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Proteins and nucleic acids are essential biological macromolecules for cell life.

Indeed, interactions between proteins and DNA regulate many biological

processes such as protein synthesis, signal transduction, DNA storage, or

DNA replication and repair. Despite their importance, less than 4% of total

structures deposited in the Protein Data Bank (PDB) correspond to protein-DNA

complexes, and very few computational methods are available to model their

structure. We present here the pyDockDNA web server, which can successfully

model a protein-DNA complex with a reasonable predictive success rate (as

benchmarked on a standard dataset of protein-DNA complex structures, where

DNA is in B-DNA conformation). The server implements the pyDockDNA

program, as a module of pyDock suite, thus including third-party programs,

modules, and previously developed tools, as well as new modules and

parameters to handle the DNA properly. The user is asked to enter Protein

Data Bank files for protein and DNA input structures (or suitable models) and

select the chains to be docked. The server calculations are mainly divided into

three steps: sampling by FTDOCK, scoring with new energy-based parameters

and the possibility of applying external restraints. The user can select different

options for these steps. The final output screen shows a 3D representation of

the top 10 models and a table sorting the model according to the scoring

function selected previously. All these output files can be downloaded,

including the top 100 models predicted by pyDockDNA. The server can be

freely accessed for academic use (https://model3dbio.csic.es/pydockdna).
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Introduction

Proteins and nucleic acids are fundamental biological macromolecules whose

functions and interactions are vital to regulating cell’s life. Their interactions regulate

many biological processes such as protein synthesis, signal transduction, DNA storage,

and DNA replication and repair, among others. Learning how protein and DNA interact

is fundamental to fully elucidate many central biological processes and disease
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mechanisms, and can also support the discovery of novel

therapeutic targets. Although 192,025 structures have been

experimentally determined and deposited in the June

2022 release of Protein Data Bank (PDB), only 10,480 of

them correspond to protein-nucleic acid complexes (this

includes 6,732 protein-DNA complexes). Thus, the number of

protein-DNA structures experimentally determined is clearly

much smaller than the number of protein-DNA complexes

that are expected to be formed in cells. This gap is partially

explained by the difficulty of the experimental determination

process, i.e. a very time-consuming process in the best scenarios

or impossible in many cases due to limitations on the

experimental techniques. For this reason, a computational

approach on modelling protein-DNA interactions could be of

enormous help.

Even though theoretical models of macromolecular

structures are usually less accurate than direct experimental

measurements, they can yield sufficient information to build a

working hypothesis, complementing experimental approaches in

elucidating protein-DNA interactions and guiding further

experimental analyses to identify essential amino acids or

nucleotide residues. From a computational point of view,

there are two main approaches to model the structure of a

protein-DNA complex: template-based modelling and ab

initio docking. Template-based modelling aims to model a

complex based on the structure of a homologous complex.

The popularity of template-based methods has increased in

the past years, especially for modelling protein-protein

complexes, thanks to the development and support of many

structural databases of protein interactions that can provide the

required templates, such as 3D Complex (Levy et al., 2006),

Dockground (Kundrotas et al., 2018), or Interactome3D (Mosca

et al., 2013). However, the quality of template-based predictions

clearly depends on the availability of suitable templates, not

particularly high in the case of protein-DNA interactions,

which makes template-based approaches of very limited

applicability for protein-DNA modeling. On the other hand,

ab initio docking methods aim to predict the three-dimensional

structures of macromolecular complexes, starting from the

atomic coordinates of their components. Ab initio docking

methods do not depend on available structural data for

homologous complexes, which makes them more useful in the

actual protein-DNA context.

The methodology for the prediction and modelling of

protein-protein complexes is very well established despite

there are still many challenges to be addressed. Numerous

protein-protein docking methods have been developed and

assessed as shown in the Critical Assessment of PRediction of

Interactions (CAPRI) community-wide experiment. During the

past editions of the CAPRI experiment (Janin et al., 2003), targets

other than protein-protein complexes were proposed: protein-

RNA complex (Lensink and Wodak, 2010) (T33, T34), protein-

peptide (T60-64) or protein-heparin (T57) among others.

However, protein-DNA docking received limited attention

from the CAPRI community and developers of computational

methods. Macromolecular docking protocols that accept protein

and DNA coordinates as input include FTDock (Gabb et al.,

1997), GRAMM-X (Tovchigrechko and Vakser, 2006), HEX

(Macindoe et al., 2010), PatchDock (Schneidman-Duhovny

et al., 2005; Macindoe et al., 2010) and NPDock (Tuszynska

et al., 2015), as well as HDock (Yan et al., 2017), ClusPro

(Comeau et al., 2004) and HADDOCK (Van Zundert et al.,

2016) servers. From this list of tools, only NPDock and HDock

were originally developed for protein-nucleic acid docking; the

rest were developed as protein-protein docking tools that can also

accept nucleic acids coordinates, but they lack an intrinsic

scoring function dedicated to assessing protein-DNA

interactions. These protocols usually report high predictive

rates in bound conditions, i.e. when the co-crystallized

partners in a known complex structure are separated and then

re-docked. However, despite bound docking is useful for testing

and development purposes, it does not represent realistic

conditions and thus it is of limited practical value for biology.

Therefore, it is important to have available datasets to test

protein-DNA docking tools in unbound conditions.

Compared to protein-protein docking, where the most recent

release of theWeng’s group Protein-Protein Docking Benchmark

5.5 (Vreven et al., 2015) has 257 entries, and to protein-RNA

docking, where there are different reported benchmarks (Barik

et al., 2012; Pérez-Cano et al., 2012; Huang and Zou, 2013; Nithin

et al., 2017), for protein-DNA docking there is only one available

benchmark, which contains 47 complexes (van Dijk and Bonvin,

2008). Using this benchmark, protein-DNA docking protocols

report moderate success rates in unbound conditions. For

instance, on a subset of 23 cases from this benchmark, HDock

success rate for top 10 models (i.e. at least one near-native

structure within the top 10 models) is less than 10%, while

success rate for top 100 is slightly over 30% (Yan et al., 2017).

NPDock reports a maximum success rate (i.e. at least one near-

native conformation found in the entire prediction set) of 7/47

(15%) (Tuszynska et al., 2015). Protein-DNA docking with

HADDOCK reported an excellent performance (van Dijk and

Bonvin, 2010) when using restraints based on the real interface.

This represents a very promising approach, but in a realistic

scenario, lack of knowledge on the actual complex interface

might limit its application. A more recent coarse-version of

HADDOCK protein-DNA docking shows similar accuracy

with ~6-fold speed increase over atomistic calculations

(Honorato et al., 2019). The need of new computational tools

to address unbound protein-DNA docking is clear. We present

here a new web server that implements the pyDockDNA protein-

DNA docking and scoring protocol, as a new module of pyDock

version 4 (upcoming publication). The original pyDock docking

and scoring approach (Cheng et al., 2007), which showed

excellent performance for the prediction of protein-protein

docking (Lensink et al., 2019; Rosell et al., 2020), has been
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rewritten in Python 3 and extended for its application to protein-

DNA docking, with new functionalities to handle the nucleic acid

structures and upgraded atomic solvation parameters for a more

accurate scoring of protein-DNA interactions.

Materials and methods

Data sets: Protein-DNA docking
benchmark and external case studies

In order to test the new pyDockDNA docking protocol, we

used a previously developed protein-DNA docking benchmark

(version 1.2) (van Dijk and Bonvin, 2008). The benchmark

contains bound and unbound x-ray crystallography and NMR

structures for 47 protein-DNA complexes, in which DNA is in

B-DNA conformation. These are classified as ‘easy’,

‘intermediate’ or ‘difficult’ cases, based on the interface RMSD

values between the bound and unbound components of the

complex.

An additional set of case studies was compiled following the

criteria selection used in the above described protein-DNA

docking benchmark. This test set is composed of ten

protein-DNA complexes, where both bound and unbound

structures are available for each reference complex, and the

sequences are different from those in the first protein-DNA

docking benchmark. Protein-DNA complex and unbound

structures were compiled from the Protein-DNA Interface

Database (PDIdb) (Norambuena and Melo, 2010) and the

Protein Data Bank (PDB) (Berman et al., 2000). Only

complexes that meet the following conditions were

considered: 1) DNA sequence length larger than eight base

pairs, and 2) proteins without mutations in the core of the

complex interface. To find the protein unbound structures of

the selected protein-DNA complexes, all the PDB entries

containing only protein structures were retrieved, including

structures solved by NMR. Crystallographic structures with a

resolution worse than 3.0 Å were not considered. To avoid

redundancy, entries with sequence similarity ≥90% were

discarded. PDBeFOLD (Krissinel and Henrick, 2004) was

used to find correspondences between bound and unbound

protein structures. This tool performs structural alignments

between two (pairwise alignment) or more (multi-alignment)

molecules using their 3-dimensional structures. The alignment

is based on the Secondary Structure Matching algorithm

(Krissinel and Henrick, 2004). Alignments with a Q-score

higher than 8.0, high P-score and sequence similarity around

90–100% were accepted as the corresponding unbound. Then,

both bound and unbound structures for each case, were post-

processed according to the protocol followed in a previously

developed protein-DNA docking benchmark, for instance by

checking consistency between unbound and bound coordinates

in chain IDs, residue numbers and atom names (van Dijk

and Bonvin, 2008). The unbound DNA models were

generated by using the software 3DNA (Lu and Olson, 2003;

Lu and Olson, 2008), in canonical B-DNA conformation (fiber

model 4).

This additional test set (Table 1) is freely available at the

“Help” section of the server (https://model3dbio.csic.es/

pydockdna/info/faq_and_help#extended_benchmark).

TABLE 1 List of case studies.

PDB
complex

Protein PDB unbound
protein

RMSD unbound-
bound protein

DNA RMSD unbound-
bound DNA

5JLT phage T4 MotA DNA-
binding domain

1KAF 0.83a 22bp dsDNA 1.89

2X6V TBX5 2X6V 0.55 11bp DNA 2.03

3POV SOX 3FHD 1.46 19bp DNA 2.26

4UUV ETV4 DNA-binding ETS
domain

5ILU 1.24 10bp DNA 2.81

2NTC sv40 large T antigen 2FUF 1.13a 21-nt PEN element of the SV40 DNA
origin

2.96

2ITL sv40 large T antigen 4NBP 5.37a 24-nt PEN element of the SV40 DNA
origin

3.84

3MFK Protein C-Ets1 1GVJ 5.61a stromelysin-1 promoter DNA 4.34

2PI0 IRF-3 3QU6 0.76a PRDIII-I region of human
interferon-B promoter strand 1

4.46

1O3R catabolite gene activator
protein

4R8H 0.65 11bp DNA 4.77

3MLO Ebf1 3LYR 0.71a 22bp DNA 5.11

aIn cases with more than one protein-DNA, interface in the x-ray structure, the average value is provided.
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Sampling

In this first step, the input files with the coordinates in PDB

format for the structures (or models) of a protein and a DNA

molecule (which can be B-DNA or any other conformation)

are checked for potential format errors. Missing side-chains in

the protein are rebuilt with SCWRL 3.0 (Bower et al., 1997),

and the electrostatics Amber94 force field (Cornell et al., 1995)

is loaded, assigning the charges to the atoms. Then, rigid-body

docking poses between the protein and the DNA, represented

as 3D grids, are generated with a faster and parallelized version

of the original FTDock (v2.0) software (Gabb et al., 1997) in

which the number of cells in the grid is optimized for

maximum computing efficiency (Jiménez-García et al.,

2013). The molecule (protein or DNA) with the longest

maximal distance between any pair of atoms is considered

the receptor, that is, the fixed molecule, and the other one is

the ligand or mobile molecule. By default, the program uses

0.7 Å grid cell size, 1.3 Å surface thickness, 12° rotation

sampling, and keeps the best three poses for each

rotation. For each target, a total of 10,000 docking poses

are generated.

FIGURE 1
Schematic representation of the pyDockDNA web server main functionalities.
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Scoring

Finally, the protein-DNA docking poses are ranked using a

scoring function composed of electrostatics, desolvation

and van der Waals energy. This new pyDockDNA scoring

function is adapted from the previously pyDock scoring

function for protein-protein docking (Grosdidier et al.,

2007; Jiménez-García et al., 2013), which now includes

atom types for nucleotides from Amber94 force

field (Cornell et al., 1995) in order to calculate for the

modelled protein-DNA complexes. The nucleotide

AMBER atom types have been mapped to the previously

defined atom types in pyDock within a new parameter set

(nuc.dat).

Implementation of pyDockDNA web
server

The program pyDockDNA is built as a module of the new

pyDock 4.0 version (upcoming publication), thus include the

same third-party programs, modules and tools from

previous versions of pyDock as well as new functionalities

to handle the nucleic acid structures properly. The user

can select the chains to be docked, the energetic scoring

function, and even include external information

[from available experimental data or using predictive

methods such as the DBSI server (Sukumar et al., 2016),

for instance] as residue-nucleotide distance restraints to

rescore docking models as previously described for

pyDockRST (Chelliah et al., 2006). The output will be a

set of docking models represented in different formats: 1)

the 3D structure of the best-scoring 10 docking models in

terms of scoring can be visualized in the output screen, 2)

the PDB files for the best-scoring 100 models can be

directly downloaded, and 3) the rotation/translation

vectors are provided to generate up to a total of

10,000 docking poses. A summary of the docking results

can be visualized as a plot with the distribution of the

different energy values obtained for all docking poses

(Figure 1).

Clustering of protein-DNA docking
models in benchmarking

When testing this software (see Results) we have run

several docking executions in parallel, using different initial

random rotations for the input structures, and the best-scoring

100 resulting models for each individual run were merged into

a single pool. To avoid redundancy in the final set, all docking

orientations were clustered by pyProCT analysis software (Gil

and Guallar, 2014), which implements the GROMOS

clustering algorithm (Daura et al., 1999). Distance matrix is

built with pyRMSD with the option “QCP OMP

CALCULATOR” to compute the ligand root-mean-square

FIGURE 2
Predictive performance for the top N = 1, 5, 10, 100 models of pyDockDNA (with and without desolvation) on the protein-DNA docking
benchmark.
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deviation (L-RMSD) values for all pairs of docking

orientations after their receptors were superimposed

(https://github.com/victor-gil-sepulveda/pyRMSD/). A cut-

off value of 4.0 Å was used for L-RMSD to define the

clusters. For each defined cluster of models, the orientation

with the lowest docking score is selected as the cluster

representative.

Docking performance

We have evaluated the predicted performance of

pyDockDNA in different conditions based on the success

rates for the obtained top N docking models, which is the %

of benchmark cases in which a near-native (acceptable) solution

is found within the topN docking models. A near-native solution

is defined as a docking orientation model with L-RMSD ≤ 10 Å

with respect to the reference structure.

Results and Discussion

Performance of pyDockDNA evaluated on
the protein-DNA docking benchmark

The pyDockDNA web server has been tested on the 47 cases

of a previously reported protein-DNA docking benchmark (see

Methods). It is known that using different randomly rotated

input structures can slightly affect docking predictions of FFT-

based docking protocols as in FTDOCK, because this can modify

the mapping of the atom positions on the 3D grids (Garzon et al.,

2009; Pallara et al., 2016). To check for convergence, we applied

pyDockDNA to 10 different random rotations of the initial input

structures for each benchmark case and computed the predictive

success rates for the results obtained from each randomly rotated

input structures. The results indicate evenmore differences in the

predictive values than previously reported for protein-protein

docking (Supplementary Table S1). For instance, the success

rates for the top 10 models ranged from 12.8% to 21.3%.

Therefore, for a more robust evaluation, we merged the

results of all 10 docking executions and clustered the obtained

docking models to remove similar orientations (see Methods).

Figure 2 shows the predictive success rates of the cluster

representatives resulting from merging these 10 docking runs.

The predictive success for the default pyDock scoring function

(including parameters for nucleotide atoms, see Methods) are

better than those obtained for the individual docking runs, which

means that increasing sampling variability when using different

random initial rotations, followed by redundancy removal with

clustering, have improved the docking results.

We further analyzed whether a scoring function previously

developed for protein-protein docking was really optimal for

protein-DNA docking, since for the latter, electrostatics energy

term is expected to have a larger contribution to binding energy

due to the higher overall charge of DNA molecules. Moreover,

desolvation atomic parameters were previously derived for

protein-protein docking in pyDock, but they were not

specifically optimized here for nucleotide atoms. To analyze

the role of desolvation in protein-DNA scoring, we rescored

the generated docking models with the pyDockDNA scoring

function but excluding desolvation energy. This greatly improved

the success rates, as the curve pyDockDNA (no desolv) shows in

FIGURE 3
Predictive performance for the top 10models of pyDockDNA
(with and without desolvation) on the protein-DNA docking
benchmark when cases are grouped according to (A) protein
flexibility (low: RMSD <1 Å; medium: 1Å ≤ RMSD <3 Å; high:
RMSD ≥3 Å), and (B) DNA flexibility (low: RMSD <3 Å; medium:
3 Å ≤ RMSD <5 Å; high: RMSD ≥5 Å). See more details about
flexibility definition in main text.
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Figure 2. This indeed indicates that desolvation is not really

needed for the scoring of the protein-DNA docking models

generated by FFT-based sampling, perhaps because the

parameters have not been yet optimized for nucleotide atoms,

or because electrostatics is more relevant in protein-DNA

interactions than in protein-protein complexes, as above

discussed. We tested other solvation parameters for protein-

DNA reported in the literature (Kagawa et al., 1989), but the

docking results did not improve (further work is needed on the

optimization of these parameters in search of a better desolvation

for protein-DNA).

In addition, we have also tried other combinations of energy

terms, for instance, increasing the factor for van der Waals to 1.0

(we previously found that geometrical complementarity was very

important in protein-RNA; (Pérez-Cano et al., 2016), or

removing desolvation and van der Waals terms from the

scoring function to test the relevance of elecrostatics scoring

alone, but none of these new combined scoring functions

improved the prediction rates (Supplementary Figure S1).

In a rigid-body docking approach as pyDock, it is known that

protein flexibility upon binding is perhaps the most determinant

factor for docking success. To further analyze whether the docking

performance of pyDockDNA is affected by the flexibility of the

protein or DNA input molecules during the complex formation, we

have grouped the docking results on the protein-DNA docking

benchmark according to the flexibility of the protein or the DNA,

that is, based on the RMSD between the unboundmolecules and the

corresponding ones in the complex. Regarding protein flexibility, in

order to make groups of similar size, we defined these three

categories: low (unbound-bound RMSD <1 Å), medium (1 Å ≤
unbound-bound RMSD <3 Å) and high (unbound-bound

RMSD ≥3 Å) flexible cases. As for DNA flexibility, we defined

these three categories: low (unbound-bound RMSD <3 Å), medium

(3 Å ≤ unbound-bound RMSD <5 Å) and high (unbound-bound

RMSD ≥5 Å) flexible cases. The results are shown in Figure 3. We

can observe that the docking predictive performance does not

worsen when protein flexibility is higher (actually, for

pyDockDNA with no desolvation, success rates increase when

protein flexibility is medium or high). However, we can see that

the docking performance for highly flexible DNA molecules is

dramatically low. We should note that in this benchmark,

proteins in general show smaller flexibility (average unbound-

bound RMSD 2.6 Å) as compared to DNA (average 4.2 Å). In

addition, due to the different RMSD cut-off values used to define the

flexibility groups for proteins and for DNA, the unbound-bound

RMSD values for the group of high flexible proteins (average 4.8 Å)

are much smaller than for the group of high flexible DNA (average

7.8 Å), which could explain the much worse predictive rates in the

latter.

Application to external case studies

For further testing, we have applied pyDockDNA to a set of

ten additional protein-DNA cases (Table 1) where the structures

for the complex and the unbound protein were available at PDB,

and the unbound DNA was modelled in canonical B-DNA

conformation (see Methods).

For each case study, we performed a single pyDockDNA

execution on the randomly rotated unbound protein and DNA

structures. This represented a realistic scenario, since the

pyDockDNA server only provides results for a docking

FIGURE 4
Application of pyDockDNA to case studies. (A)Near-native model (in yellow) obtained by pyDockDNA docking between a modelled 22bp DNA
(receptor) and Ebf1 (ligand). This model was ranked 5 with pyDockDNA (no desolvation) scoring function and has L-RMSD 3.33 Å with respect to the
reference (PDB 3MLO; in red). (B) Reasonable model (in yellow) obtained by pyDockDNA docking between the catabolite gene activator protein
(receptor) and amodelled 11bp DNA (ligand). This model was ranked 5with pyDockDNA (either with desolvation or with no desolvation) scoring
function and has L-RMSD 10.76 Å with respect to the reference (PDB 1O3R; in red).
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execution (randomly rotated input structures should be provided

to the server in independent executions for a more thorough

docking study similar to the benchmark performance analysis

above shown). Overall, we obtained predictive success rates of

10% (for the top 10 models) and 30% (for the top 100 models)

when using pyDockDNA scoring function, and 10% and 60%

(for the top 10 and 100 models, respectively), when using

pyDockDNA without desolvation. Given the small number of

cases of these additional set, these values are within the expected

range according to the larger docking benchmark set.

The most successful case is the complex between the DNA

binding domain of Early B-cell Factor 1 (Ebf1) bound to a 22bp

DNA (PDB 3MLO), where a near-native docking model

(L-RMSD 3.33 Å with respect to the reference) is found with

rank five when using pyDockDNA (no desolvation) scoring

function (Figure 4A). When using pyDockDNA (including

desolvation) scoring function, this docking model is ranked 6,

so it is still within top 10 models. This case has low-flexible

protein but high-flexible DNA.

Another case is the complex between the catabolite gene

activator protein and a 11bp DNA (PDB 1O3R), where we found

an almost acceptable docking model (L-RMSD 10.76 Å with

respect to the reference) with rank 5, when using

pyDockDNA either including solvation or not (Figure 4B).

This case has also low-flexible protein but medium-flexible

DNA. Incidentally, if this case were considered acceptable, the

success rate for the top 10 would be 20%. However, these

percentage values are perhaps not very meaningful

considering the low number of cases in this external test set.

Interestingly, when using van der Waals term with weighing

factor 1.0 (instead of the default factor in pyDock and

pyDockDNA, that is 0.1), we find near-native solutions in

three more cases, in addition to 3MLO: 1) 5JLT (L-RMSD

7.08 Å) with rank one when using desolvation; 2) 2NTC

(L-RMSD 7.25 Å) with rank three without using desolvation,

and 3) 2PI0 (L-RMSD 6.63 Å) with rank 3 and 2, with or without

desolvation, respectively. Therefore, for half of these external case

studies, we found near-native docking models within the top

10 models with pyDockDNA, using different variants of the

scoring function.

In summary, we present here the pyDockDNAweb server to

model protein-DNA complexes, which implements a docking

method based on pyDock, with new scoring parameters for

DNA.We have evaluated the performance on unbound proteins

and modelled DNA molecules in canonical B-DNA

conformation, using a known protein-DNA docking

benchmark. The results show near 40% success rate for the

top 10 models when using the pyDockDNA (no desolvation)

scoring function, after merging the results from 10 docking

executions using different randomly rotated initial structures,

and clustering the models to remove redundant ones. The

method has been applied to external case studies, with

similar predictive performance.
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