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The size, conformation, and organization of the glycosaminoglycan hyaluronan

(HA) affect its interactions with soluble and cell surface-bound proteins. HA that

is induced to form stable networks has unique biological properties relative to

unmodified soluble HA. AlphaLISA assay technology offers a facile and general

experimental approach to assay protein-mediated networking of HA in solution.

Connections formed between two end-biotinylated 50 kDa HA (bHA) chains

can be detected by signal arising from streptavidin-coated donor and acceptor

beads being brought into close proximity when the bHA chains are bridged by

proteins. We observed that incubation of bHA with the protein TSG-6 (tumor

necrosis factor alpha stimulated gene/protein 6, TNFAIP/TSG-6) leads to

dimerization or higher order multimerization of HA chains in solution. We

compared two different heparin (HP) samples and two heparan sulfate (HS)

samples for the ability to disrupt HA crosslinking by TSG-6. Both HP samples

had approximately three sulfates per disaccharide, and both were effective in

inhibiting HA crosslinking by TSG-6. HS with a relatively high degree of sulfation

(1.75 per disaccharide) also inhibited TSG-6 mediated HA networking, while HS

with a lower degree of sulfation (0.75 per disaccharide) was less effective. We

further identified Proteoglycan 4 (PRG4, lubricin) as a TSG-6 ligand, and found it

to inhibit TSG-6-mediated HA crosslinking. The effects of HP, HS, and PRG4 on

HA crosslinking by TSG-6 were shown to be due to HP/HS/PRG4 inhibition of

HA binding to the Link domain of TSG-6. Using the AlphaLISA platform, we also

tested other HA-binding proteins for ability to create HA networks. The

G1 domain of versican (VG1) effectively networked bHA in solution but

required a higher concentration than TSG-6. Cartilage link protein (HAPLN1)

and the HA binding protein segment of aggrecan (HABP, G1-IGD-G2) showed

only low and variable magnitude HA networking effects. This study

unambiguously demonstrates HA crosslinking in solution by TSG-6 and

VG1 proteins, and establishes PRG4, HP and highly sulfated HS as

modulators of TSG-6 mediated HA crosslinking.
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Introduction

The glycosaminoglycan hyaluronan (HA) holds a unique

place in the organization of the pericellular matrix (PCM)

(Evanko et al., 2007; Knudson et al., 2018). HA is synthesized

by integral membrane synthase enzymes, is extruded directly into

the pericellular space, and becomes tethered to the receptor

protein CD44 (Yang et al., 2012; Qu et al., 2014; Vigetti et al.,

2014; Jokela et al., 2015; Kobayashi et al., 2020). The covalent

structure of HA is a homogeneous repeating disaccharide

polymer of [(1→4)-β-D-GlcA-(1→3)-β-D-GlcNAc] (Meyer,

1958) with a very high molecular weight of about 1–6 MDa in

most healthy tissues (Cowman et al., 2015a). Each HA chain

adopts an expanded wormlike coil conformation with a large

hydrodynamic domain and can provide a scaffold for

organization of matrix proteins and proteoglycans (Kimura

et al., 1979; Morgelin et al., 1988; Cowman and Matsuoka,

2005; Cowman et al., 2015b). The localization of HA at the

cell surface is closely related to the density, clustering, and state of

activation of the CD44 receptors, as well as the interaction of the

CD44 cytoplasmic tails with the cortical actin skeleton (Lesley

and Hyman, 1998; Lesley et al., 2000; Jokela et al., 2015). The HA-

CD44-actin linkage has been shown to resemble a “picket fence”

arrangement, in which CD44 pickets link the intracellular actin

cytoskeleton with the extracellular HA network (Kusumi et al.,

2012; Freeman et al., 2018). As the extracellular component of the

picket fence, HA contributes to the modulation of membrane

organization and fluidity. During inflammation, the HA matrix

can be weakened or disrupted by hyaluronidases or by

degradation due to reactive oxygen and nitrogen species (Li

et al., 1997; Stern et al., 2007; Yoshida et al., 2013; Cowman,

2017; Yamamoto et al., 2017; Yamaguchi et al., 2019; Kobayashi

et al., 2020; Yoshida et al., 2020). Compensatory crosslinking of

HA is a potential mechanism for rescue of matrix stiffness,

membrane organization, and control of receptor signaling

activity.

The secreted protein TSG-6 (tumor necrosis factor alpha

stimulated gene/protein 6, TNFAIP/TSG-6) may play a

physiologically important role in crosslinking HA during

inflammation (Wisniewski and Vilcek, 1997; Milner and Day,

2003; Milner et al., 2006; Day and Milner, 2019). TSG-6 was

discovered as the product of one of eight genes induced in human

fibroblasts by TNF-α (Lee et al., 1990). Partial sequencing of the

cDNA for TSG-6 showed significant similarity with the HA-

binding Link domain of CD44 (Lee et al., 1990). The full amino

acid sequence (Lee et al., 1992) showed a mature secreted protein

of 260 amino acids with two globular domains–an approximately

94 amino acid Link domain, and an approximately 113 amino

acid CUB domain–and additional N- and C- terminal peptides.

The folded structures of the Link and CUB domains of TSG-6

have recently been predicted by the AlphaFold AI system

(https://alphafold.ebi.ac.uk/entry/P98066) (Deep Mind and

EMBL-EBI) (Jumper et al., 2021; Varadi et al., 2022) and are

closely similar to the structures of the individual domains as

determined from NMR and X-ray diffraction experiments and

modeling based on the experimentally-derived constraints

(Kohda et al., 1996; Briggs et al., 2015). The N- and

C-terminal peptides appear to be intrinsically disordered, and

the functions and interactions of those peptides are not known.

Binding of full length TSG-6 to HA was first shown by its co-

precipitation with HA using cetyl pyridinium chloride and by its

binding to HA-Sepharose (Lee et al., 1992). The mode of HA

binding has been modeled from the experimentally determined

structure of recombinant Link_TSG6 domain (Kahmann et al.,

2000; Blundell et al., 2003; Blundell et al., 2005; Higman et al.,

2007; Higman et al., 2014). The Link module forms an HA-

binding groove, in which CH-π stacking with aromatic amino

acids and salt bridges stabilize the complex. Link_TSG6 also

binds chondroitin 4-sulfate (C4S), but not chondroitin 6-sulfate

(C6S), at the HA-binding site (Parkar and Day, 1997; Park et al.,

2016). Heparin (HP) binds Link_TSG6, at a distinct site from

HA, but HA and HP cannot bind simultaneously (Higman et al.,

2007; Park et al., 2016). Full length TSG-6 differs from the Link

module in binding specificity (C6S can bind full length TSG-6)

and in the increased affinity between full length TSG-6 and HA,

C4S, C6S, and HP at neutral pH (Wisniewski et al., 2005).

There are two proposed mechanisms by which TSG-6 can

crosslink HA. The best characterized mechanism is TSG-6-

mediated catalysis of the covalent transfer of heavy chain

(HC) domains from Inter-α-Inhibitor (IαI) to HA (Huang

et al., 1993; Wisniewski et al., 1994; Rugg et al., 2005;

Sanggaard et al., 2005; Sanggaard et al., 2006; Colon et al.,

2009; Sanggaard et al., 2010). This creates HC-modified HA,

which becomes crosslinked by noncovalent HC-HC self-

association (Yingsung et al., 2003; Zhuo et al., 2004; Zhuo

et al., 2006). The second mechanism is purely noncovalent,

based on TSG-6 binding to HA, and TSG-6 dimerization

serving to bring HA chains together. Evidence for the second

mechanism relies on several observations. Full length TSG-6 self-

associates in solution (Kim et al., 2016). HA-TSG-6 complexes

show higher avidity than HA alone in binding to CD44 on

lymphoid cells (Lesley et al., 2004) and in binding LYVE-1 on

lymphatic endothelial cells (Lawrance et al., 2016). In addition,

CHO cells producing and secreting recombinant TSG-6 become

aggregated, and this effect can be abrogated by reducing HA

synthesis or by the addition of HP (Kim et al., 2016). In model

studies, full length TSG-6 condenses a brush-like layer of surface-

bound HA (Baranova et al., 2011). The binding is cooperative,
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suggesting multimerization of TSG6. The Link domain of TSG-6

(termed Link_TSG6) is much less effective, and not cooperatively

bound, suggesting that the CUB domain participates in TSG-6

self-association.

Our study was undertaken to unambiguously document

noncovalent protein-mediated HA-HA association in solution,

and its modulation by competitors. We employed an AlphaLISA

bead-based assay in which end-biotinylated HA chains are bound

to separate streptavidin-coated donor and acceptor beads,

resulting in a signal only when the beads are brought into

close association by HA-HA links. TSG-6 was shown to

crosslink HA in this assay. In a survey of other HA-binding

proteins, versican core protein G1 domain (VG1) was also

observed to crosslink HA, in agreement with previous reports

(Murasawa et al., 2013; Merrilees et al., 2016), but the cartilage

link protein HAPLN1 and the HA binding protein segment of

aggrecan (HABP; G1-IGD-G2) showed only low and variable

signal for HA crosslinking. We further tested TSG-6-mediated

HA crosslinking in solution for modulation by HP and heparan

sulfate (HS). In addition, we explored the TSG-6 interactome and

discovered TSG-6 binding to the mucin-like glycoprotein

Proteoglycan 4 (PRG4, lubricin). PRG4 was shown to disrupt

HA binding to, and crosslinking by, TSG-6.

Materials and methods

Materials

Biotin end-labeled 50 kDa hyaluronan (bHA; HYA-B50-

200507), 50 kDa HA (Hya-50-KEF-1), and 150 kDa HA

(160K-0504) were obtained from Hyalose LLC or through

Echelon Biosciences Inc. Recombinant human proteins TSG-6

(Trp18-Leu277; #2104-TS), HAPLN1 (Asp16-Asn 354; #2608-

HP), and HABP (Aggrecan G1-IGD-G2 domain, Val20-Gly675;

#1220-PG), with C-terminal 10-His tags, expressed in mouse

myeloma cells, were purchased from R&D Systems Inc.

Recombinant human VG1 (#G-HA01, expressed in E. Coli, no

tag) was obtained from Echelon Biosciences. Full length

recombinant human PRG4 was provided by Lµbris

BioPharma (FL, United States), expressed in CHO cells and

purified as described previously (Iqbal et al., 2016). Some

PRG4 was biotinylated (bPRG4) using a commercially

available kit (EZ-Link Sulfo-NHS-LC-Biotinylation Kit,

ThermoScientific), as per the manufacturer’s instructions.

Heparin 15.7 kDa (#Hep-HG-1000) and heparin 22.2 kDa

(Hep-Poly-6), each having approximately 1 N-sulfate and two

O-sulfate per disaccharide, were purchased from Iduron through

Galen Laboratory Supplies. Heparan sulfate fraction I, 40 kDa,

averaging approximately 0.40 N-sulfate and 0.35 O-sulfate per

disaccharide (GAG HSI) and heparan sulfate fraction III, 9 kDa,

averaging approximately 0.65 N-sulfate and 1.10 O-sulfate per

disaccharide (GAG HSIII) were purchased from Iduron through

Galen Laboratory Supplies. PBS (Phosphate Buffered Saline) (#P-

3813) and PBS-T (PBS containing 0.05% Tween-20) (#P-3563)

were from Sigma Aldrich. AlphaScreen streptavidin-coated

donor beads (#6760002), AlphaLISA streptavidin-coated

acceptor beads (#AL125C), AlphaScreen Histidine (Nickel

Chelate) Detection Kit containing streptavidin-coated donor

beads and nickel chelate acceptor beads (#6760619C), and

half-area 96 well white microplates (#6002299) were

purchased from Perkin Elmer. Plate sealers were obtained

from R&D Systems.

Reagent reconstitution and storage

PBS and PBS-T were dissolved in deionized water, filtered

using a Corning 1 L filter system with a 0.22 μm PES filter

(#430769), and stored at 4°C. 50kDa biotinylated HA (bHA)

was dissolved in 0.2 µm filtered deionized water at a

concentration of 2 µM (100 μg/ml) and stored at 4°C. Aliquots

of bHA stock solution were mixed by gentle repeated pipetting

before use, and an appropriate volume was further diluted with

filtered PBS-T immediately prior to use, to a working

concentration of 4 nM (200 ng/ml) for crosslinking

experiments, or 1.6 nM (80 ng/ml) for direct binding assays.

Solutions were used at room temperature. TSG-6 (35 kDa),

HAPLN1 (40 kDa), and HABP (74 kDa) were each dissolved

in 0.2 µm filtered PBS at a concentration of 4 µM (corresponding

to weight concentrations of 140, 160, and 296 μg/ml,

respectively) and stored at -20°C in 20 µL aliquots. VG1

(38 kDa) was diluted from 1 mg/ml in PBS as supplied to

150 μg/ml (4 μM) in filtered PBS, and stored at -20°C in 20 μL

aliquots. Aliquots of protein stock solutions were brought to

room temperature and mixed with gentle repeated pipetting

before use. All subsequent dilutions to working concentrations

were made immediately prior to use with filtered PBS-T. Sulfated

glycosaminoglycans were dissolved in 0.2 µm filtered deionized

water at a concentration of 1000 μg/ml and stored at 4 °C.

Corresponding molar concentrations were 20 μM, 6.7 μM,

63 μM, 46 μM, 25 μM, and 110 μM, for 50 kDa hyaluronan

(HA50K), 150 kDa hyaluronan (HA150K), 16 kDa heparin

(HP16K), 22 kDa heparin (HP22K), 40 kDa heparan sulfate

(HSI), and 9 kDa heparan sulfate (HSIII), respectively. All

dilutions were made with filtered PBS-T, and brought to room

temperature. PRG4 was supplied at 1.33 mg/ml in PBS +0.01%

Tween-20, and stored at -20 °C in 50 µL aliquots. Using a

molecular weight of 240 kDa, the stock solution of PRG4 had

a calculated molar concentration of 5.54 μM. AlphaLISA and

AlphaScreen bead suspensions were supplied at 5000 μg/ml and

stored at 4°C. Bead suspensions were handled in the dark, under

subdued green light, and kept protected from light during all

subsequent steps. Beads were vortexed for 10 s to mix before use.

For crosslinking experiments in which the donor and acceptor

beads are introduced simultaneously, 2 μL donor beads and 2 μL
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acceptor beads were mixed with 96 μL PBS-T at room

temperature, to create a working solution in which each bead

type is at 100 μg/ml. For direct binding assays in which the

acceptor and donor beads are added in sequential steps, each

bead type was diluted to 80 μg/ml in PBS-T.

AlphaLISA platform for detection of HA
crosslinking

The assay for protein-mediated crosslinking of HA was

developed using the AlphaLISA platform (Figure 1A). In this

assay, streptavidin-coated donor and acceptor beads pick up

nearly monodisperse 50 kDa HA (Select-HA™) molecules,

which are each labeled with a single biotin at the reducing

end (here called bHA). When two or more bHA chains are

brought together by protein-mediated crosslinks during a pre-

incubation step, donor and acceptor beads binding different bHA

chains can become closely spaced. Bead proximity is detected by

680 nm laser excitation of donor bead chromophores, leading to

release of singlet oxygen, and subsequent light emission at

615 nm from singlet oxygen-excited acceptor beads. Since

singlet oxygen is rapidly inactivated, only bead pairs separated

by less than about 200 nm can produce signal. The 50 kDa bHA

chains are about 125 nm long. In our previous AlphaScreen

studies of direct binding between HA and proteins on donor

and acceptor beads respectively, the length of 50 kDa HA was

found to provide an optimum spacing for signal, whereas HA of

higher molecular weight (250–1000 kDa) gave reduced signal due

to increased bead-to-bead distance (Huang et al., 2018).

AlphaScreen and AlphaLISA methods differ in the identity of

the chromophores inside the acceptor beads, and the choice of

platform for the present studies was driven by commercial

availability of acceptor beads with streptavidin coating.

AlphaScreen platform for detection of
direct HA-protein binding interactions

The assay for detection of direct binding of HA to TSG-6 was

developed using the AlphaScreen platform, as previously

described (Huang et al., 2018) and shown in Figure 1B.

AlphaScreen acceptor beads differ from AlphaLISA beads in

chromophore content and consequently in emission wavelength.

For AlphaScreen experiments, excitation is at 680 nm, and broad

band emission is detected from 520 to 620 nm. For our study, the

donor beads carried streptavidin surface coating to bind 50 kDa

bHA. The acceptor beads carried a nickel chelate coating to bind

C-terminal 10-His tagged recombinant TSG-6 protein.

Protocol for protein-mediated
crosslinking of HA in solution

The AlphaLISAmethod for detection of HA crosslinking was

previously described (Huang, 2019). bHA was used at a working

concentration of 4 nM in PBS-T. Proteins were diluted to

multiple working concentrations using PBS-T. In a 1.5 ml

microcentrifuge tube, 32 µL PBS-T, 16 µL bHA working

solution, and 16 µL protein at working concentration were

mixed. The mixing order was PBS-T, bHA, then protein. Final

concentrations of bHA and protein cited in each experiment

were the concentrations during the overnight incubation period.

Mixtures were incubated 16–22 h at 37°C with shaking at

200 rpm on a digital shaking drybath (#88880027, Thermo

FIGURE 1
(A) AlphaLISA platform for detection of HA crosslinking. A
protein that self-associates and simultaneously binds HA can bring
together two or more end-biotinylated HA chains, allowing them
to link streptavidin-coated donor (green) and acceptor (gold)
beads. TSG-6 protein is illustrated as binding HA through the Link
domain and self-associating through the CUB domain (B)
AlphaScreen platform for detection of HA-protein direct binding.
End-biotinylated HA binds streptavidin-coated donor beads
(green). TSG-6 with a C-terminal 10-His tag binds nickel chelate-
coated acceptor beads (blue). The AlphaLISA and AlphaScreen
experiments involve energy transfer via the conversion of
dissolved oxygen to excited state singlet oxygen by
photosensitizer dyes in the donor beads after laser excitation, and
reaction of the singlet oxygen with acceptor beads, leading to
chemiluminescence. The emission wavelengths from AlphaLISA
and AlphaScreen acceptor beads differ as indicated. The maximal
distance for diffusion of singlet oxygen before inactivation is about
200 nm; thus donor and acceptor beads must be brought into
close proximity for signal to be observed (Images were created
with BioRender.com).
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Fisher Scientific). The mixture of AlphaScreen donor beads and

AlphaLISA acceptor beads in PBS-T at 100 μg/ml for each bead

type was loaded into a microplate at 4 µL per well. Immediately

after, incubated reaction mixtures were loaded into the

microplate at 16 µL per well, four wells per sample. The

microplate was sealed and incubated in a black box at room

temperature for 1 h. The plate was read using AlphaScreen

detection. Each full experiment reported was performed at

least three independent times to establish reproducibility, and

a representative experiment is presented.

Protocol for competitor effects on TSG-6
mediated crosslinking of HA

bHA was used at a working concentration of 4 nM in PBS-T.

TSG-6 was diluted to a working concentration of 600 nM in PBS-

T. Competing agents were diluted to a series of working

concentrations in PBS-T. In a 1.5 ml microcentrifuge tube,

equivalent volumes of PBS-T, bHA working solution, TSG-6

working solution, and competitor at a series of working dilutions

were mixed. The mixing order was PBS-T, bHA, TSG-6, then

competitor. Final concentrations of bHA, TSG-6, and competitor

during the overnight incubation were one-fourth the working

concentrations. Mixtures were incubated 16–22 h at 37°C with

shaking at 200 rpm on a digital shaking drybath. The mixture of

AlphaScreen donor beads and AlphaLISA acceptor beads in PBS-

T at 100 μg/ml for each bead type was loaded into a microplate at

4 µL per well. Immediately after, incubated reaction mixtures

were loaded into the microplate at 16 µL per well, four wells per

sample. The microplate was sealed and incubated in a black box

at room temperature for 1 h. The plate was read using

AlphaScreen detection. Each full experiment reported was

performed at least three independent times to establish

reproducibility, and a representative experiment is presented.

Protocol for direct PRG4-TSG-
6 AlphaScreen binding assay

Proteins and beads were diluted using PBS-T. bPRG4 was

plated at 4x working concentrations (four times the desired final

concentrations) of 0, 120 (0.500 nM), 400 (1.67 nM), 1200

(5.00 nM), 4000 (16.7 nM), 12,000 (50.0 nM), 40,000

(167 nM), and 120,000 ng/ml (500 nM). His-TSG-6 was plated

at a 4x working concentration of 12,000 ng/ml (400 nM). Nickel

chelate acceptor beads and streptavidin coated donor beads were

each plated at a 4x working concentration of 80 μg/ml. Proteins

and beads were plated at 5 μL each, for a final total volume in

each well of 20 μL. Control wells lacking TSG-6 had the volume

substituted with PBS-T. For order of addition, His-TSG-6 was

incubated with bPRG4 for 2 h at room temperature with shaking

at 200 rpm, followed by addition of nickel chelate acceptor beads

for 1 h, and finally by streptavidin coated donor beads for 1 h.

The plate was covered in foil during incubations and spun down

after each addition of proteins or beads, as well as prior to

reading, at 1000 xg for 30 s. Each combination was plated in

duplicate and the plate was read using AlphaScreen detection.

Protocol for direct HA-TSG-
6 AlphaScreen binding assay and
competition

bHA was diluted with PBS-T in two steps from 100 μg/ml

(2 μM) to 1 μg/ml then to a working concentration of 80 ng/ml

(1.6 nM), eight times the desired final concentration. HP, HS,

and PRG4 were each diluted with PBS-T to a series of working

concentrations, corresponding to eight times the desired final

concentration. TSG-6 was diluted with PBS-T from 140 μg/ml

(4 μM) to a working concentration of 2000 ng/ml (57 nM), which

is four times the desired final concentration. For the initial

binding step, 2.5 μL bHA, 2.5 μL competitor, and 5 μL TSG-6

were mixed in each well, and incubated at room temperature for

2 h. Then 5 μL acceptor beads at 80 μg/ml was added and

incubated for 1 h. Finally, 5 μL donor beads at 80 μg/ml was

added and incubated for 1 h. All final concentrations reported

include the dilution factor due to addition of bead suspensions,

since the pre-bead incubation duration was similar to that of the

bead addition steps. The plate was read using AlphaScreen

detection. Each full experiment reported was performed at

least three independent times to establish reproducibility, and

a representative experiment is presented.

Instrumental methods and data analysis

AlphaLISA and AlphaScreen assay plates were read on a

Molecular Devices SpectraMax i3 Multi-Mode Microplate

Detection Platform using a SpectraMax AlphaScreen 384 STD

Detection Cartridge (Molecular Devices, San Jose, CA).

Excitation wavelength was 680 nm and emission filter was

570 nm, with 100 nm bandwidth. Excitation time was 140 ms

and integration time was 280 ms. Data were collected with

SoftMax Pro 7.0 from Molecular Devices. Data were analyzed

and plotted (mean ± SD) using GraphPad Prism v9 software.

Results

Full length TSG-6 crosslinks HA in solution

In the present work, we employed a simple assay that directly

detectsHA crosslinking in solution to determine the effects of TSG-6

and other potential protein mediators, experimental variables, and

the susceptibility of the complexes to disruption by inhibiting agents.
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Incubation of TSG-6 with 50 kDa bHA for 16–22 h at 37°C in

PBS-T allowed both TSG-6 self-association and TSG-6 binding

to HA, creating protein-mediated crosslinks. Here, crosslinked

HA was detected by the addition of streptavidin-coated donor

and acceptor beads, followed by AlphaLISA detection of

chemiluminescent signal (measured in counts per second,

CPS) when the beads are brought into close proximity

(i.e., less than about 200 nm apart). bHA alone gives a very

low control signal, but bHA in the presence of TSG-6 gives a high

signal (Figure 2A). This is an unequivocal demonstration of TSG-

6-mediated HA crosslinking in solution. The effect was found to

be dependent on TSG-6 concentration. For incubation of HA at a

final concentration of 1 nM (50 ng/ml) with TSG-6 at final

concentrations up to about 200 nM (7 μg/ml), corresponding

to a TSG-6:HA weight ratio of 140:1, the signal increased with

concentration of TSG-6. Above that concentration, the signal

decreased. The decrease in signal may be due to excess TSG-6

participating in CUB-CUB self-association interactions with

TSG-6-bound HA (“piling on”), without linking two HA

chains. Another possibility is that high TSG-6 concentrations

may lead to networking of multiple HA chains, with inaccessible

(“hidden”) or distant biotinylated chain ends that do not bring

donor and acceptor beads within 200 nm.

Versican G1 crosslinks HA in solution

We detected VG1-mediated HA crosslinking in solution,

using the AlphaLISA assay platform (Figure 2B). Relative to

the effect seen with TSG-6, a significantly higher protein

concentration was needed to detect HA crosslinking. Over the

concentration range studied, we did not observe a maximum

concentration above which crosslinking signal decreased.

FIGURE 2
(A) TSG-6 and (B) VG1 are able to crosslink 50 kDa bHA in
solution, as detected by AlphaLISA assay. For both proteins, the
detectable crosslinking of bHA is dependent on the protein
concentration. In the AlphaLISA experiments, end-
biotinylated HA at 1 nM final chain concentration was incubated
together with increasing concentrations of protein in free solution,
thenmixedwith streptavidin-coated donor and acceptor beads for
detection of HA crosslinking. The control solution contained bHA
and beads only ([protein] = 0), and is shown as a line to better
indicate the associated standard deviation. Signal was recorded as
counts per second (CPS). Each experiment was repeated at least
three independent times, and a representative experiment is
shown. Each data point represents the mean ± standard deviation
from quadruplicate wells.

FIGURE 3
Comparison of TSG-6, VG1, aggrecan HABP, and
HAPLN1 crosslinking effects on HA reveals that TSG-6 is most
effective at a low concentration of 167 nM, while VG1 is more
effective than TSG-6 at 1000 nM. HABP and HAPLN1 did not
cause significant crosslinking of HA at either concentration. In the
AlphaLISA experiments, end-biotinylated HA at 1 nM final chain
concentration was incubated together with protein at the
indicated concentration in free solution, then mixed with
streptavidin-coated donor and acceptor beads for detection of HA
crosslinking. The control solution contained bHA and beads only
([protein] = 0). Signal was recorded as counts per second (CPS).
Each experiment was repeated at least three independent times,
and a representative experiment is shown. Each data point
represents the mean ± standard deviation from quadruplicate
wells.
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HABP and HAPLN1 did not cause
significant HA crosslinking

For the HABP (G1-IGD-G2) portion of aggrecan, we did not

observe significant HA crosslinking using the AlphaLISA assay. For

the cartilage link protein HAPLN1, which is known to self-

aggregate, we observed a very low signal for protein-induced HA

crosslinking and failed to achieve reproducible significant difference

from controls in repeated experiments. (Figure 3). Strong binding of

HABP and HAPLN1 to HA still occur under the conditions used,

and have been previously studied and exploited in development of a

sensitive and specific competitive AlphaScreen assay for HA (Huang

et al., 2018). Protein binding to HA, in the absence of protein self-

association in a manner that can link two end-biotinylated HA

chains together (for example, side-by-side association on a single

HA polymer) is not sufficient for the observation of HA crosslinking

using streptavidin-coated donor and acceptor beads in the

AlphaLISA assay.

Heparin (HP) and highly sulfated heparan
sulfate (HS) inhibit HA crosslinking by
TSG-6

In these studies, the bHA concentration was kept at 1 nM and

the TSG-6 concentration was kept at 150 nM (below the

concentration at which increased TSG-6 self-association

causes the AlphaLISA signal for HA crosslinking to drop).

Inhibitors were added at increasing concentrations as shown

in the figures. All components were mixed together and

incubated at 37°C overnight, followed by bead binding for the

AlphaLISA assay. HP samples with average molecular weights of

16 kDa and 22 kDa, each having about three sulfates per

disaccharide, were found to effectively inhibit TSG-6-mediated

HA crosslinking (Figure 4A). The signal was reduced to about

half by HP at concentrations of 10–100 nM.

We frequently observed a small increase in crosslinking signal in

the presence of either HP sample at low concentrations. The cause is

not certain, but HP binding to the CUB domain might potentially

enhance TSG-6 self-association. That effect would be irrelevant at

higher HP concentrations, when the Link domain interaction with

HA is disrupted.

HS samples were more variable in effect, depending on the

molecular weight and degree of sulfation (Figure 4B). A relatively

highly sulfated HS fraction (HSIII) with low molecular weight

(1.75 sulfates per disaccharide, 9 kDa) was able to disrupt HA

crosslinking by TSG-6, but required a 10 to 100-fold higher

concentration than HP to reduce the crosslinking signal by half.

A lower sulfated, higher molecular weight HS (0.75 sulfate per

disaccharide, 40 kDa) (HSI) showed a more variable and weaker

ability to inhibit TSG-6-mediated HA crosslinking within the

concentration range investigated.

PRG4 binds TSG-6 and effectively disrupts
TSG-6-mediated HA crosslinking

Considering the likely importance of HA crosslinking by

TSG-6 to pericellular biomechanical properties, we

investigated the potential of PRG4 to bind TSG-6. In a

FIGURE 4
(A) Heparin and (B) Heparan sulfate can disrupt TSG-6-
mediated HA crosslinking. Heparan sulfate with a low degree of
sulfation (HS-I) is less effective than highly sulfated heparan sulfate
(HS-III). In the AlphaLISA experiments, end-biotinylated HA at
1 nM final chain concentration was incubated together with TSG-6
protein at 150 nM final concentration, and increasing
concentrations of heparin (HP) or heparan sulfate (HS) in free
solution, then mixed with streptavidin-coated donor and acceptor
beads for detection of HA crosslinking. The control solution
contained bHA, TSG-6, and beads only ([HP] or [HS] = 0), and is
shown as a line to better indicate the associated standard
deviation. Signal was recorded as counts per second (CPS). Each
experiment was repeated at least three independent times, and a
representative experiment is shown. Each data point represents
the mean ± standard deviation from quadruplicate wells.
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direct binding assay performed using AlphaScreen, with

biotinylated PRG4 on streptavidin donor beads and His-

tagged TSG-6 on nickel chelate coated acceptor beads, we

observed a strong signal for binding (Figure 5A).

PRG4 was highly effective as an inhibitor of HA crosslinking

by TSG-6 (Figure 5B). At a final concentration of about 1 nM,

equal to the bHA concentration, the signal due to TSG-6-

mediated HA crosslinking is reduced by half. PRG4 was more

effective than HP or HS at similar molar concentrations.

Inhibition of TSG-6-mediated HA
crosslinking by HP, HS, and PRG4 results
from reduced HA binding to TSG-6, not
reduced TSG-6 self-association

HP, HS, and PRG4 are all able to bind TSG-6. In the case of HP,

the major binding site is known to be on the Link module. HS

presumably binds to the same site. The binding site for PRG4 is not

yet known. Disruption of HA crosslinks formed by TSG-6 self-

association and binding toHA could in principle occur by inhibiting

either the HA-TSG-6 binding interaction or TSG-6—TSG-

6 association. In order to test whether direct HA-TSG-6 binding

was disrupted by HP, HS, and/or PRG4, we used the AlphaScreen

assay platform (Figure 1B). We optimized the TSG-6 concentration

to a value (14 nM, 500 ng/ml) that was below the concentration at

which signal saturated due to maximal loading of the nickel chelate

beads. The optimum bHA concentration was previously determined

to be 0.2 nM (10 ng/ml). For the binding assay, biotinylated HA,

His-tagged TSG-6, and inhibitor were pre-incubated in solution,

after which the TSG-6 was bound to nickel chelate coated acceptor

beads and bHA by streptavidin-coated donor beads. In the absence

of an inhibitor, a strong emission signal was observed. As a control

experiment, unlabeledHA of 150 kDawas used as a competitor. The

signal was reduced by half at a concentration of about 0.1 nM for

HA-150K, close to the concentration of bHA in the solution.

Unlabeled HA was an effective competitor for bHA, both when

all reactants were premixed and incubated in solution before binding

beads and when bHA and TSG-6 were preloaded on their respective

beads. In contrast to unlabeled HA, HP and HS could not compete

with bHA for TSG-6 binding if the beads were preloaded, a process

that facilitates HA-TSG-6 binding. The inability of heparin to

disrupt HA binding to the Link_TSG6 module unless heparin is

added first was reported previously (Mahoney et al., 2005)

Using the protocol in which bHA, TSG-6, and competitor were

premixed and incubated together in solution, we first examined HP

and HS as competitors. HP of 16 kDa and 22 kDa molecular weight

each effectively disrupted HA-TSG-6 binding (Figure 6A). HP

nearly halved the signal at about 10 nM, which is a 50 times

greater concentration than the 0.2 nM HA. The highly sulfated

HSIII was a somewhat less effective competitor, reducing the signal

by half at a concentration of about 50 nM (Figure 6B). Surprisingly,

the less sulfatedHSI sample was also able to disrupt direct HA-TSG-

6 binding at a similar concentration. It is not yet clear why the HSI

sample could disrupt direct binding of HA to TSG-6 but was less

effective in disrupting TSG-6-mediated HA crosslinking over the

concentration ranges tested.

PRG4 was highly effective in reducing HA binding to TSG-6

(Figure 7), reducing the signal by half at a concentration of about

FIGURE 5
(A) AlphaScreen assay shows direct binding of biotinylated
Proteoglycan 4 (PRG4) to His-tagged TSG-6, using streptavidin-
coated donor beads and nickel chelate-coated acceptor beads.
The final TSG-6 concentration was 100 nM, and the control
solution lacked TSG-6. Each data point represents the mean from
duplicate wells (B) AlphaLISA assay shows PRG4 disrupts TSG-6-
mediated HA crosslinking. In the AlphaLISA experiments, end-
biotinylated HA at 1 nM final chain concentration was incubated
together with TSG-6 protein at 150 nM final concentration, and
increasing concentrations of PRG4 in free solution, then mixed
with streptavidin-coated donor and acceptor beads for detection
of HA crosslinking. The control solution contained bHA, TSG-6,
and beads only ([PRG4] = 0), and is shown as a line to better
indicate the associated standard deviation. Signal was recorded as
counts per second (CPS). Each experiment was repeated at least
three independent times, and a representative experiment is
shown. Each data point represents the mean ± standard deviation
from quadruplicate wells.
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5–10 nM. It was similar to HP in competitive effectiveness in the

direct binding assays.

Discussion

TSG-6 noncovalently crosslinks HA chains
in solution

Noncovalent binding of the TSG-6 Link module to HA,

accompanied by dimerization of TSG-6 through the CUB

domain, has been previously proposed to crosslink HA (Lesley

et al., 2004; Baranova et al., 2011; Kim et al., 2016; Lawrance et al.,

2016). In order to confirm and provide a direct measure of TSG-

6-mediated HA-HA crosslinking, we employed an AlphaLISA-

based assay in which crosslinking of two end-biotinylated HA

chains could be detected as a signal when streptavidin-coated

donor and acceptor beads were brought into close proximity by

the two HA chains. In the absence of a crosslinking protein, no

signal was observed. Incubation of the HA with TSG-6 prior to

bead addition gave a strong signal due to HA crosslinking. The

ratio of TSG-6 to HA dictated the extent of detectable HA

crosslinking, such that a large excess of TSG-6 allowed it to

either self-aggregate without crosslinking HA, or to crosslink HA

into networks with “hidden” ends or distances between accessible

ends that exceeded the 200 nm limit for detection by AlphaLISA.

Our results are in accord with the findings of previous

research groups, who documented a dependence of apparent

crosslinking on the weight ratio of TSG-6 to HA. At a very low

weight ratio of 0.22:1, no crosslinking was detected by

measurement of solution viscosity (Fasanello et al., 2021). In

studies of the effect of HA-TSG-6 on CD44 binding affinity, a

TSG-6:HA weight ratio of 9:1 gave a significant increase in

avidity, but the effect was reduced at a higher ratio of 30:1

(Lesley et al., 2004). For binding to LYVE-1, a TSG-6:HA weight

ratio of 5:1 was effective in increasing avidity (Lawrance et al.,

2016). In studies of TSG-6 condensation of a surface-tethered

HA layer, HA condensation increases and then decreases with

the addition of TSG-6 (Baranova et al., 2011).

FIGURE 6
(A) Heparin and (B) Heparan sulfate compete with HA for
binding to TSG-6. In the AlphaScreen experiments, end-
biotinylated HA at 0.2 nM final chain concentration was incubated
together with TSG-6 protein at 14 nM final concentration,
and increasing concentrations of heparin (HP) or heparan sulfate
(HS) in free solution, then mixed with streptavidin-coated donor
and nickel chelate-coated acceptor beads for detection of HA-
TSG-6 direct binding. Signal was recorded as counts per second
(CPS). Each experiment was repeated at least three independent
times, and a representative experiment is shown. Each data point
represents the mean ± standard deviation from triplicate wells.

FIGURE 7
PRG4 competes with HA for binding to TSG-6. In the
AlphaScreen experiments, end-biotinylated HA at 0.2 nM final
chain concentrationwas incubated together with TSG-6 protein at
14 nM final concentration, and increasing concentrations of
PRG4 in free solution, then mixed with streptavidin-coated donor
and nickel chelate-coated acceptor beads for detection of HA-
TSG-6 direct binding. Signal was recorded as counts per second
(CPS). Each experiment was repeated at least three independent
times, and a representative experiment is shown. Each data point
represents the mean ± standard deviation from triplicate wells.
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Sensitivity of HA crosslinking to the ratio of TSG-6 to HA

may also depend on the effective degree of self-association of

TSG-6 prior to binding HA, and the reversibility of that self-

association, which might in turn depend on sample history.

Recombinant full-length TSG-6 self-association in solution has

been reported to depend on thermal history (Kim et al., 2016).

For our experiments, TSG-6 dissolved in PBS at a concentration

of 4 μM (140 μg/ml) had been stored frozen in small aliquots

until use. An extended overnight incubation time at 37°C was

employed to create the complexes. A high degree of

reproducibility was achieved in these experiments, but it can

be anticipated that different TSG-6 samples, with different

thermal or handling histories, may have different optimum

concentrations for HA crosslinking. Confidence in the

existence of the crosslinking effect is nonetheless derived from

the consistent observations of complex formation and

concentration ratio dependence, linking the present studies to

prior work. The simple bead-based assay platform for HA

crosslinking is thus established as a useful experimental

approach for the study of protein-mediated HA crosslinking

and its competition by various matrix components.

Heparin and heparan sulfate inhibit HA
crosslinking by disrupting HA binding to
the link domain of TSG-6

TSG-6-mediated HA crosslinking was disrupted by HP and

highly sulfated HS, while low sulfated HS was less effective. The

ability of HP to disrupt or inhibit HA crosslinking by TSG-6 is in

accord with expectations. The Link domain of TSG-6 has been

shown to bind HP (Mahoney et al., 2005; Higman et al., 2007;

Marson et al., 2009). The HP-binding site is distinct from the

HA-binding site on TSG-6, and mutation of the HP binding site

does not destroy HA binding (Jadin et al., 2014; Bano et al., 2018).

In spite of the different binding sites, HP noncompetitively

inhibits HA binding to TSG-6, possibly by favoring a

conformational change that inhibits HA binding (Higman

et al., 2007). HP has also been reported to disrupt TSG-6-

mediated crosslinking of HA that can cause cell aggregation.

(Kim et al., 2016).

The effect of HS in disrupting HA crosslinking by TSG-6 has

not previously been reported. To determine whether HP and HS

disrupt the HA-TSG-6 binding, or disrupt TSG-6 self-

association, we tested the direct binding of HA to TSG-6

using an AlphaScreen bead-based assay. We observed that HP

and HS (both high and low sulfated forms) effectively disrupt

direct binding of the TSG-6 Link module to HA.

An interesting observation is that HP at low levels causes a

slight increase in HA crosslinking by TSG-6 but has no similar

effect on direct HA-TSG-6 binding. It may be possible that HP

binding to the CUB domain (Milner and Day, 2003) can enhance

TSG-6 self-association, but when HP is present at sufficiently

high levels, HP disruption of the Link module binding to HA is

the dominant effect.

PRG4 binds TSG-6 and inhibits HA-TSG-
6 binding and crosslinking

TSG-6 has a large number of protein binding partners in the

extracellular matrix, including multiple growth factors and

chemokines, as well as fibronectin, thrombospondin-1, and

pentraxin-3 (Day and Milner, 2019). We found that

PRG4 also binds to TSG-6 in solution and can very effectively

inhibit HA binding to TSG-6, abrogating HA crosslinking. No

direct binding between PRG4 and HA was observed, using bHA

on streptavidin-coated donor beads and mAb 9G3-bound

PRG4 on protein G acceptor beads, (data not shown).

PRG4 has been shown to bind CD44 (Al-Sharif et al., 2015)

(and inhibit HA stimulated signaling (Sarkar et al., 2019)), and

more recently MMP9 (Menon et al., 2021) (which associates with

CD44 as well (Yu and Stamenkovic, 1999)). Given PRG4’s anti-

inflammatory (Qadri et al., 2018; Das et al., 2019; Menon et al.,

2021; Krawetz et al., 2022), immunomodulatory (Qadri et al.,

2021; Krawetz et al., 2022), and anti-fibrotic properties (Qadri

et al., 2020; Krawetz et al., 2022), it is intriguing to consider what

type of additive, synergistic, or inhibitory biological properties

TSG-6 bound PRG4 might have in various tissues and diseases.

VG1 noncovalently crosslinks HA chains in
solution

The structure, occurrence, and binding interactions of the

proteoglycan versican have been recently reviewed (Islam and

Watanabe, 2020; Wight et al., 2020). Like aggrecan, the protein

core has an N-terminal globular G1 domain, which binds

specifically to HA. Unlike the aggrecan AG1 domain,

VG1 has a marked tendency to self-associate in solution, and

to bind HA cooperatively (Seyfried et al., 2006). Functionally,

VG1 fragments can aggregate with the VG1 domain of full length

versican, linked via its C-terminal G3 domain to fibrillin-1, and

foster increased HA association with fibrillin-1 coated elastin

fibers (Murasawa et al., 2013). Additionally, VG1 fragments

produced during inflammation, but not full length versican,

bind pericellular HA and its partners, TSG-6 and IαI, to form

large cable-like assemblies that function in binding leukocytes

(Merrilees et al., 2016). Using the AlphaLISA assay, we

demonstrated that recombinant VG1 alone can mediate HA-

HA crosslinking in solution. Interestingly, the HAPLN1 protein,

which also self-associates in solution and binds HA cooperatively

(Seyfried et al., 2005), showed only very low and variable HA

crosslinking signal in our studies. We did not detect significant

HA crosslinking in the presence of aggrecan HABP (G1-

IGD-G2).
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A model for the role of TSG-6, HSPG, and
PRG4 in modulation of HA effects on
plasma membrane organization and
receptor signaling

The plasma membrane of a cell is organized into spatial

compartments by the underlying cortical actin filament network,

linked to transmembrane proteins, acting together as a picket

fence (Kusumi et al., 2012). Immobilized (confined)

transmembrane proteins act as obstacles to diffusion of

phospholipids and other proteins, such that diffusion within a

compartment is much more rapid than diffusion between

compartments. The plasma membrane compartmentalization

strongly affects receptor protein dimerization and

oligomerization.

In agreement with this model, CD44 acts as a picket protein,

with its cytoplasmic tail bound to the actin skeleton via ezrin.

CD44 localization and lateral diffusion have been shown to

depend on the organization and dynamics of the cortical actin

skeleton in macrophages, with 70–85% of CD44 being immobile

or spatially confined (Freeman et al., 2018; Mylvaganam et al.,

2018; Vega et al., 2018). In addition, HA bound to CD44 was

found to act as a pericellular exoskeleton, further restricting the

mobility of CD44 and receptor proteins (Freeman et al., 2018). In

other studies, clustering of CD44 was found to be enhanced by

high molecular weight HA and reduced by low molecular weight

HA (Yang et al., 2012). The link between HA size and

CD44 mobility suggests a connection between HA

degradation during inflammation and consequent effects on

mobility of receptor proteins for inflammatory cytokines and

PAMPs/DAMPs. Receptor mobility in turn controls the rate of

dimerization or oligomerization, thus influencing ligand affinity

and activation of signaling pathways (Wong et al., 2020). High

molecular weight HA is protective, and fragmented HA is more

permissive for inflammatory signaling. The increased production

of high molecular weight HA in response to inflammatory

stimulus is a natural defense mechanism (Cowman 2017).

TSG-6 production is similarly increased as a protective

response during inflammation. In this study, we found that

TSG-6 self-association can crosslink HA in solution,

effectively increasing the HA molecular weight. Crosslinking

of pericellular HA by TSG-6 may contribute to protection

against inflammatory signaling through stabilization of the

outer portion of the picket fence organization of the plasma

membrane and modulation of pro-inflammatory receptor

diffusion, oligomerization, and signaling.

Heparan sulfate proteoglycans (HSPG) and PRG4 can inhibit

the degree of HA crosslinking by TSG-6 via their binding

interactions with TSG-6. Thus, reversible noncovalent

crosslinking of HA can be modulated by the presence of

HSPG and PRG4.
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