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Hepatocellular carcinoma (HCC), the most frequently occurring type of cancer, is
strongly associated with metabolic disorders. In this study, we aimed to
characterize the metabolic features of HCC and normal tissue adjacent to the
tumor (NAT). By using samples from The Cancer Genome Atlas (TCGA) liver cancer
cohort and comparing 85 well-defined metabolic pathways obtained from the
Kyoto Encyclopedia of Genes and Genomes (KEGG), 70 and 7 pathways were
found to be significantly downregulated and upregulated, respectively, in HCC,
revealing that tumor tissue lacks the ability to maintain normal metabolic levels.
Through unsupervised hierarchical clustering of metabolic pathways, we found
that metabolic heterogeneity correlated with prognosis in HCC samples. Thus,
using the least absolute shrinkage and selection operator (LASSO) and filtering
independent prognostic genes by the Cox proportional hazards model, a six-gene-
based metabolic score model was constructed to enable HCC classification. This
model showed that high expression of LDHA and CHACZ2 was associated with an
unfavorable prognosis but that high ADPGK, GOT2, MTHFS, and FTCD expression
was associated with a favorable prognosis. Patients with higher metabolic scores
had poor prognoses (p value = 2.19e-11, hazard ratio = 3.767, 95% Cl =
2.555-5.555). By associating the score level with clinical features and genomic
alterations, it was found that NAT had the lowest metabolic score and HCC with
tumor stage IlI/IV the highest. qRT—PCR results for HCC patients also revealed that
tumor samples had higher score levels than NAT. Regarding genetic alterations,
patients with higher metabolic scores had more TP53 gene mutations than those
with lower metabolic scores (p value = 8.383e-05). Validation of this metabolic
score model was performed using another two independent HCC cohorts from
the Gene Expression Omnibus (GEO) repository and other TCGA datasets and
achieved good performance, suggesting that this model may be used as a reliable
tool for predicting the prognosis of HCC patients.

KEYWORDS

hepatocellular carcinoma, metabolic pathways, metabolism-associated genes, LASSO
model, prognosis signature

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fmolb.2022.988323/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.988323/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.988323/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.988323/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.988323&domain=pdf&date_stamp=2022-09-30
mailto:yongxia.qiao@shsmu.edu.cn
https://doi.org/10.3389/fmolb.2022.988323
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.988323

Tian et al.

Introduction

Hepatocellular carcinoma (HCC) is the most common type of
liver cancer and the 4™ leading cause of cancer death worldwide
(Yu and Schwabe, 2017; Villanueva, 2019). As a key metabolic
organ in the body, the liver plays a key role in energy metabolism
and detoxification. When tumor cells become malignant and
migrate to the liver, they can destroy the metabolic functional
base of the liver and cause jaundice, pain, and weight loss, which
might ultimately lead to death (Phan et al., 2014; Anwanwan et al,,
2020). Previously reported risk factors for HCC include viral
infection, such as with hepatitis B virus (HBV), nonalcoholic
fatty liver disease, smoking, diabetes, and alcohol-induced
cirrhosis (Morgan et al, 2004; Zoller and Tilg, 2016). Due to
tumor heterogeneity and multiple risk factors, the molecular
mechanisms of HCC onset and progression are still not clearly
understood (Ogunwobi et al., 2019).

Abnormal tumor cell metabolism has been reported to deeply
participate in the pathogenesis of tumor growth and shape the
tumor microenvironment (TME) (Reina-Campos et al., 2017).
As a hallmark of cancer, metabolic alterations can be categorized
into different types (Gong et al., 2020), including amino acid
metabolism, carbohydrate metabolism, energy metabolism,
glycan biosynthesis and metabolism, lipid metabolism, and
cofactor and vitamin metabolism. Previously reported studies
on metabolism have revealed that metabolic pathways and
metabolites play an important role in hepatocarcinogenesis in
liver cancer (Perumpail et al., 2015; Gingold et al., 2018; Alannan
et al., 2020). For example, dysregulation of energy metabolism
can enable tumor cells to produce more adenosine triphosphate
(ATP) to support tumor

proliferation and migration
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(DeBerardinis and Chandel, 2016; Chen et al.,, 2020), and
extramitochondrial fatty acid oxidation is relevant to the
regulation of neoplastic cell growth of HCC (Ockner et al,
1993). Therefore, characterization of the metabolic features of
HCC is important for investigating its hepatocarcinogenesis
mechanism and providing therapeutic targets.

In this study, we aimed to deeply explore the metabolic
features and investigate the tumor heterogeneity of HCC. To
better interpret metabolic pathways, we collected 85 well-
established metabolic gene sets (one pathway with only one
gene not included) from KEGG (Gong et al, 2020) and
summarized them into nine major types. To collect HCC data,
424 HCC and NAT samples with RNA sequencing data were
obtained from The Cancer Genome Atlas (TCGA) (Figure 1).
After the removal of duplicates, 367 primary solid tumor and
50 normal tissue adjacent to the tumor (NAT) samples were used
for further analysis (Figure 1). The relationship between metabolic
pathway scores and prognosis and other clinical characteristics was
evaluated. Next, six genes from among 1,200 metabolic genes were
selected to construct a prognostic-related metabolic score model
using the least absolute shrinkage and selection operator (LASSO),
which was applied for HCC classification.

Materials and methods
Data preprocessing
Bulk RNA-seq and clinical data of HCC used for survival analysis

and prognostic model construction were downloaded from the TCGA
database (https://portal.gdc.cancer.gov/) under accession TCGA-LIHC
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FIGURE 1

Overview of the analyzing workflow and establishment of the metabolic model of HCC in this study.
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(liver hepatocellular carcinoma). Only primary solid tumor and normal
tissue adjacent to the tumor (NAT) samples were enrolled for analysis.
Patients without survival information were removed from further
evaluation of the model Both TCGA datasets and clinical
information were downloaded using TGCAbiolinks (Colaprico et al,
2016). External independent HCC cohorts were obtained from Gene
Expression Omnibus (GEO, http://www.ncbinlm.nih.gov/geo/) under
accession IDs GSE14520 and GSE76427. The expression data and
clinical information of these two HCC cohorts were downloaded using
GEOquery (Davis and Meltzer, 2007) or obtained from the
supplementary data of published research works (Roessler et al,
2010; Grinchuk et al, 2018). For RNA sequencing data, the
fragments per kilobase per million mapped fragments (FPKM) value
was used to construct the model and calculate the metabolic score.

Identification of differentially expressed
metabolic genes/pathways in HCC

Metabolic gene sets were obtained from previously published
research works (Gong et al, 2020) and collected from the KEGG
database. Metabolic pathways defined by only one gene were excluded
from further analysis. Thus, only 85 metabolic pathways (including
1,660 genes) were used in the analysis. We then classified these
85 metabolic pathways into nine major types: amino acid metabolism,
carbohydrate metabolism, energy metabolism, glycan biosynthesis
and metabolism, lipid metabolism, metabolism of cofactors and
vitamins, nucleotide metabolism, xenobiotics biodegradation and
metabolism, and others. Pathway names, major types, and genes
in the metabolic pathways are listed in Supplementary Table S1. We
used an enrichment score to evaluate the expression level of each
metabolic pathway. The enrichment score of these metabolic
pathways was calculated using single-sample Gene Set Enrichment
Analysis (ssGSAE) in the R package GSVA (Hanzelmann et al, 2013).
Differential analysis between tumors and NATs was calculated using
the mean value of the enrichment score of each type. p values were
calculated using the Wilcoxon rank-sum test and adjusted using
Benjamini and Hochberg (FDR). The significance level of the
metabolic pathway score was set as FDR < 0.05. Significance of
the metabolic pathways between tumor and normal samples are listed
in Supplementary Table S2. For gene level analysis, differentially
expressed metabolic genes were calculated using R package limma
(Ritchie et al., 2015). The significance level was defined by an adjusted
p value < 0.05 and log, fold change > 1 (fold change > 2).

Construction of the metabolic score
model using LASSO

For the filtration of 1,660 metabolism-related genes, we first
removed genes with low expression and retained those with detected
expression in all HCC samples. A total of 1,200 genes were used to
construct the model. The LASSO model was used for the next-step
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filtration of genes, which was implemented in the R package glmnet
(v4.0.2). To evaluate the variability and reproducibility of the
estimates produced by the LASSO, we repeated the regression
fitting process and calculated the best lambda to reduce the error
rate by 10-fold cross-validation. Then, 23 genes with nonzero
coefficient estimates were retained. To further reduce genes and
identify genes correlating with prognosis, multivariate Cox
proportional hazards regression was performed to estimate the
coefficient in survival analysis; independent prognostic factors
(genes with p values less than 0.05) were kept for the next step of
LASSO. Finally, six genes were selected, and the metabolic score was
determined. The median value of the metabolic score was used as the
cutoff to separate HCC data into two groups. Basic information on
HCC patients in TCGA-LIHC patients, including the metabolic
score, is listed in Supplementary Table S3. Patients were grouped
into metabolic score-low and -high groups. The R package forestplot
was used for presentation of the results for TCGA-LIHC, HCC
cohorts obtained from GEO, and other TCGA cancer datasets. The
Kaplan-Meier method was used to generate survival curves for the
score-low and -high groups in each dataset, and the log-rank test was
used to determine the statistical significance of differences. The
hazard ratios for univariate analysis were calculated using the Cox
proportional hazards regression model. A multivariate Cox
regression model was used to determine independent prognostic
factors using the survival package.

RNA isolation and qRT—-PCR analysis

The human hepatoma cell lines BEL-7402 and BEL-7404
were established from clinical liver cancer surgical specimens
(Chen et al.,, 1980). Total RNA was isolated using TRIzol reagent
(Invitrogen, United States) following the manufacturer’s protocol
and quantified by nanodrop 8,000. In brief, cells were lysed with
TRIzol reagent, and chloroform was then added. After
centrifugation, the aqueous phase was collected and mixed
with isopropanol before centrifugation. RNA was dissolved in
RNase-free water. For analysis of mRNA expression, 1 pig of RNA
was converted into cDNA using the PrimeScript™ RT Reagent
Kit United States).
polymerase chain reaction (PCR) using ChamQ Universal
SYBR® qPCR Master Mix (Vazyme, China) was performed on
a QuantStudio5 Real-time PCR system (Applied Biosystems).

(Invitrogen, Quantitative real-time

The quantitative PCR primer sequences of the metabolic genes
and the endogenous control GAPDH are listed in Supplementary
Table S4.

Functional enrichment analysis and
mutation analysis

The clusterProfiler (Yu et al., 2012) R package was used to
perform functional enrichment analysis on differentially
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expressed genes between the metabolic score groups. Gene sets
used in the enrichment analysis were downloaded from the
Molecular Signatures Database (MSigDB, v7.4) of the Broad
Institute (Liberzon et al, 2015). The gene sets were
downloaded from MSigDB, including HALLMARK gene sets
(H) and KEGG gene sets (C2). HALLMARK and Kyoto
Encyclopedia of Genes and Genomes (KEGG) terms were
used for functional enrichment of genes with a strict cutoff of
FDR < 0.05. For mutation analysis, mutations in HCC samples
from TCGA were obtained from the cBio cancer genomics portal
(cBioPortal, https://www.cbioportal.org/) (Cerami et al., 2012).
The mutation profiles of low and high metabolic scores were
visualized using the R package maftools (Mayakonda et al., 2018).

Statistical and survival analysis

The Wilcoxon rank-sum test was used for comparisons of the
two groups. Correlation coefficients were computed by Spearman
and distance correlation analyses. Two-sided Fisher exact tests
were used to analyze contingency tables. To identify significant
differential applied the
Benjamini-Hochberg (alias FDR) method to convert the p

genes in gene analysis, we
value to FDR. The p values were two-sided, and less than
0.05 was considered statistically significant. For survival
analysis, Kaplan-Meier and log-rank tests were performed
the

survival) and survminer (https://CRAN.R-project.org/package=

using survival  (https://CRAN.R-project.org/package=
survminer) packages. For specific genes, patients were divided
into high- or low-expression groups according to the median
expression of the gene, and a p value < 0.05 was considered to
denote significance (Zeng et al, 2019). All heatmaps were
generated by the R package pheatmap (https://github.com/

raivokolde/pheatmap).

Results

Metabolic disorders of HCC

A flow chart was used to illustrate the analysis workflow of
this project (Figure 1). After removing duplicate samples,
367 patients were diagnosed with HCC, and 50 NAT samples
were used for analysis. We first calculated potential risk factors
for HCC using clinical overall survival data, which are shown in
Supplementary Figure S1. For HCC, the American Joint
Committee on Cancer (AJCC) stage of the tumor, which
consisted of the primary tumor (AJCC_T) and regional lymph
nodes (AJCC_N) and distant metastasis (AJCC_M), was the
most important prognostic factor (Supplementary Figure S1).
Then, we calculated the expression levels of metabolic pathways
of HCC and NAT and associated them with overall survival to
identify prognosis-related pathways. To evaluate the metabolic
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level of each sample, the enrichment score of each pathway was
calculated and then compared between HCC and NAT using the
Wilcoxon rank-sum test (Figure 2A). In total, 70 (82.4%)
pathways were significantly downregulated, and 7 pathways
(8.24%) were significantly upregulated in HCC, revealing a
lack of ability to maintain normal metabolic levels in tumors
(Figure 2A). Most (18/19, 94.7%) amino acid metabolism
pathways, including tryptophan, histidine, glycine, serine, and
threonine metabolism, were suppressed in HCC, suggesting that
normal catabolism of amino acids was disturbed. Most metabolic
pathways involved in normal liver functions, such as lipid and
carbohydrate metabolisms, were downregulated in HCC.
Regarding upregulated pathways, we noticed that pathways
related to pyrimidine metabolism (required for cell
Ceppi, 2020),
(promote tumorigenesis) (Huang

proliferation)  (Siddiqui and steroid and
cholesterol  biosynthesis
et al., 2020), and oxidative phosphorylation were significantly
upregulated in tumors, indicating increased phosphorylation
levels and malignant proliferation in HCC (Figure 2A). After
associating with overall survival data, it was found that two
pathways, pyrimidine metabolism (belonging to nucleotide
metabolism) and fructose and mannose metabolism
(belonging to carbohydrate metabolism), were unfavorable
indicators; 24 pathways, including fatty acid degradation,
histidine
selenocompound metabolism, glycine, serine, and threonine
and TCA

favorable indicators of HCC (Figure 2B and Supplementary

metabolism, linoleic acid metabolism,

metabolism, lysine degradation, cycle, were
Figure S2). These results suggest that metabolic disorders are
prevalent in tumor tissue and may be used as prognostic

indicators for the overall survival of patients.

Construction of a LASSO-Cox-based
model to predict the prognosis of HCC
patients

To deeply investigate the correlation between metabolic
pathways and the overall survival of HCC, we performed
unsupervised hierarchical clustering using metabolic pathway
scores calculated for the 367 HCC patients. The patients could be
divided into two clusters, one with overexpression of the most
metabolic pathways and another with a lower expression level,
based on the profile (Supplementary Figure S3A). Survival
analysis revealed that patients with a more active metabolic
level might have a favorable prognosis (Supplementary Figure
S3B). Differentially expressed genes between the two clusters
showed differences at the metabolic gene level (Supplementary
Figure S3C). Therefore, for a better interpretation of the
metabolic signature of HCC, we used LASSO to establish a
metabolic score model and presented the relationship between
metabolism and overall survival. Metabolic genes expressed at
lower levels or not were filtered, and 1,200 genes were used for
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Comparison of metabolic pathways between HCC and NAT and characterization of prognosis of metabolic pathway levels. (A) Dot plot of the
dysregulated metabolic pathways between HCC and NAT. The X-axis is the difference between the mean enrichment score of HCC and NAT, while
the Y-axis is the log;o transformed FDR. The red dot represents the significant upregulated metabolic pathways in HCC, and the blue dot represents
the significant downregulated metabolic pathways in HCC. p values were calculated using the Wilcoxon rank-sum test and adjusted using FDR.
(B) Bar plot of significant levels of metabolic pathways with overall survival analysis. The 85 metabolic pathways were ordered by the signed logo p
value. For favorable indicators (higher expression, favorable prognosis), the bars are colored in blue (p value < 0.05). The unfavorable indicators are

colored in red. p values were calculated log-rank test.
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FIGURE 3

Extraction of the prognostic signature and identification of final metabolic-related genes to establish the metabolic model. (A) Coefficient
selection and variable screening of LASSO. The minimum mean cross-validated error of \ is selected. The lower X-axis represents the lambda value,
and the upper X-axis scale represents the number of metabolic genes in the LASSO model. (B) Cross-validation in the LASSO model to select the
tuning parameter. The X-axis represents the log (lambda) value, and the Y-axis represents the partial likelihood deviance. (C) Forest plots of
multivariate analysis showing the six genes (ADPGK, GOT2, MTHFS, FTCD, LDHA, and CHAC?2) as independent prognostic factors of overall survival of

HCC patients.

further analysis. Then, LASSO was used to narrow down the
number of genes by giving a zero to the estimated coefficient of
these genes (Figure 3A and Figure 3B). The model with a
minimum lambda of 0.0501 was selected, and a total of
23 genes were identified. We then used the Cox proportional
hazards model to filter independent prognostic factors. Six genes
(ADPGK, GOT2, MTHFS, FTCD, LDHA, and CHAC2) were
identified as independent prognostic factors using univariate
(Figure 3C
Supplementary Figure S4). Finally, we constructed a six-gene-

and multivariate survival analyses and

based metabolic score model, which is shown as follows:
Metabolic score = ADPGK * (-0.3254) + GOT2 * (-0.2473) +
MTHES * (-0.1798) + FTCD * (-0.0717) + LDHA * 0.2449 +
CHAC2 * 0.3262.
Among the six metabolic genes, ADPGK is an ADP-
dependent and ADP-dependent

glucokinase catalyzes
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phosphorylation  of glucose, which is involved in

gluconeogenesis/glycolysis in cancer progression and is
upregulated in HCC tumor tissues (Ronimus and Morgan,
2004; Jing et al, 2020) (Supplementary Figure S4A). GOT2
(glutamic-oxaloacetic ~ transaminase 2) is a pyridoxal
phosphate-dependent enzyme and plays a key role in amino
acid metabolism (Stegen et al, 2020) and is upregulated in
(Supplementary S4A).
MTHFS (methenyltetrahydrofolate synthetase)

(formimidoyltransferase

normal tissues Figure Regarding
and FTCD
both

participate in the metabolism of cofactors and vitamins and

cyclodeaminase), genes
are downregulated in HCC with a higher tumor stage
(Matakidou et al., 2007; Wu et al., 2009; Love et al., 2012;
Kanarek et al, 2018) (Supplementary Figure S4A). Our
analysis of the cohort TCGA-HCC revealed that high
expression of ADPGK, GOT2, MTHFS, and FTCD was
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FIGURE 4

Prognosis of the metabolic score model in the HCC cohort. (A) LASSO model of the HCC cohort. Each column represents one patient. Patients

are ordered by the metabolic score level. The upper panel shows the clinical feature of HCC patients, including AJCC stage, body mass index (BMI),
height, weight, gender, age, vital status, and metabolic score. The middle panel shows the expression level of the six genes selected by LASSO. The
lower panel shows the score level and the cutoff (median value -5.273) of HCC patients. (B) Kaplan—Meier curve comparing overall survival of
metabolic score-low and -high. Patients are separated into two groups according to the median value (-5.273) of the metabolic score. p value is
calculated using the log-rank test. (C) Forest plots of multivariate analysis showing the metabolic score as an independent prognostic factor of overall
survival of HCC patients.
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FIGURE 5

Clinical characteristics and genetic alterations associated with the metabolic score in HCC. (A) Boxplot of metabolic score in HCC and NAT. The
X-axis shows the AJCC stages of HCC. p values were calculated using the Wilcoxon rank-sum test. (B) Bar plot of metabolic calculated using the
gRT-PCR. (C) Enrichment analysis using differentially expressed genes between metabolic score-low and -high groups. (D) Oncoplot of the
mutation profiles of metabolic score-low and -high groups. Gene with overall mutation frequency > 5% were selected for visualization.
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associated with a favorable prognosis (Supplementary Figure
$4B). LDHA (lactate dehydrogenase A) and CHAC2 (ChaC
glutathione-specific gamma-glutamylcyclotransferase 2)
participate in amino acid metabolism. Previous studies on
LDHA have reported that elevation of LDHA expression can
promote the invasion and metastasis of tumors (Jin et al., 2017).
CHAC2 may act as a tumor suppressor in gastric and colorectal
cancer (Liu et al,, 2017). Univariate survival analysis also showed
that high expression of LDHA and CHAC2 was associated with
an unfavorable prognosis, indicating that they could be
considered biomarkers of HCC (Supplementary Figure S4B).
Using the median value of metabolic score -5.273 as the
cutoff, we calculated the metabolic score and found that the
prognosis of patients with higher scores was poorer (Figure 4A
and Figure 4B). The HR of the metabolic score was 3.767
2.19e-11, 95% CI = 2.555-5.555, Figure 4B);
Supplementary Table S3 shows the metabolic scores for the

(p-value =

367 HCC patients. Multivariate survival analysis with age, sex,
weight, height, prior malignancy, and AJCC stage also revealed
the metabolic score as an independent prognostic indicator
(Figure 4C).

Association with clinical characteristics
and genetic alterations

We then associated the metabolic score with clinical data and
genetic alterations and found the score level to be significantly
lower in NAT (Figure 5A). The metabolic scores were highest for
patients with AJCC stage ITI/IV (Figure 5A). Through QRT—PCR,
a higher HCC score was validated using two HCC tumor cell lines
and one normal control cell (Figure 5B). After calculation of
differentially expressed genes between the metabolic score-low
and -high groups, we found genes significantly upregulated
(FDR<0.05) in the high-score group to be enriched in cell
proliferation pathways, such as the G2/M checkpoint, E2/F
target, cell cycle, and epithelial-mesenchymal transition
(EMT), and oncogenic pathways, such as the TP53 signaling
pathway (Figure 5C). To further investigate the correlation
between the six key metabolic genes and the role in affecting
in HCC, we
protein-protein interaction networks functional enrichment
analysis based on the STRING database (Szklarczyk et al,

2021). Interestingly, the results showed the direct pathways

metabolic/oncogenic  pathways performed

that correlated with the six genes, namely, the HIF-1 signaling
pathway, pathways in cancer, metabolic pathways, WNT
JAK-STAT
p53 signaling pathway (Supplementary Figure S5), revealing

signaling  pathway, signaling pathway, and
that the six genes played an important role in HCC
(Supplementary Figure S5). Functional enrichment analysis
also revealed upregulated genes in the low-score groups to be
metabolism-related pathways, such as propanoate, arachidonic

acid, and fatty acid metabolism, suggesting that this metabolic
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score model may be a valuable tool to evaluate metabolic
disorders in HCC (Figure 5C). By comparing mutations
between the two metabolic score groups, it was found that
patients with higher scores harbored more TP53 gene
mutations (p value = 8.383e-05, Pearson’s chi-squared test,
Figure 5D). However, there was no difference in tumor
mutational burden (TMB) between the two groups, indicating
that TP53 gene mutations are a key factor contributing to
metabolic disorders in HCC.

Validation of the metabolic score model in
external independent cohorts

To confirm the reliability of the metabolic score model,
another two independent HCC cohorts were used for
validation (Figure 6A and Figure 6B). For the two HCC
validation cohorts, namely, GSE14520 and GSE76427, only
tumor tissues were used for validation. Using the median
value as the cutoff, similar results, ie., that high metabolic
score HCC patients harbored unfavorable overall survival,
were validated in both cohorts, revealing the metabolic score
as a reliable tool for prognosis prediction (Figure 6A and
Figure 6B). Other TCGA cohorts were also used to investigate
the application of the metabolic score model (Figure 6C). The
results showed good performance for other kinds of tumors of
digestive or metabolic organs, such as kidney chromophobe
(TCGA-KICH), kidney renal papillary cell carcinoma (TCGA-
KIRP), kidney renal clear cell carcinoma (TCGA-KIRC),
carcinoma (TCGA-ACC),
adenocarcinoma  (TCGA-PAAD), and uterine corpus
endometrial carcinoma (TCGA-UCEC) (p value < 0.05,
Figure 6D).

adrenocortical pancreatic

Discussion

There are multiple factors that are associated with the overall
survival of HCC patients. Among the clinical characteristics of
HCC patients, the tumor stage (AJCC stage) is the most relevant
to the overall survival of HCC and the most commonly used.
However, the AJCC stage only includes tumor characteristics but
lacks information about the biological characteristics of HCC,
such as molecular, metabolic, and immunologic features
2021).
metabolism has brought us new insights into cancer therapy.

(Chidambaranathan-Reghupaty et al, Targeting
To provide enough energy for malignant proliferation and
metastasis, some metabolic pathways are aberrantly altered in
tumor tissues (DeBerardinis and Chandel, 2016). The tumor
microenvironment is a mixture of tumor cells, stromal cells, and
immune cells (Zheng et al., 2017). Abnormal cancer metabolism,
such as glycolysis, plays important roles in drug resistance and
the stemness of cancer cells (Park et al., 2020). Previous studies
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FIGURE 6 (Continued)

KIRP: kidney renal papillary cell carcinoma, TCGA-CHOL: cholangiocarcinoma, TCGA-PCPG: pheochromocytoma and paraganglioma, TCGA-
UVM: uveal melanoma, TCGA-THCA: thyroid carcinoma, TCGA-KIRC: kidney renal clear cell carcinoma, TCGA-NBL: neuroblastoma, TCGA-TGCT:
testicular germ cell tumors, TCGA-ACC: adrenocortical carcinoma, TCGA-THYM: thymoma, TCGA-PAAD: pancreatic adenocarcinoma, TCGA-
SKCM: skin cutaneous melanoma, TCGA-BLCA: bladder urothelial carcinoma, TCGA-AML: acute myeloid leukemia, TCGA-MESO:
mesothelioma, TCGA-BRCA: breast-invasive carcinoma, TCGA-LGG: brain lower-grade glioma, TCGA-UCEC: uterine corpus endometrial
carcinoma, TCGA-SARC: sarcoma, TCGA-DLBC: lymphoid neoplasm diffuse large B-cell lymphoma, TCGA-UCS: uterine carcinosarcoma, TCGA-
LUAD: lung adenocarcinoma, TCGA-OV: ovarian serous cystadenocarcinoma, TCGA-GBM: glioblastoma multiforme, TCGA-CESC: cervical
squamous cell carcinoma and endocervical adenocarcinoma, TCGA-LUSC: lung squamous cell carcinoma, TCGA-READ: rectum adenocarcinoma,
TCGA-WT: high-risk Wilms tumor, TCGA-STAD: stomach adenocarcinoma, TCGA-RT: rhabdoid tumor, TCGA-COAD: colon adenocarcinoma,
TCGA-ESCA: esophageal carcinoma, and TCGA-HNSC: head and neck squamous cell carcinoma. (D) Prognosis of the metabolic score in the
36 TCGA projects. Hazard ratio with 95% ClI and p values calculated using the inner cohort median values as the cutoff are visualized.

have reported high consistency between gene expression and
protein levels and other kinds of omics (Gao et al, 2019),
indicating that RNA sequencing data can be used to estimate
the altered metabolic pathways in cancer research. Therefore,
discovering abnormal metabolic pathways and targeting
metabolism using RNA sequencing has brought new insights
into cancer therapy (Luengo et al., 2017).

In this study, focusing on aberrantly expressed metabolic
genes, we built a metabolic score model to predict the prognosis
of HCC. Six metabolic-related genes were calculated as
independent prognostic factors. Among the six metabolic
genes, LDHA catalyzes the conversion of pyruvate and
participates in the TCA cycle and has been reported to
associate with tumor growth, maintenance, and invasion of
HCC (Sheng et al, 2012; Miao et al, 2013). In the
protein—protein interaction analysis, LDHA also acts as a hub
gene that directly correlates with HIF1A, EP300, TP53, PKM, and
that
(Supplementary Figure S5). FTCD plays a role as a tumor

other genes are enrolled in metabolic pathways
suppressor gene in HCC and is critical for the catabolism of
histidine (Chen et al., 2022). The expression level of histidine
metabolism is also associated with the overall survival of HCC in
our analysis. Several important pathways, including the TCA
cycle and histidine metabolism, were key regulators in HCC
progression. More evidence and experimental validation would
be utilized to discover the mechanisms of these pathways in
future work. In our project, using LASSO and Cox proportional
hazards model, a six-gene-based metabolic model was
constructed and relevant to the metabolic level and prognosis
of HCC. Patients with higher scores had poorer prognoses. For
patients with higher scores, pathways involved the cell cycle and
tumorigenesis signaling pathways, such as TP53 signaling,
indicating an exclusive correlation between TP53 and
metabolism. Therefore, for patients with higher metabolic
scores, TP53 signaling may be a valuable target for future
analysis.

However, there are some limitations in our study. First, the
potential mechanisms of metabolic pathways in overall survival

need to be further explored. Next, further validation of the
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metabolic score model is needed, especially in clinical
applications. Third, the key hepatocarcinogenesis mechanism
for the metabolic score and potential therapeutic targets for
patients with higher scores should be deeply investigated. In
general, the six-gene-based metabolic score model, as an
independent prognostic indicator of the overall survival of
HCC patients, may help predict the procession of survival and
provide insights for a metabolic analysis of cancer research.

Conclusion

By comparing the expression profile of metabolic genes and
pathways between tumor tissues and NAT, we found that HCC
patients harbored lower expression levels of most metabolic
pathways. The expression levels of several metabolic pathways
were also correlated with the prognosis of HCC. To associate
metabolic level with prognosis, a metabolic score model was built
to predict the prognosis of overall survival of HCC based on the
expression profile of dysregulated metabolic genes. Through
validation using external independent cohorts, we believe that
this six-gene-based metabolic score will be beneficial for
prognosis prediction and the identification of potential
therapeutic drug targets of HCC in the future.
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