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Intrinsically disordered proteins (IDPs) participate in many biological processes

by interacting with other proteins, including the regulation of transcription,

translation, and the cell cycle. With the increasing amount of disorder sequence

data available, it is thus crucial to identify the IDP binding sites for functional

annotation of these proteins. Over the decades, many computational

approaches have been developed to predict protein-protein binding sites of

IDP (IDP-PPIS) based on protein sequence information. Moreover, there are

new IDP-PPIS predictors developed every year with the rapid development of

artificial intelligence. It is thus necessary to provide an up-to-date overview of

these methods in this field. In this paper, we collected 30 representative

predictors published recently and summarized the databases, features and

algorithms. We described the procedure how the features were generated

based on public data and used for the prediction of IDP-PPIS, along with the

methods to generate the feature representations. All the predictors were

divided into three categories: scoring functions, machine learning-based

prediction, and consensus approaches. For each category, we described the

details of algorithms and their performances. Hopefully, our manuscript will not

only provide a full picture of the status quo of IDP binding prediction, but also a

guide for selecting different methods. More importantly, it will shed light on the

inspirations for future development trends and principles.
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1 Introduction

With the rapid development in the protein field, there are increasingly number

of intrinsically disordered proteins (IDPs) and intrinsically disordered protein

regions (IDRs) identified in viruses, bacteria, archaea, and eukaryotes (Dubreuil

et al., 2019).

IDPs lack stable tertiary structure under physiological conditions and are highly

flexible compared with globular proteins (Uversky et al., 2008). Therefore, when

interacting with other proteins, IDP can participate in various physiological processes
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(Uversky et al., 2005) including cell signal transduction and

regulation through conformational changes. IDPs are also

widely involved in diseases. For example, type 1 susceptible

protein (BRCA1) involved in the occurrence of breast cancer

participates in the interaction mainly through disordered

regions (Uversky et al., 2008), and α -synuclein folds from

disordered state in acidic or high temperature environment,

which leads to neurodegenerative diseases (Uversky et al.,

2008).

IDPs take part in protein-protein interactions through

one-to-many or many-to-one mode (Uversky et al., 2008).

Studies found that the protein-protein interaction in which

IDP participates is often achieved through coupled folding and

binding (Dyson and Wright, 2002). For example, CREB

protein forms a spiral structure by binding CBP protein

(Radhakrishnan et al., 1997), and the binding of

p53 protein with MDM2 protein leads to the protein

folding from coil to spiral (Kussie et al., 1996). It has been

found that the binding of IDP with corresponding proteins

will lead to the transition from disorder to order. For instance,

the disordered regions of E-cadherin turn to order format after

interacting with β-catenin (Dyson and Wright, 2002); the

disordered protein DFF45 interacts with DFF40 to

transform into an ordered state (Zhou et al., 2001); the

Furin-like cleavage site exists at the S1/S2 junction of the

SARS-CoV-2 Spike (FLCSSpike), and the “disorder-to-order

transition” of Spike-Furin complex has been found (Roy et al.,

2022). In addition, some ordered proteins interacting with

other molecules leads to the unfolding of self-inhibiting

domains and activates biological functions (Uversky, 2013).

All these examples above show that protein interaction sites

play an important role in the transition between disordered

protein and ordered protein.

The identification of protein-protein interaction sites is

a key to deciphering the functional relationship between

proteins and biological processes, which is one of the most

important tasks for both experimental and computational

approaches. The commonly used experimental methods to

pinpoint binding sites in disordered proteins include nuclear

magnetic resonance spectroscopy (NMR) and non-

equilibrium transient kinetic techniques (Mollica et al.,

2016). NMR identifies binding sites through the changes in

chemical shifts and residual dipole coupling (RDC) caused by

changes in the magnetic environment during binding (Jensen

et al., 2011); non-equilibrium transient kinetic technique

refers to identifying binding sites by measuring the changes

in optical signals that occur during the binding process of

disordered proteins (Mollica et al., 2016). Large efforts have

also been devoted to gaining a better knowledge of disordered

protein interactions by high throughput methodologies

through amino acid substitutions, such as binding

energetics study in CcdA (Chandra et al., 2022), mutational

studies in c-Myb (Giri et al., 2013), ACTR (transcriptional co-

activator for thyroid hormone and retinoid receptors)

(Dogan et al., 2013), NCBD domain of CBP (CREB binding

protein) (Dogan et al., 2013), Hif 1α (hypoxia inducible factor

1α) (Lindström et al., 2018) as well as MazE6 antitoxin

(Chandra et al., 2021). These studies greatly contributed to

obtaining a thorough understanding of disordered protein

interactions.

Besides the experiment methods, there are a series of

computational approaches developed for IDP protein

interaction sites (IDP-PPIS) prediction such as MoRFpred

(Disfani et al., 2012), SLiMPred (Mooney et al., 2012),

ANCHOR (Dosztanyi et al., 2009; Mészáros et al., 2009)

and SPINE-D (Zhang et al., 2013). With the increasing

amount of disordered protein data available, computational

approaches to predict IDP-PPIS are becoming more and more

important to aid the expensive and time-consuming

experiments to annotate the functional properties of

disordered proteins. Predictors on IDP-PPIS are mainly

designed for predicting several sub-types of disorder

binding sites including molecular recognition features

(MoRFs), short linear motifs (SLiMs), disordered protein-

binding regions (DPBRs), and semi-disordered regions

(Katuwawala et al., 2019b). Molecular recognition features

(MoRFs) are short disordered fragments involved in state

transitions through four types (α-MoRFs, β-MoRFs, ι-
MoRFs and complex-MoRFs) during disordered protein

binding activities (Mohan et al., 2006). Short linear motifs

(SLiMs) are short disordered protein fragments that bind to

the structural domains of proteins, consisting of 3–10 amino

acid residues, and the disordered binding regions operated by

SLiMs andMoRFs are highly overlapping (Mooney et al., 2012;

Weatheritt and Gibson, 2012). Disordered protein-binding

regions (DPBRs) are more general binding fragments that

include not only short binding regions but also longer

fragments (Katuwawala et al., 2019b). Semi-disordered

regions refer to regions with a 50% probability of being

predicted to be disordered regions, and its functional

properties can be used to further predict MoRFs

(Katuwawala et al., 2019b).

There are several review articles (Katuwawala et al., 2019a;

Katuwawala et al., 2019b) on the predictors of IDP-PPIS have

been published previously, but most lack systematic

descriptions of the factors affecting the performance of the

predictors. Moreover, it is time to conclude the latest

predictors due to the rapid update of the IDP interaction

site predictors. For these purposes, we select 30 predictors of

IDP-PPIS published up to January 2022 and provide a

comprehensive description of the database, features, and

algorithms used in the predictor construction process. This

paper gives a detailed overview of the status of the predictors

of IDP-PPIS and thus provides new insights and inspiration

for the development and application of new computational

approaches.
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FIGURE 1
The work flow of each type of methods Figure 1 illustrates main three categories described in this article: (A) scoring function-based methods
(B) machine learning-based methods and (C) consensus-based methods. The key steps for each type of methods are depicted in the diagram.
Scoring function-based methods in (A), we use ANCHOR work flow to represent how scoring function works. Machine learning-based methods
perform the prediction using various types ofmachine learningmodels like SVM and Neural Network based on features extracted from different
perspectives. Consensus-based methods can predict IDP binding site by weighting different prediction models and combining them optimally. The
final results show in (A) was processed by (Mészáros et al., 2018). The final results show in (B) was processed by (Malhis et al., 2016), The final results
show in (C) was processed by (Barik et al., 2020).
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2 Overview of the predictors of
intrinsically disordered protein-
protein interaction sites

Figure 1 illustrates the common scheme for developing an

IDP-PPIS predictor. Firstly, datasets are curated and selected

from large databases and/or published papers. Then, features are

extracted from protein sequences using different methods. Then,

different algorithms are applied to train and optimize the

predictors to output a real-valued amino acid propensity score

or binary prediction. Here, we classify the predictors into three

categories based on the algorithms used: scoring functions,

machine learning-based methods, and consensus-based

approaches.

2.1 Databases

From Figure 1, the first key aspect of developing the predictor

is the selection of a sufficient amount of high-quality data in a

standardized format. We present databases widely used in

predictors and describes some relevant databases.

The Database of Protein Disorder (DisProt) (Sickmeier et al.,

2007) is the first public available database on IDPs and IDRs

which includes experimentally annotated information on

multiple types of proteins. DisProt is one of the common

databases for IDP-PPIS predictors, and the latest version is

DisProt 9, covering more than 2000 proteins and nearly

5,000 functional annotations (Quaglia et al., 2021). DisProt is

available at https://www.disprot.org/.

Disordered protein regions are often characterized by the

missing electron density found by X-ray (DeForte and Uversky,

2016). Several different X-ray experiments are used to examine

the same protein to achieve a more stable definition of disordered

regions (Monzon et al., 2020). Therefore, The Protein Data Bank

(PDB) (Burley et al., 2018), the largest protein 3D structure

database is often used for obtaining the contact details of disorder

regions in structured proteins. PDB is available at https://www.

rcsb.org/.

The missing annotations are related to the inherently

disordered protein regions. Several methods implemented

UniProt (Apweiler et al., 2010) for disordered prediction, e.g.,

MobiDB-lite (Bateman et al., 2021). UniProtKB (Apweiler et al.,

2010) is a protein database managed by experts, which consists of

UniProtKB/Swiss-Prot containing manually annotated data.

UniProt (Apweiler et al., 2010) is available at https://www.

uniprot.org/.

Intrinsically Disordered proteins with Extensive Annotations

and Literature (IDEAL) (Fukuchi et al., 2011) is another

commonly used database for disordered protein studies,

covering reliable evidence of disordered proteins. In particular,

annotations for protein binding regions are helpful for binding

sites prediction. There are more than 10,000 non-redundant

IDRs in IDEAL as of October 2021. IDEAL (Fukuchi et al.,

2013) is available at http://www.ideal.force.cs.is.nagoya-u.ac.jp/

IDEAL/.

The Disordered Binding Site (DIBS) (Schad et al., 2017) is a

large database storing disordered protein complexes, primarily in

combination with ordered proteins. The synthesized information

provided on protein interactions is an important resource for

studying binding sites. DIBS is available at http://dibs.enzim.ttk.

mta.hu/.

The Eukaryotic Linear Motif (ELM) (Dinkel et al., 2011;

Kumar et al., 2021) is the first database focused on collecting,

storing and providing experimentally confirmed short linear

motif (SLiM) information and is an important repository for

studying protein-protein interactions of SLiM. ELM is available

at http://elm.eu.org.

MobiDB (Piovesan et al., 2020) is a database of IDPs

commonly used by predictors, forming four-level annotations

of ’ CDHP ’ (curated, derived, homology, prediction) by

connecting other databases and applying various tools. The

latest version is MobiDB 4.1, which contains more than

200 million proteins. MobiDB is available at http://mobidb.

bio.unipd.it/.

The Structural Classification of Proteins (SCOP) (Andreeva

et al., 2019) is a database for storing protein domains. Due to the

differences in the evolutionary properties and structural

similarity of proteins. Protein domains are divided into

various categories. There are six classification levels in SCOP

which IUPR is related to IDP. SCOP is available at http://scop.

mrc-lmb.cam.ac.uk.

There are some relevant and commonly used databases such

as Database of Disordered Protein Prediction (D2P2) andMutual

Folding Induced by Binding (MFIB). D2P2 (Oates et al., 2012) is

a database for disorder and SCOP domain prediction and

annotation of over 10 million protein sequences by multiple

predictors. D2P2 is more commonly used for the study of protein

disorder and structural relationships. D2P2 is available at http://

d2p2.pro.

MFIB (Fichó et al., 2017) is the database consisting only of

complexes formed by intrinsically disordered proteins, and with

far more data than other similar datasets, it is an important

repository for studying disordered protein interactions. MFIB is

available at http://mfib.enzim.ttk.mta.hu/.

2.2 Features

The second critical part of constructing predictors is to

obtain representative features of disordered protein sequences.

Features integrated by the predictor determine the accuracy of

distinguishing between IDP protein sites and general amino

acid residues. In IDP-PPIS prediction, the most widely used

features include amino acid compositions, predicted structural

features, disorder scores, physicochemical properties,
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evolutionary information, and other features. We summarize

these features and tools to generate these features in Table 1.

2.2.1 Amino acid composition
Amino acid composition (AAC) is the proportion of a

particular amino acid in the whole protein sequence. The

amino acid compositions are distinct among IDR, MoRF,

flanking regions and other protein regions. It is reported that

there are more Ile, Leu, Phe, Tyr, Lys, Arg and Asp enriched and

less Ala and Gly comparing with the normal regions. Meanwhile,

the flanking region includes more Ala, Gly, Glu, Ser and Thr

which turns to promote disorder (Fang et al., 2013; Wang et al.,

2017).

AAC could be calculated by the formula (Wang et al., 2017):

composition(i) � ni
N . i is a particular amino acid; ni is the number

of a particular amino acid; N is the total number of amino acids

in the protein sequence.

2.2.2 Predicted structural features
The rapid structural transformation of disordered proteins

during binding (Uversky and Dunker, 2010) suggests that

the predicted structural characteristics of disordered

proteins can improve the accuracy of binding site

prediction. Commonly used predicted structural features

are: secondary structure, structural motif, solvent accessible

surface area, contact number, hemispheric exposure,

backbone angle, and B-factor.

Molecular recognition feature (MoRF) and short linear motif

(SLim) are involved in protein-protein interaction as a secondary

structure element (Oldfield et al., 2005; Davey et al., 2012b),

including α-helix, β-sheet, curl and other forms. Therefore, using

the secondary structure (SS) of protein as a feature can better

identify the binding sites. Structural motifs (Efimov, 2017) are

folding units formed by the close contact of two or more adjacent

secondary structural elements in three-dimensional space, which

are often used as a structural feature to predict binding sites.

The biophysical properties of disordered protein change

during protein interaction which could be used for IDP-PPIS

prediction. For instance, protein-protein interactions are mainly

achieved through surface contact, and when the protein state is

transformed, the Accessible surface area (ASA) of contact area

changes as well, which helps us to identify the binding site

(Disfani et al., 2012; Heffernan et al., 2015). Contact numbers

(CN) (Yuan, 2005; Heffernan et al., 2015) are also an indicator for

measuring protein solvent exposure, which can effectively

identify protein contact changes in folding state. Hemisphere

exposure (HSE) (Hamelryck, 2005) is a two-dimensional

measure for assessing protein solvent exposure that is superior

to ASA and CN in terms of computational speed and detection

stability. The participation of disordered proteins in protein-

protein interactions leads to a shift in the protein backbone

(Hanson et al., 2019). The functional realization of disordered

proteins is based on their flexible state transitions, and B-factor

(temperature factor) is a feature that assesses protein flexibility

TABLE 1 Common features of intrinsically disordered protein-protein interaction sites predictors.

Categories Features Tools to calculate References of the tools

Amino acid
composition

Amino acid composition composition(i) � ni
N Wang et al. (2017)

Predicted structural
features

Secondary structure PSIPRED & GOR-I & SPIDER2
& SPOT-1D & Porte

Garnier et al. (1996); Jones, (1999); Pollastri and McLysaght, (2004);
Heffernan et al. (2015); Hanson et al. (2018)

Accessible surface area SPIDER2 & SPOT-1D & EDTSurf Xu and Zhang, (2009); Heffernan et al. (2015); Hanson et al. (2018)

Backbone angle SPIDER2 & SPOT-1D Heffernan et al. (2015); Hanson et al. (2018)

Hemispheric exposure SPIDER2 & SPOT-1D Heffernan et al. (2015); Hanson et al. (2018)

Contact numbers SPIDER2 & SPOT-1D Heffernan et al. (2015); Hanson et al. (2018)

B-factor ProDy & PROFbval Schlessinger et al. (2006); Wong and Gsponer, (2019b)

Structural motifs BRNN Mooney et al. (2006)

Disorder scores Disorder scores IUPred & Espritz & VSL2 & DISOPRED2
& DISOclust & MFDp

Ward et al. (2004); Dosztanyi et al. (2005); Peng et al. (2006); McGuffin,
(2008); Mizianty et al. (2010); Walsh et al. (2011)

Physicochemical
properties

Physicochemical
properties

AAindex database Kawashima et al. (2007)

Evolutionary
information

Position-Specific Scoring
Matrix

PSI-BLAST Altschul, (1997)

Bigram feature

Hidden Markov Model HHblits Remmert et al. (2011)

Shannon entropy

Other features The length and location
of IDR

Sequence complexity SEG algorithm Peng and Kurgan, (2015)
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and helps predict disordered protein binding sites (Disfani et al.,

2012; Uversky, 2018).

2.2.3 Disorder scores
Disorder propensity is an important feature for predicting

disordered protein binding sites (Dosztányi et al., 2005), and

could be predicted by many predictors such as IUPred

(Dosztanyi et al., 2005), ESpritz (Walsh et al., 2011), VSL2

(Peng et al., 2006), DISOPRED2 (Ward et al., 2004),

DISOclust (McGuffin, 2008), MFDp (Mizianty et al., 2010).

IUPred (Dosztanyi et al., 2005) calculates total interacting

amino acid pair energy to predict disordered protein regions

based on amino acid composition. ESpritz (Walsh et al., 2011)

predicts three types of disorder regions (X-ray disorder, DisProt

disorder, NMR mobility) based on sequence information using

bidirectional recurrent neural networks (BRNN). VSL2 (Peng

et al., 2006) predictor consists of VSL2-M1 and VSL2-M2, which

solves the problem of heterogeneity in amino acid composition

and sequence properties when predicting disordered proteins.

DISOPRED2 (Ward et al., 2004) predicts disordered regions

using support vector machines based on PSI-BLAST profiles.

DISOclust (McGuffin, 2008) predicts disordered proteins by

identifying conserved errors in fold recognition models.

MFDp (Mizianty et al., 2010) applies three support vector

machines to predict different types of disordered regions

using multifaceted information.

2.2.4 Physicochemical properties
The structure and function of proteins are affected by the

physicochemical properties of amino acids. Disordered proteins

are more hydrophobic than ordered proteins, and disordered

binding sites can be predicted by an increase in the

hydrophobicity (Mészáros et al., 2007). MoRF and linear

motifs have more net charge compared to surrounding

protein fragments (Fuxreiter et al., 2007). Therefore, the

feature of amino acid physicochemical properties is

considered in predictors of disordered protein binding sites.

The physicochemical properties of amino acids can be

obtained from the AAindex database (Kawashima et al.,

2007). The physicochemical and biochemical indexes of amino

acids and amino acid pairs in the AAindex database are derived

from published literature, which includes three parts amino acid

index, substitution matrix and contact potential. In addition, if a

protein sequence has similar average amino acid index with

MoRF sequence, it suggests that the protein sequence is MoRF

(Malhis and Gsponer, 2015). The common physicochemical

properties of amino acids include hydrophobicity, polarity,

polarizability, charge, aliphatic, aromatics, etc (Fang et al.,

2013; Wang et al., 2017).

2.2.5 Evolutionary information
Some studies show that the evolution speed of disordered

regions is often faster than other parts of proteins (Brown et al.,

2002). Davey et al. (2012a) found that SLiM is more conserved

than the surrounding residues and that might be due to protein

interactions are highly related to protein functions. Protein

evolutionary information is also widely used for protein

folding recognition (Lyons et al., 2015), and disordered

proteins show protein folding changes during binding.

Therefore, many predictors applied protein evolutionary

information to identify IDP-PPIS.

Protein evolutionary information is often obtained through

position-specific scoring matrix (PSSM), hidden Markov model

(HMM) profiles and Information entropy. To improve

prediction performance, certain studies use modified PSSM to

enhance the sequence conservation signal, such as

MFSPSSMpred (Fang et al., 2013) by masking, filtering and

smoothing to retain only highly locally conserved information

(Fang et al., 2018), obtained highly locally conserved features by

amplification.

It is shown that using bigram to extract evolutionary features

in natural language processing can reduce redundant features

(Sharma et al., 2013), and also extract local evolutionary features

for the identification of protein folding process (Lyons et al.,

2015). Bigram is also an important feature for identifying IDP-

PPIS.

Protein conservation is closely related to its structure and

function, and the average Shannon entropy is used as a

characteristic of general conservatism in protein. Some studies

have used relative entropy to improve the prediction of protein

functional sites (Wang and Samudrala, 2006), and Shannon entropy

was also applied by (Hanson et al., 2016), to predict IDP-PPIS.

2.2.6 Other features
The length and location of IDRs correlate with general

protein functional classes. Lobley et al. (2007) identified short

disordered fragments involved in protein interactions in the mid

to N-terminal region of GTPase regulatory proteins. FFPred

(Minneci et al., 2013) used this feature to predict the

biological functions of unknown proteins. Therefore, applying

the length and location features of IDRs can improve the

prediction accuracy of IDP binding sites.

Compared with the ordered protein, the sequence complexity

of the disordered protein is lower (Romero et al., 2000), so the

sequence complexity may be an important feature to identify the

binding site of IDP. SEG algorithm (Peng and Kurgan, 2015) is

mainly used to calculate the complexity of protein sequence.

2.3 Algorithms

Algorithm is essential to take the features as input and predict

the IDP-PPIS, which is the core element for each predictor. We

summarize main information about 30 predictors for IDP-PPIS

prediction in Table 2. In this paper, these predictors are classified

into three categories according to algorithms: scoring function
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TABLE 2 Summary of intrinsically disordered protein-protein interaction sites predictors.

Categories Years Predictors References Algorithms Databases Features Performance URL

Scoring
function based

2010 retro-MoRFs Xue et al.
(2010b)

Sequence
alignment

RNase E and
p53 and SRC-3
and SwissProt
and PDB

Disorder scores and
Sequence similarity

Not Available Not Available

2009 ANCHOR Dosztanyi et al.
(2009);
Mészáros et al.
(2009)

Energy
estimation

Disprot
and PDB

Pairwise interaction
energy

Accuracy 0.67 http://anchor.
elte.hu/

2018 ANCHOR2 Mészáros et al.
(2018)

Energy
estimation

DisProt and
PDB and
UniProt and
DIBS

Pairwise interaction
energy

AUC 0.901 http://iupred2a.
elte.hu

Machine-
learning based

2012 MoRFpred Disfani et al.
(2012); Oldfield
et al. (2018)

SVM PDB and
UniProtKB and
Published
literature

B-factors and ASA
and Disorder scores
and Physicochemical
properties and PSSM

AUC 0.697 http://biomine.cs.
vcu.edu/servers/
MoRFpred/

2013 MFSPSSMpred Fang et al.
(2013)

SVM PDB and
UniProt and
Published
literature

AAC and PSSM AUC 0.758 Not Available

2014 DISOPRED3 Jones and
Cozzetto,
(2014)

SVM DisProt and
PDB and
UniProt

AAC and PSSM and
The length and
location of IDR

MCC 0.126 http://bioinf.cs.ucl.
ac.uk/disopred

2015 MoRFCHiBi Malhis and
Gsponer,
(2015)

SVM PDB and
UniProtKB and
Published
literature

AAC and
Physicochemical
properties

AUC 0.770 https://morf.msl.
ubc.ca/index.xhtml

2016 MoRFCHiBiLight Malhis et al.
(2016)

Bayes rule PDB and
UniProtKB and
Published
literature

Disorder scores and
Physicochemical
properties

AUC 0.868 http://www.chibi.
ubc.ca/faculty/
joerg-gsponer/
gsponer-lab/
software/morf_
chibi/

2016 MoRFCHiBiWeb Malhis et al.
(2016)

Bayes rule PDB and
UniProtKB and
Published
literature

Disorder scores and
Physicochemical
properties and PSSM

AUC 0.894 http://www.chibi.
ubc.ca/faculty/
joerg-gsponer/
gsponer-lab/
software/morf_
chibi/

2016 fMoRFpred Yan et al.
(2016)

SVM PDB and
UniProtKB and
Published
literature

AAC and SS and
Disorder scores and
Physicochemical
properties

AUC 0.59–0.67 http://biomine.ece.
ualberta.ca/
fMoRFpred/

2016 Predict-MoRFs Sharma et al.
(2016)

SVM PDB and
UniProt

HMM AUC 0.702 https://github.com/
roneshsharma/
Predict-MoRFs

2016 PSSMpred Fang et al.
(2016)

SVM Disprot and
PDB and
UniProtKB
and ELM

PSSM AUC 0.758 http://centos.
sdutacm.org/fang/
SLiMPed.php

2017 Yu et al Wang et al.
(2017)

SVM PDB and
UniProtKB/
Swiss-Prot

AAC and SS and ASA
and Physicochemical
properties and KNN
score

AUC 0.9679 Not Available

2018 Fang et al Fang et al.
(2018)

SVM PDB and
UniProt

PSSM AUC 0.713 Not Available

2018 MoRFPred-plus Sharma et al.
(2018a)

SVM DisProt and
PDB and
UniProtKB and
Published
literature

Physicochemical
properties and HMM

AUC 0.821 https://github.com/
roneshsharma/
MoRFpred-plus/
wiki/MoRFpred-
plus:-Download

(Continued on following page)
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TABLE 2 (Continued) Summary of intrinsically disordered protein-protein interaction sites predictors.

Categories Years Predictors References Algorithms Databases Features Performance URL

2007 alpha-MoRFpred Cheng et al.
(2007)

Feed-forward
neural networks

PDB and
SwissProt

SS and Disorder
scores and
Physiochemical
properties and
Shannon’s entropy

Sensitivity 0.87 Not Available
Specificity 0.87

Accuracy 0.87

2012 SLiMPred Mooney et al.
(2012)

BRNN Disprot and
PDB and
UniProtKB
and ELM

SS and Structural
motifs and ASA and
Disorder scores

AUC 0.69 http://bioware.
ucd.ie

2013 PepBindPred Khan et al.
(2013)

BRNN ELM and SCOP SS and Disorder
scores and Vina score

AUC 0.75 http://bioware.ucd.
ie/pepbindpred

2013 SPINE-D Zhang et al.
(2013)

Neural-network DisProt SS and ASA MCC 0.15 http://sparks-
lab.org

2016 SPOT-Disorder Hanson et al.
(2016)

LSTM Disprot and
PDB and
UniProt

SS and Backbone
angles and HSE and
CN and ASA and
Physicochemical
properties and PSSM
and Shannon entropy

MCC 0.309 http://sparks-lab.
org/server/SPOT-
disorder/

2019 SPOT-Disorder2 Hanson et al.
(2019)

LSTM DisProt and
PDB and
UniProt and
MobiDB

SS and Backbone
angles and HSE and
CN and ASA and
PSSM and HMM

MCC 0.155 https://sparks-lab.
org/server/spot-
disorder2/

2021 DeepDISOBind Zhang et al.
(2021)

Multi-task deep
neural network

DisProt SS and RAAPs AUC 0.771 https://www.
csuligroup.com/
DeepDISOBind/

2021 flDPnn Hu et al. (2021) RF and
Feedforward
neural network

DisProt SS and Disorder
scores and PSSM

AUC 0.79 http://biomine.cs.
vcu.edu/servers/
flDPnn/

2015 DisoRDPbind Peng and
Kurgan, (2015);
Peng et al.
(2016)

Logistic
regression

DisProt AAC and SS and
Disorder scores and
Physiochemical
properties and
Sequence complexity

AUC 0.62–0.72 http://biomine.ece.
ualberta.ca/
DisoRDPbind/

2019 IDRBind Wong and
Gsponer,
(2019b)

Gradient
boosted trees
and CRF

PDB and IDEAL
and peptiDB
and Docking
Benchmark
5 and Published
literature

AAC and B-factors
and ASA and
Physicochemical
properties and PSSM

MCC 0.31 https://idrbind.msl.
ubc.ca/

Consensus 2018 OPAL Sharma et al.
(2018b)

Integrating
predictors

PDB and
UniProtKB and
Published
literature

SS and Backbone
angles and HSE and
ASA and
Physiochemical
properties

AUC
0.795–0.870

http://www.alok-
ai-lab.com/tools/
opal/

2018 OPAL+ Sharma et al.
(2018c)

Integrating
predictors

PDB and
UniProtKB and
Published
literature

SS and Backbone
angles and HSE and
ASA and
Physicochemical
properties and HMM
and Bigram feature
vectors

AUC
0.820–0.876

http://www.alok-
ai-lab.com/tools/
opal_plus/

2019 Sharma et al Sharma et al.
(2019)

Integrating
predictors

PDB and
UniProtKB and
Published
literature

SS and Backbone
angles and HSE and
CN and ASA and
Physicochemical
properties

AUC
0.797–0.881

https://github.com/
roneshsharma/
BMC_
Models2018/wiki

2020 HybridPBRpred Zhang et al.
(2020)

Integrating
predictors

DisProt
and PDB

AAC and SS and ASA
and Disorder scores
and Physiochemical

AUC 0.795 http://biomine.cs.
vcu.edu/servers/
hybridPBRpred/

(Continued on following page)
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based, machine-learning based and consensus, and we selectively

describe the most representative predictors.

2.3.1 Scoring function based
The scoring function method is widely used in the evaluation

of protein interaction (Liu and Wang, 2015). Its principle is to

obtain the final prediction results by scoring the protein binding

ability with various functions (Liu and Wang, 2015). This paper

mainly introduces retro-MoRFs based on sequence alignment

and ANCHOR series predictors based on paired energy

estimation method to predict IDP-PPIS.

2.3.1.1 Sequence alignment

Sequence alignment is a commonly used tool to predict the

structural and functional properties of proteins (Edgar and

Batzoglou, 2006). Retro-MoRFs (Xue et al., 2010b) predictor

used the software package PONDR-RIBS to make sequence

alignment by CLUSTALW method (Thompson et al., 1994),

and then successfully predicted α-MoRF in RNase E, p53 and

SRC-3 by combining PONDR-FIT (Xue et al., 2010a)and

PONDR-VLXT (Romero et al., 2000) out-of-order prediction.

The predictor innovatively used reverse sequence alignment to

identify retro-MoRF.

2.3.1.2 Energy estimation

ANCHOR (Dosztanyi et al., 2009; Mészáros et al., 2009) is a

benchmark method in IDP-PPIS prediction. Compared with

other predictors, ANCHOR did not include the features of the

secondary structure and its combining partners, but still had

good predictive performance. The accuracy of ANCHOR reaches

0.67. The principle of the predictor is to predict IDP-PPIS based

on the transition of disordered proteins from energy-deficient

state to energy-sufficient state during binding. Based on this

principle, ANCHOR identified the fragments which were located

in the disordered region which could not form enough favorable

intra-chain interactions to fold on their own, and might gain

stable energy by interacting with globular proteins partners.

The algorithm of the ANCHOR can be expressed as:

Ik � p1SK + p2E
int,k
i + p3E

gain,k
i

Ik represents the final predicted score for residue k, which is

converted to a probability value as the final output. SK
corresponds to criterion 1, and the mean IUPred scores of the

neighbors with the k -th amino acid in a window range are

calculated, so that the disorder trend of the neighborhood with

the k -th amino acid is obtained. Eint,k
i is the possible interaction

energy of the k -th residue through forming intrachain contact.

Egain,k
i is the energy that the residue might gain by interacting

with a hypothetical globular protein.

On the basis of ANCHOR (Dosztanyi et al., 2009),

ANCHOR2 (Mészáros et al., 2018) increased the energy used

to estimate the interaction between spherical protein and local

disordered sequence environment. In other words, IDP-PPPS

must be exposed to disordered environments and finish the

binding process on the surface. ANCHOR2 performs well

with AUC up to 0.901.

The new function is defined as follows:

Sk � (Egain,k(w1) − Egain,0)(Ik(w2) − I0)

Here, Sk represents the score of the residue k, Egain,k(w1) �
Eloc,k(w1) − Eint,k represents the energy calculated only by

binding to ordered proteins. Ik(w2) is the average IUPred

score of the w2 half-window continuous neighborhood of

residue k, Egain,0 and I0 represent the parameters of the

minimum energy gain and the minimum average disorder

tendency, which make the residues become IDDP-PPIS.

2.3.2 Machine-learning based
From Table 2, we can observe that more than two third of the

predictors are based on machine learning. These types of

methods usually integrate multiple features derived from the

protein sequence information into the model, and use a variety of

machine learning algorithms to train the predictors and predict

the IDP-PPIS. The prediction results include the binding site

propensity score and binary classification prediction. Our

collection of machine learning-based predictors mainly uses

support vector machines (SVM) (Chang and Lin, 2011) and

various types of neural networks (Cheng et al., 2007). In addition,

other algorithms such as Logistic regression (Li et al., 1999),

TABLE 2 (Continued) Summary of intrinsically disordered protein-protein interaction sites predictors.

Categories Years Predictors References Algorithms Databases Features Performance URL

properties and HHM
and RAAP

2020 DEPICTER Barik et al.
(2020)

Integrating
predictors

DisProt
and PDB

AAC and SS and
Disorder scores and
Physiochemical
properties and
Sequence complexity
and Pairwise
interaction energy

AUC 0.87 http://biomine.cs.
vcu.edu/servers/
DEPICTER/

Frontiers in Molecular Biosciences frontiersin.org09

Chen et al. 10.3389/fmolb.2022.985022

http://biomine.cs.vcu.edu/servers/DEPICTER/
http://biomine.cs.vcu.edu/servers/DEPICTER/
http://biomine.cs.vcu.edu/servers/DEPICTER/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.985022


gradient boosting trees (Wong and Gsponer, 2019b), conditional

random fields (Wong and Gsponer, 2019b) and random forests

(RF) (Basu et al., 2017) are also used.

2.3.2.1 Support vector machine

Support vector machine (SVM) (Fan et al., 2008; Chang and

Lin, 2011) is a supervised machine learning method, which has

been widely used to solve classification and regression problems.

Support vector machines usually use kernel functions to solve

linear (such as linear kernel) and nonlinear problems (such as

Sigmoid function and radial basis function (RBF)). The

commonly used SVM algorithms in these predictors are

LIBSVM and LIBLINEAR. The data were processed by SVM

and a probability value was obtained. When the probability value

was greater than 0.5, the amino acid residue was considered as a

protein binding site.

MoRFpred (Disfani et al., 2012) is a predictor for identifying

different types of MoRF based on protein sequence derived

information, using linear kernel support vector machine

(SVM) and annotation generated by sequence alignment.

MoRFpred chose SVM model with parameter C � 2−6, and

the prediction is with AUC up to 0.697.

Due to the slow running speed of MoRFpred for large-scale

prediction (Yan et al., 2016), developed a fMoRFpred

predictor using SVM method to identify MoRF in 2016.

fMoRFpred used the data set of MoRFpred, but selected a

larger number of feature sets such as predicted disordered

region and secondary structure, and the features of a smaller

sliding window to improve the performances. Meanwhile,

fMoRFpred also used only high-throughput disordered

predictors and secondary structure to speed up the

computing. The SVM model used by fMoRFpred chose the

default parameter C � 5 , and the PPR of fMoRFpred is close

to 1, which is better than MoRFpred. In addition, running time

analysis shows that fMoRFpred runs faster than MoRFpred.

MFSPSSMpred (Fang et al., 2013) improved the position-

specific scoring matrix (PSSM) encoding scheme and extracted

protein sequence information from PSSM, and finally applied an

SVM model with kernel radial basis function (RBF) to predict

MoRF. MFSPSSMpred outperforms other predictors in their

paper with the highest AUC of 0.758.

In 2016 (Fang et al., 2016), developed a PSSMpred predictor

for predicting the SLiM region. PSSMpred also only used the

evolutionary information obtained from the position-specific

scoring matrix (PSSM), and applied the SVM model with the

kernel of radial basis function (RBF). Its performance is also

better than that of other predictors, and obtained the AUC

of 0.758.

DISOPRED3 (Jones and Cozzetto, 2014) used amino acid

composition, PSSM obtained by PSI-BLAST and the length and

location of IDR to apply an SVM classifier with an RBF kernel to

predict protein binding sites. DISOPRED3 performs well with an

MCC of 0.126.

MoRFCHiBi (Malhis and Gsponer, 2015) trained SVMS and

SVMT models of Sigmoid and Radial Basis Function (RBF)

Gaussian kernels using the physicochemical properties of

amino acids. MoRFCHiBi predicts MoRF by integrating the

results of both models with the help of Bayesian rules. It

employed SVMS to predict MoRF propensity based on

component comparison information and SVMT to predict

MoRF propensity based on similarity information.

MoRFCHiBi performs better than other predictors with the

highest AUC of 0.770 but slower than ANCHOR.

MoRFCHiBiLight (Malhis et al., 2016) used Bayes rules to

combine MoRFCHiBi with ESpritz’s (Walsh et al., 2011)

disordered prediction results to obtain the final MoRF

propensity score. MoRFCHiBiLight performs better than

MoRFCHiBi with a maximum AUC of 0.868.

MoRFCHiBiWeb (Malhis et al., 2015; Malhis et al., 2016)

predicts MoRF using Bayes rules combining theMoRFCHiBi and

MoRFDC predictors (Malhis et al., 2015). MoRFDC used Bayes

rules to integrate disorder scores and the conservativeness scores

obtained by PSI-BLAST. The AUC of MoRFCHiBiWeb is up

to 0.894.

Predict-MoRFs (Sharma et al., 2016) is the first predictor

to predict MoRFs using protein sequence evolution

information obtained from HMM profiles, and applied

SVM with both radial basis function (RBF) and sigmoid

kernels to calculate amino acid residue propensity scores.

Predict-MoRFs outperformed other predictors with an AUC

of 0.702. Since Predict-MoRFs uses the HHblits method

(Remmert et al., 2011) to extract the information of the

HMM, it runs faster than MoRFpred.

Later in 2018 (Sharma et al., 2018a), improved the Predict-

MoRFs and named as MoRFPred-plus. MoRFPred-plus

combines HMM profiles and the feature of physicochemical

properties of amino acids by applying SVM models with two

kernels, radial basis function (RBF) and sigmoid, to obtain final

prediction results. The prediction results are better than other

predictors, with a maximum AUC of 0.821.

2.3.2.2 Logistic regression

Logistic regression (Li et al., 1999) is a probabilistic

classification algorithm, which has the advantages of short

running time and high prediction performance, and is widely

used in binary classification problems such as predicting protein

disorder and ordered protein-protein interaction (Lin et al.,

2004). DisoRDPbind (Peng and Kurgan, 2015) used this

method to predict IDP-PPIS.

DisoRDPbind (Peng and Kurgan, 2015) input the features

extracted from the protein sequences into a logistic regression

model to obtain a propensity score for protein residues involved

in disordered RNA, DNA, and protein binding, which was then

combined with sequence comparison annotations to obtain a

final propensity score. Regression coefficients for the input

features in the logistic regression model are determined by the
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ridge. DisoRDPbind performs well with the AUC from

0.62 to 0.72.

2.3.2.3 Gradient boosted trees and conditional random

field models

IDRBind (Wong and Gsponer, 2019a) predicted the binding

sites of disordered proteins by combining gradient ascending tree

and conditional random field model. IDRBind first used

XGBoost from R packet (Chen and Guestrin, 2016) to train

two classifiers to identify core and edge interface residues by

gradient boosting tree method, and then integrated the predicted

scores of the two classifiers by conditional random field (CRF) to

form the final classification label. IDRBind performs well with an

MCC of 0.31.

Gradient boosting tree performs well in solving classification

problems, which can be implemented by R package XGBoost

(Chen and Guestrin, 2016). Conditional random field (CRF) can

be established by EDTSurf and Instant Meshes, which is a

different indirect probabilistic graph model, including scoring

components and adjacent components. The score component

was composed of feature variables (i.e., the results from the

gradient boosting tree), factors describing the compatibility of

feature variables and label variables, and category deviation

related factors. Adjacent components consist of pairwise

factors that contain information from adjacent residues.

2.3.2.4 Random forest

The random forest (RF) model (Basu et al., 2017) is widely

used in classification problems. The principle is that each

decision tree in a random forest makes a judgment on the

example to classify it as a positive or negative result, and the

result with the higher number of votes is determined as the final

result. The random forest model can be obtained through the

Python package scikit-learn. Random Forest Model is applied by

flDPnn (Hu et al., 2021) to predict IDP-PPIS.

FlDPnn (Hu et al., 2021) used multiple machine learning

models to extract predicted feature sets about disorder and

disorder function, then applied the disorder feature set to

train deep feedforward neural networks to better predict

disorder, and finally used a random forest model to combine

the disorder function features extracted from the machine

learning models and the disorder features obtained from the

deep feedforward neural networks to predict the protein binding

sites of IDP. flDPnn performs better than other predictors with

an AUC of 0.79.

2.3.2.5 Neural network

Neural network is widely used in the study of protein-protein

interaction. In this paper, we introduce five types of neural

network models: Feedforward neural network (Zell, 1994),

Bidirectional recurrent neural network (BRNN) (Mooney

et al., 2012), Two-hidden layer neural network (Faraggi et al.,

2009), Long Short-Term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997), and multi-task deep neural network

(Zhang et al., 2021).

Feedforward neural networks (Zell, 1994; Sazli, 2006) are

artificial neural networks in which information is transmitted

unidirectionally from the input layer to the output layer via a

hidden layer. They are classified into single-layer and multi-layer

feedforward neural networks according to the presence or

absence of hidden layers and are trained using a back

propagation algorithm. Alpha-MoRFpred (Cheng et al., 2007)

applied the feedforward neural network model to predict IDP-

PPIS.

Alpha-MoRFpred (Cheng et al., 2007) used conditional

probability method to select a representative feature set,

and then constructed a feedforward neural network with a

hidden layer, which was trained by the supervised learning

algorithm in the neural network toolbox of Matlab, and finally

predicted the α-MoRF involved in the combination. The

sensitivity, specificity and accuracy of alpha-MoRFpred

were close to 0.9.

Bidirectional recurrent neural network (BRNN) was applied

to predict IDP-PPIS by SLiMPred (Mooney et al., 2012) and

PepBindPred (Khan et al., 2013). BRNN (Schuster and Paliwal,

1997) was to obtain sequence information from the opposite

direction to the output layer, that is, to predict disordered protein

binding sites using the context information of protein sequences.

Due to its recursive nature, BRNN had fewer free parameters.

The architecture of BRNN (Mooney et al., 2012; Khan et al.,

2013):

oj � N(O)(ij, h(F)j , h(B)j )

h(F)j � N(F)(ij, h(F)j−1)

h(B)j � N(B)(ij, h(B)j+1)

j � 1,/,N

where ij and oj are the input and output of the neural network
at position j , respectively. h(F)j and h(B)j are the forward and

backward chains of hidden vectors with h(F)0 � h(B)N+1 � 0. N(O) ,
N(F) and N(B) represent the output update, forward update and

backward update functions respectively, which are parameterized

by three two-layer feedforward neural networks.

SLiMPred (Mooney et al., 2012) applied BRNN to predict

SLiMs using information on predicted secondary structure,

structural motifs, solvent accessibility, and disorder prediction.

The AUC was 0.69. Khan et al. (2013) developed another

predictor for SLiMs, PepBindPred, which applied BRNN to

predict SLiMs using information on sequence, predicted

secondary structure, disorder scores, and Vina score. Adding

Vina score improves the predictor performance. PepBindPred

performed well with the AUC of 0.75.

SPINE-D (Faraggi et al., 2009; Zhang et al., 2012; Zhang et al.,

2013) used predicted torsional angle fluctuations, predicted

secondary structure and solvent accessibility as input features
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to train the neural network to predict IDP-PPIS. The neural

network consists of a neural network with two hidden layers and

a filtering layer, using a hyperbolic activation function and

guided learning techniques. Each hidden layer contains

51 hidden neurons and a bias, and the filter layer contains

11 hidden neurons. SPINE-D performs well with the MCC

of 0.15.

Two-hidden layer neural network architecture used by

SPINE-D (Faraggi et al., 2009):

Calculation formula of output result of the hidden layers:

h1k � f (S1k)with S
1
k � ∑J

j�1w
1
jk · xj

h2k � f (S2l )with S
2
k � ∑K

k�1w
2
kl · h1k

Where xj represent the input to the neural network, The first
hidden layer contains k neurons and the second hidden layer

contains l neurons. f (x) is the activation function, w1
jk are the

neural network weights that connect the neurons in the input and

the first hidden layer, w2
kl are the neural network weights that

connect the neurons in the first and second hidden layer.

The training process of a neural network is to compare the

output results, pm , with known values to calculate the sum square

error E (e.g., ψ angle):

E(w1
jk ,w

2
kl ,w

3
lm) �

1
2
∑M

m�1(ψm − pm)
2

Error, E, optimization by steepest gradient descent method:

_w1
jk � −η δE

δw1
jk

where η is the learning rate.

Both SPOT-Disorder (Hanson et al., 2016) and SPOT-

Disorder2 (Hanson et al., 2019) applied Long Short-Term

Memory (LSTM) networks (Hochreiter and Schmidhuber,

1997) to predict IDP-PPIS. LSTM networks are a modified

recurrent neural network (CNN) capable of solving long time

series problems, including single and bidirectional LSTM. The

hidden layer contains one or more neurons capable of storing

long term memory, and each neuron determines the input,

output or forget constant error conveyor (CEC) through a

gate function. Long short-term memory (LSTM) networks

have been widely used to solve text classification problems

(Singh et al., 2022).

SPOT-Disorder (Hanson et al., 2016) used deep bidirectional

long-term and short-term memory cyclic neural network to

improve prediction performance. The neural network includes

bidirectional cyclic neural network (BRNN) composed of three

hidden layers. In the first layer, there is cyclic feedforward layer

with correction linear unit (ReLU) activation function. The

second and third layers are composed of LSTM. The

circulation layer contained 200 neurons and bias in each

direction, and each neuron in each direction in the LSTM

layer contained 200 memory blocks. The model is trained

using back-propagation (BPTT) algorithm. Finally, the

probability distribution is obtained using the softmax

function. The MCC value is 0.309.

The neural network structure of SPOT-Disorder2 (Hanson

et al., 2019) consists of IncReSeNet, LSTM and fully connected

(FC) layers. IncReSeNet contains three parts: an initial path, a

Squeeze-and-Excitation network and a residual connection, each

consisting of a residual connection and two convolutional paths

with three and one convolutional operations, respectively. SPOT-

Disorder2 used similar features as SPOT-Disorder and applied

hidden Markov model (HMM) features from HHblits. The MCC

value is 0.155.

Based on the information derived from protein sequences,

DeepDISOBind (Zhang et al., 2021) applied multi-task deep

neural network to accurately predict the binding regions of

disordered protein with DNA, RNA and protein.

DeepDISOBind included shared layer, nucleic acid binding

layer, protein binding layer, DNA binding layer and RNA

binding layer. Various sequence feature would be input into a

shared layer, which is compose of four different kernel

convolutional neural network (CNN) and feedforward neural

network (FNN) modules. The shared layer is connected to the

protein-binding layer and the nucleic acid-binding layer. The

nucleic acid-binding layer is connected to the DNA-binding layer

and the RNA-binding layer. The output layer consists of three

neurons using sigmoid transfer function, and finally the

interaction propensity of disordered protein with RNA, DNA

and protein is obtained. For IDP-PPIS prediction,

DeepDISOBind outperformed other predictors with an AUC

of 0.771.

2.3.3 Consensus
Consensus-based predictor (Fan and Kurgan, 2013) refers to

the combination of multiple predictors by using different

methods in a weighted manner. The purpose of using

consensus predictor is to improve prediction accuracy.

OPAL (Sharma et al., 2018b) is a consensus predictor that

combined two predictors, PROMIS (Sharma et al., 2018b) and

MoRFCHiBi, to obtain the MoRF propensity score using the

simple average method. The MoRFCHiBi predictor is described

in detail above. The average method is the sum of the scores of all

SVM models divided by the number of models used. The OPAL

predictor performs well with an AUC of 0.795–0.870.

Sharma et al. (2018c) also developed the OPAL + predictor in

2018, which is an enhanced version of OPAL. OPAL + combined

four independent SVM models with radial basis function (RBF)

kernel for different length amino acid residues with MoRFpred-

plus and MoRFCHiBi to obtain the final MoRF propensity score

by average method. OPAL + performed better than other

predictors with AUC of 0.820–0.876.

Another consensus-based predictor was also constructed by

Sharma et al. (2019). Using the structural information obtained
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from the protein sequence, two independent SVM models with

radial basis function (RBF) as the kernel were used to predict the

MoRF located in the terminal and in the middle, respectively.

Combined with the prediction scores of the two models, the final

MoRF propensity score was obtained with AUCs 0.729–0.864.

Then, the predictor was combined with MoRFpred-plus,

PROMIS and MoRFCHiBi to form a consensus predictor that

can obtain sequence information from different aspects and

combine different algorithms. The final MoRF propensity

score was obtained by averaging the scores of each predictor.

The consensus predictor performs better than other predictors

with AUC of 0.797–0.881.

DEPICTER (Barik et al., 2020) designed consensus

predictors for predicting protein disorder and protein-

binding IDR, respectively, and further improved the

protein-binding IDR prediction performance by the

disorder consensus predictor. The consensus predictor for

IDR-PPIS combined three common predictors

DisoRDPbind, ANCHOR2, and fMoRFpred. DEPICTER

selected 54 features and applied four machine learning

methods, Logistic Regression, Parsimonious Bayes, Random

Forest, and Extreme Gradient Boosting Tree, to develop the

consensus predictor. The prediction results obtained by

DisoRDPbind, ANCHOR2 and fMoRFpred were

transformed into feature vectors to be input to the

consensus predictor to obtain new disordered proteins

combining predicted propensity real values and

dichotomous propensity. DEPICTER selected the best

performing consensus predictor relying on extreme gradient

boosting tree construction for testing, which outperformed the

independent predictor with an AUC of 0.87.

The most recent consensus predictor HybridPBRpred

(Zhang et al., 2020) combined the predictions of

DisoRDPbind trained on disordered annotated data and the

predictor SCRIBER trained on structured data to predict

different types of protein binding residues. HybridPBRpred

first normalized the scores of each predictor to [-1, 1], and for

binary prediction, the prediction is protein binding residue

score >0 otherwise score <0. Then, the final score was

obtained in the following way: if at least one predictor

predicts the residue to be a protein-binding residue, the

higher score is chosen as the final score; if both predictors

predict a non-protein-binding residue, the average of the two

scores is used as the final score. The consensus predictor

HybridPBRpred has improved IDP-PPIS prediction compared

to non-consensus predictors with an AUC of 0.795.

3 Discussion

Disorder proteins lack stable structures but have many

important functions through protein-protein interactions.

There are a large number of studies have focused on

identifying the protein binding sites of disordered proteins

which will provide better functional annotations of disorder

proteins. We scanned the literature since the publication of

alpha-MoRFpred in 2007 and found that there has been a

sharp increase in protein-binding IDR predictors, with

6–10 new predictors published every 3 years. These predictors

continuously improve the prediction performance by applying

different algorithms, screening more representative features or

combining multiple models, and so on. The AUC is increased

from 0.6 to 0.9. However, there might be still some limitations for

current methods which can be improved from several directions.

We found that the existing predictors mainly curated the

datasets from two large databases Disprot and PDB, especially

there are many predictors on MoRF using the high-quality

dataset from Disfani et al. Since this dataset contains a large

number of immune-related proteins (Fang et al., 2013), the

trained predictors might suffer from bias problems and

neglect some potential binding sites.

In addition, most of the existing predictors are trained only

for disordered protein data, but HybridPBRpred expands the

benchmark dataset by combining predictors trained from

structured protein datasets, allowing the predictors to improve

the prediction performance in terms of protein binding sites for

disordered proteins. There might be some common properties

shared by different types of protein interfaces (Hou et al., 2017;

Hou et al., 2019). Therefore, constructing benchmark datasets by

expanding database sources such as from D2P2, MFIB, etc., and

using more comprehensive datasets that include not only

disordered protein data but also ordered protein data, could

improve the performance of predictors in the future.

The existing predictors mainly focus on short binding

regions such as MoRF (Fang et al., 2018) and SLiMs

(Mooney et al., 2012), but there are still non-MoRF and

non-SLiMs binding regions in disordered proteins.

Therefore, predicting long disordered binding regions is an

important hotspot in future development. In recent years, more

and more predictors have improved the prediction performance

by combining various features or algorithms. However, this

approach easily causes high-dimensional feature space and the

algorithm complexity and also reduce the computing efficiency

(Malhis et al., 2016).

Salt bridges involved in disordered proteins have not yet been

considered as a feature in all the predictors summarized. When

disordered proteins participate in protein-protein interactions,

ionic bonds are formed between oppositely charged amino acid

side-chains, i.e., salt bridges. Studies (Basu and Biswas, 2018; Roy

et al., 2022) have found that the formation of salt bridges

contributes to the generation of local rigid structure of IDP,

and triggers the disordered to ordered transition of IDP. For

example, α -synuclein binds with tubulin to form an inter-chain

salt bridge and mediate the transformation of protein

conformation (Basu and Biswas, 2018). The arginines of

FLCSSpike and the anions of Furin form dynamically
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interchangeable and durable salt bridge networks at the Spike-

Furin binding interface, which triggers the transition from

disorder to order (Roy et al., 2022). Therefore, we believe that

the performance of the protein-binding sites predictor can be

further improved by adding the feature of salt bridges in

disordered proteins.

Since disordered proteins lack stable tertiary structures, most

existing predictors are developed based on sequences, but

disordered proteins still retain structural conformational

properties such as secondary structure features, and it has

been pointed out that transient secondary structure pre-

structured motifs (PreSMos) (Kim and Han, 2021) exist in

intrinsic disordered proteins and are involved in the

development of various diseases by binding to corresponding

targets. Furthermore, with the rapid development of structure

prediction technology in the protein field, disorder predictors

constructed based on AlphaFold2 (Wilson et al., 2022) structures

were found to have potentials to identify disordered regions.

Alphafold2 and RoseTTAFold have been successfully used to

predict the structure of protein complexes (Bryant et al., 2022).

The PLDDT value of Alphafold2 is commonly used to identify

the structure of protein complex and the disordered regions.

Tsaban et al. (2022) found that Alphafold2 recognized SLiM in

the peptide-protein complex and also correctly characterized the

conformational change upon protein binding. Akdel et al. (2021)

proved that Alphafold2 was able to successfully predict the

structure of complexes involving disordered proteins.

Therefore, the construction of structure-based predictors may

further enhance the protein binding site prediction performance

of disordered proteins. In addition, inspired by HybridPBRpred,

we can also improve the existing structure-based predictors to

develop more comprehensive protein binding site predictors.

4 Conclusion

In this paper, we collected 30 predictors related to IDP-PPIS

published up to January 2022, and described them in terms of

three key aspects of the predictor construction process: databases,

features, and algorithms. By summarizing the advantages and

disadvantages of the existing predictors, we believe that the

development of more comprehensive protein-binding site

predictors by expanding the data sources, applying the

features related to structural changes and binding to ordered

protein-binding site predictors may further improve the

performance of IDP-PPIS in the near future. In addition,

since disordered proteins are involved in a variety of

important physiological and biochemical processes using

protein-protein interactions in various organisms, we also

hope our review will help researchers to gain new ideas for

solving various disease problems mediated by disordered

proteins.
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