PTK2 methylation and its expression level. (E) Heat map of DNA methylation at CpG sites in the PTK2 gene using
the MethSurv database.
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research suggests that PTK2 can promote cell proliferation,

motility, adipogenesis, metastasis, glucose consumption, and

glutathione amino-dependence (Zhang and Hochwald, 2014).

PTK2 is considered a positive regulator in the progression and

metastasis of various types of cancer. Overexpression of

PTK2 has been described in a diverse assortment of human

tumors, including breast cancer (Sethuraman et al., 2016),

hepatocellular carcinoma, and head and neck cell carcinoma

(Fan et al., 2019).

PTK2 is highly expressed in diverse cell lines and different

tissues of many human tumors (de Ruiter and Willems, 2016;

Skinner et al., 2016). In addition, PTK2 overexpression is

associated with poor prognosis in several tumor types

(Miyasaka et al., 2001; Fujii et al., 2004; Itoh et al., 2004). In

this study, we used bioinformatics analysis of the TIMER,

UALCAN, and TCGA public databases and found that

PTK2 expression levels in breast cancer tissues were higher

than those in normal breast tissues. Analysis of the TIMER

database found that PTK2 was highly expressed in 13 cancers,

and the expression of PTK2 in breast cancer samples was

significantly increased. In addition, to better understand

whether PTK2 could affect the progression of breast cancer,

we explored the association between PTK2 and

clinicopathological characteristics in breast cancer. High

PTK2 expression was associated with cancer stage, tumor

histology, TP53-mutant, and meno-menopausal pause status.

Next, Kaplan–Meier survival curves and PrognoScan analysis

showed that PTK2 was highly expressed in breast cancer and was

related to poor prognosis. These lines of evidence suggest that

PTK2 has a crucial role in tumor occurrence and development.

To unravel the biological functions of PTK2, the

LinkedOmics database was used to perform co-expression

analysis and functional enrichment in breast cancer. Through

GO and KEGG pathway analyses of 100 genes related to PTK2,

PTK2 co-expression was found to be mainly related to

chromosome segregation, meiotic cell cycle, organelle fission,

and DNA replication. KEGG pathway analysis showed that the

PTK2 co-expression was mainly related to the cell cycle signaling

pathway. Mutations and/or dysregulation in DNA methylation

will affect tumor progression, and Fan et al. (2019) found that the

methylation level of the PTK2 promoter regulated the expression

level of PTK2 in hepatocellular carcinoma. Next, we explored the

DNA methylation level of PTK2 in breast cancer. Our results

showed that PTK2 overexpression might be related to

PTK2 hypomethylation and that PTK2 mRNA expression was

positively correlated with the level of methylation. In addition, we

found that PTK2 methylation at certain CpG sites was correlated

with poor prognosis in breast cancer patients, indicating that

methylation levels of PTK2 act as a powerful prognostic

biomarker.

An increasing number of studies have shown that lncRNAs

act as competing endogenous RNAs (ceRNAs) by decoying

miRNAs to regulate mRNA expression. As expected,

perturbation of these interactive networks leads to various

diseases, including cancer. Zhang et al. (2020) found that

miR-520d-5p overexpression can significantly inhibit the

expression of PTK2, whereas downregulation of miR-520d-5p

can promote the expression of PTK2 in clear cell renal cell

carcinoma. Thus, we constructed a ceRNA network based on

PTK2 expression. In this study, three databases were used to

predict upstream miRNAs of PTK2, but only two miRNAs (hsa-

miR-199a-5p and hsa-miR-410–3p) were significantly negatively

correlated with PTK2 in breast cancer. Ahmadi et al. reported

that hsa-miR-199a-5p had a causative effect on tumorigenesis in

lung cancer and possibly other cancer types. Qi et al. (2021)

reported that hsa-MIR-410–3p expression was decreased in head

and neck squamous cell carcinomas. Next, we predicted the

upstream lncRNAs of these key miRNAs. A total of

16 lncRNAs (CDKN2B-AS1, DLEU1, DLX6-AS1, EBLN3P,

FIRRE, KIRRIL3-AS3, LINC00665, LINC01123, LINC01588,

TABLE 2 Significant prognostic values of CpG in PTK2.

Name UCSC_RefGene_group Relation_to_UCSC_CpG_island HR CI p-value

cg01806808 5’UTR Island 0.741 (0.44; 1.249) 0.260258

cg03277652 5’UTR Island 0.67 (0.426; 1.055) 0.083719

cg06119711 5’UTR Island 0.795 (0.518; 1.22) 0.29328

cg06944982 Body Open_Sea 0.855 (0.537; 1.359) 0.507044

cg09722517 Body Open_Sea 1.491 (0.895; 2.484) 0.124797

cg10996527 5’UTR Open_Sea 0.751 (0.464; 1.215) 0.243985

cg11398680 TSS1500 Island 0.586 (0.381; 0.902) 0.01517

cg11559446 Body Open_Sea 0.371 (0.241; 0.572) 7.17E-06

cg14930586 TSS1500 S_Shore 1.453 (0.986; 2.141) 0.058642

cg17957094 5’UTR; Body Open_Sea 0.872 (0.585; 1.3) 0.501601

cg23913941 Body Open_Sea 0.608 (0.41; 0.9) 0.01291

cg24143495 Body Open_Sea 1.783 (1.014; 3.135) 0.044609
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NNT-AS1, RPAPR-AS1, SNHG12, TBC1D3P1-DHX40P1,

TMPO-AS1, and TUG1) were identified as key lncRNAs. It

was recently shown that the expression level of lncRNA

CDKN2B-AS1 was notably upregulated in lung cancer, and

the overexpression of CDKN2B-AS1 could promote tumor

cell proliferation and invasion (Wang et al., 2020).

DLEU1 was upregulated in non-small cell lung cancer tissues

and promoted the proliferation, migration, and invasion of

tumor cells (Zhang et al., 2019). These lncRNAs, miRNAs,

and genes form the ceRNA regulatory network, which is

involved in the development of breast cancer. Taken together,

PTK2 upregulation is strongly associated with poor prognosis,

clinicopathological features, and methylation. In addition, we

established a ceRNA network through the database. Therefore,

this study provides ideas for further research on breast cancer

treatment. The current study is an initial part of a larger study.

We will perform further validation and experiments with

independent datasets in the future.

In conclusion, our study highlighted the value of PTK2 as a

potential novel prognostic biomarker for breast cancer.

FIGURE 8
Predicting miRNAs targeting PTK2 in breast cancer. (A) Prediction results of PTK2 targets in the three databases PITA, miRmap, and TargetScan
are shown by a Venn diagram. (B) starBase online database was used to analyze the correlation between PTK2 and target miRNAs. (C) TargetScan
predicts the potential binding site of PTK2 to the target miRNAs.
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FIGURE 9
Construction of lncRNA and ceRNA network in breast cancer. The Venn diagram shows the target lncRNA of hsa-miR-199a-5p (A) and hsa-
miR-410-3p (B). Red (negative correlation with miRNAs). (C) Hypothesis of the lncRNA–miRNA–mRNA (PTK2) regulatory network shown by a
Sankey diagram.
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FIGURE 10
Knockdown of NR2F6 inhibits malignant phenotypes in MCF7 cells. (A) PTK2 mRNA expression level in breast cancer cell lines. (B) Knockdown
efficacy of PTK2 siRNAs in MCF7 cells detected by RT–qPCR. (C) PTK2 protein expression level of MCF7 cells in control, si-NC, and si-PTK2 groups.
(D) CCK8 was performed to estimate the effects of PTK2 knockdown on MCF7 cell proliferation. (E) Colony forming ability of MCF7 cells transfected
with si-PTK2. (F) Wound healing assay after transfection with PTK2 siRNA or control siRNA in MCF7 cells. Quantitative data are indicated as
mean ± SEM (n = 3). *p < 0.05, **p < 0.01, and ***p < 0.001 vs. si-NC and control groups.
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PTK2 knockdown could suppress the proliferation and

migration ability of MCF7 cells. Moreover, we explored the

underlying evidence indicating that hepcidin might regulate

the cell cycle in breast cancer patients. The construction of a

ceRNA network of PTK2 indicates that PTK2 may be involved in

a variety of molecular mechanisms in breast cancer.
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