
The metabolic plasticity of B cells

Yurena Vivas-García and Alejo Efeyan*

Metabolism and Cell Signalling Laboratory, Spanish National Cancer Research Centre, Madrid, Spain

The humoral response requires rapid growth, biosynthetic capacity,

proliferation and differentiation of B cells. These processes involve profound

B-cell phenotypic transitions that are coupled to drastic changes in metabolism

so as to meet the extremely different energetic requirements as B cells switch

from resting to an activated, highly proliferative state and to plasma or memory

cell fates. Thus, B cells execute a multi-step, energetically dynamic process of

profound metabolic rewiring from low ATP production to transient and large

increments of energy expenditure that depend on high uptake and

consumption of glucose and fatty acids. Such metabolic plasticity is under

tight transcriptional and post-transcriptional regulation. Alterations in B-cell

metabolism driven by genetic mutations or by extrinsic insults impair B-cell

functions and differentiation and may underlie the anomalous behavior of

pathological B cells. Herein, we review molecular switches that control

B-cell metabolism and fuel utilization, as well as the emerging awareness of

the impact of dynamicmetabolic adaptations of B cells throughout the different

phases of the humoral response.
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Introduction

Naïve B cells maintain a state of quiescence coupled to an extremely low basal

metabolism that is interrupted when antigen encounter triggers a massive uptake of

nutrients and biomass accumulation to sustain a sudden burst in proliferation and a

several-fold increase in cell size. Different phases of the humoral response, including the

Germinal Center (GC) cyclic transitions from cell growth in the light zone to proliferation

in the dark zone, the formation of long-lived, resting but alert memory cells and the

antibody production and secretion by Plasma Cells (PC), demand the rewiring of

metabolic fluxes to match the functions and energetic requirements of the different

phenotypic B-cell states (Boothby and Rickert, 2017).

At the molecular level, key regulators of activated B-cell functions exert a parallel

control on metabolism. Therefore, alterations in B cells leading to diseases such as

autoimmunity, immune deficiency and B-cell lymphomagenesis occur in the context of

abnormal B-cell metabolism, as recently reviewed (Boothby and Rickert, 2017; Iperi et al.,

2021; Raza and Clarke, 2021; Shiraz et al., 2022). Thus, understanding normal and

dysfunctional B-cell metabolism may uncover potential avenues for interventions to

harness pathogenic activities of B cells.
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An interesting feature of B-cell metabolism is that it is

multifaceted and the reprogramming subsequent to activation

is not exclusively based on upregulating a specific metabolic

route, such glucose uptake and consumption via glycolysis

(Dufort et al., 2007; Caro-Maldonado et al., 2014). Instead,

increased in B-cell metabolism comprise the involvement of

multiple metabolic routes.

We herein analyze the main metabolic adaptations that occur

in B cells through maturation, activation and differentiation,

highlighting different metabolic routes, energetic substrates, as

well as molecular effectors shaping B-cell metabolism (Figure 1).

The metabolism of B-cell maturation

B-cell development from lymphoid progenitors derived from

hematopoietic stem cells occurs within the fetal liver and bone

marrow (BM), and involves subsequent stages of maturation in

secondary lymphoid organs such as spleen and lymph nodes. A

crucial event in B-cell differentiation is immunoglobulin gene

rearrangement, a process that occurs in progenitor pro-B cells

and results in precursor pre-B cells that express an immature

B-cell receptor (BCR). Further gene rearrangements yield the

expression of a mature BCR and the consequent transition to

immature B-cell stage. BCR reactivity against self-antigens is then

censored via apoptosis, while cells expressing non-self-reactive

BCRs continue the B-cell maturation process (Martin et al.,

2016).

Along with this sequence of events, as early as the B-cell

linage is specified, phenotypic heterogeneity goes hand-in-hand

with metabolic disparities that will determine distinct B-cell

lineages (Sanz et al., 2019; Iperi et al., 2021). For example,

B-cell lineages established either from perinatal and peripheral

B1 progenitors or from conventional BM B2 progenitors, show

distinct fates and metabolic specifications, being tissue-resident

B1 B-cells metabolically more active with higher rates of

glycolysis, oxidative phosphorylation (Oxphos) and fatty-acid

(FA) metabolism, but less versatile than resting follicular (FO)

B2 B cells (Clarke et al., 2018).

Beyond lineage-dependent metabolic specificities, pro-B cells

in the BM preferentially display a glycolytic metabolism

established through the transcriptional control of glycolytic

FIGURE 1
Metabolic routes across B-cell differentiation. B cells display dynamic metabolic changes to meet fluctuating energetic demands as they
transition from distinct B-cell lineages, through resting states of low metabolic activity, and following antigen encounter, to an activated and highly
proliferative state with increased metabolic activity. B cells activate specific transcriptional programs and regulatory pathways that allow them to
either maintain a low metabolic profile or to use a wide range of substrates [glucose, fatty acids (FA) and/or glutamine (Gln)] and different
metabolic routes (i.e., glycolysis, Oxphos, FAO). Thesemetabolic transitions are reversible and tightly regulated, and an interplay between epigenetic
remodelling and metabolic fluctuations may control transitions throughout the different phenotypic states.
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genes in a hypoxia inducible factor 1α (HIF-1α) -dependent

manner. Deletion of HIF-1α in mice results in the upregulation of

genes involved in Oxphos and the tricarboxylic acid (TCA) cycle,

impairing the transition from pro- to pre-B-cell stage (Kojima

et al., 2010). Selected transitional B cells continue their

maturation process toward resting FO B cells. The phenotypic

switch towards mature naïve follicular stages relies on metabolic

adjustments that facilitate a quiescence-like metabolic program

maintained by the downregulation of Oxphos and inhibition of

the mechanistic target of rapamycin complex 1 (mTORC1), in an

AMP-activated protein kinase (AMPK)-dependent manner

(Farmer et al., 2019).

Metabolic switches in B-cell
activation and the germinal center
reaction

The broad repertoire of B-cell phenotypic states is tightly

regulated by the combination of specific transcriptional

programs and microenvironmental cues that impose metabolic

dependencies. The GC are transient micro-anatomical structures

that cluster several clones of FO cells that have been activated by a

T cell dependent antigen, together with T follicular helper (Tfh)

cells and other cell types. Through sequential rounds of Tfh-

mediated activation and selection of competing clones of GC

B cells, followed by clonal expansion and antibody

diversification, the GC reaction facilitates an increase in the

affinity of the selected antibody-producing cells, while also

yielding memory B cells. Each phase of the GC reaction and

the fates of the exiting GC B cells are shaped by profound

metabolic changes.

Glucose and glycolysis: Leading role or
supporting actor

Highly proliferative cells increase glucose uptake and its

breakdown through glycolysis, even in normoxia, a

phenomenon called “Warburg effect” (Warburg, 1956). This

metabolic feature, deeply studied in cancer cells, is also

relevant during the clonal expansion phase of GC B cells. In

this context, the serial reactions of glucose catabolism yield only

two ATPs but provide numerous intermediate metabolites

(Vander Heiden et al., 2009) used by the growing B cells as

bricks for macromolecule synthesis and biomass accumulation.

Before antigen encounter, glucose metabolism is

transcriptionally repressed by specific B-cell lineage factors

such as PAX5 and IKZF1 (Chan et al., 2017), but following

antigen stimulation, B cells maximize glucose uptake through the

upregulation of the glucose transportersGLUT1,GLUT4,GLUT8

and GLUT11 (McBrayer et al., 2012), while conclusions on the

expression of GLUT3 are divergent (Doughty et al., 2006; Dufort

et al., 2007; McBrayer et al., 2012; Caro-Maldonado et al., 2014).

Antigen-mediated induction of glucose transporters is framed

within a broader transcriptional reprograming of glycolytic genes

(Cho et al., 2016) to guarantee B-cell survival and alleviate the

burden of several energetically onerous processes downstream of

B-cell activation, such as proliferation and, in case of PC

differentiation, to fuel antibody production (Dufort et al.,

2007; Caro-Maldonado et al., 2014; Jellusova et al., 2017).

These transcriptional changes favor the increase in the

glycolytic rate, concomitantly with the activation of pathways

that orchestrate B-cell metabolic reprogramming downstream of

BCR activation, such as PI3K/Akt signaling (Doughty et al., 2006;

Patke et al., 2006; Woodland et al., 2008). In addition, the IL-4/

STAT6 axis, with established systemic effects on nutrient uptake

and insulin signaling (Ricardo-Gonzalez et al., 2010), also

increases glycolysis in activated B cells (Dufort et al., 2007).

The glycogen synthase kinase 3 (GSK3) integrates cytokine

and nutrient signaling. GSK3 is a metabolic modulator in resting

cells with limited nutrient content and is rapidly inhibited via a

PI3K/Akt-dependent phosphorylation downstream of BCR and

by co-stimulatory signals such as the CD40-CD40L tandem

during B-cell-T cell synapse in the GC (Cross et al., 1995).

Active GSK3 maintains a low steady-state metabolism in naïve

B cells by restraining increments in cell mass and proliferation

through the inhibition of the transcription factor C-MYC

(Jellusova et al., 2017; Varano et al., 2017). Consequently,

GSK3 preserves a restricted energetic status to ensure B-cell

survival and allows the early increase in metabolic activity

following antigen encounter. B-cell activation results in

inhibition of GSK3 by, in addition to the aforementioned

PI3K-Akt dependent signals, cAMP- and PKA-dependent

stimuli that result in metabolic activation and proliferation

(Cato et al., 2011). Importantly, even in conditions of

GSK3 inhibition such as after T cell-dependent-stimulation,

residual GSK3 activity may be important to harness B-cell

proliferation by tuning down glycolysis and mitochondrial

biogenesis and to prevent metabolic exhaustion and ROS-

mediated cell death (Jellusova et al., 2017; Varano et al.,

2017). These antagonistic roles of GSK3, critical for

preventing a metabolic collapse of GC B cells, may be

conditioned by a dark-zone-to-light-zone decreasing oxygen

tension gradient across the GC (Cho et al., 2016). In the

normoxic dark zone, higher metabolic rates sustain clonal

expansion associated with repressed GSK3 activity while the

moderate hypoxic conditions of the light zone contribute to

maintain GSK3 activity and its restrictive metabolic effects. Such

on-off cycles of GSK3 activity and the repressive effect on

C-MYC have been proposed as a main tumor suppressive axis

in the GC (Calado et al., 2012; Dominguez-Sola et al., 2012;

Finkin et al., 2019).

The interplay of oxygen availability and the cyclic metabolic

behavior of GC B cells is mediated by HIF-1α-dependent
upregulation of glycolytic gene programs to support
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anabolism (Cho et al., 2016; Jellusova et al., 2017; Li et al., 2021).

It is conceivable that HIF-1α behaves as a metabolic rheostat that

adjusts humoral immune responses in a context dependent

manner, since both positive and detrimental effects of hypoxia

on antibody class-switch recombination have been reported

(Abbott et al., 2016; Cho et al., 2016). In contrast to its

critical impact during affinity maturation in the GC, the HIF-

1α transcriptional program is intriguingly dispensable for the

initial glycolytic reprogramming in LPS-activated B cells (Caro-

Maldonado et al., 2014).

An emergent concept in GC biology is that the increased

metabolic demand coupled to rapid growth and proliferation of

GC B cells happens under an environment of transient

limitations in nutrients and oxygen (Abbott et al., 2016; Cho

et al., 2016), and GC B cells count with an overlapping repertoire

of signaling pathways to cope with cyclic metabolic stress. We

still need to understand how antibody affinity, metabolic

limitations and energetic demands are integrated to maximize

the expansion of selected clones without reaching a threshold of

deleterious metabolic stress.

The mTORC1 signaling pathway links nutrient availability,

anabolism, positive selection and clonal expansion. mTORC1 is

involved in GC formation, GC B-cell expansion, metabolic

reprogramming and PC differentiation, and both

pharmacological and genetic inhibition of mTORC1 largely

disrupt antigen-induced cell growth and impair antibody

secretion (Cho et al., 2016; Jones et al., 2016; Jellusova et al.,

2017; Tsui et al., 2018). The physical interaction of a Tfh and a

GC B cell in the light zone is proportional to the amount of

antigen presented by the B cell and thus, to the affinity of the

antibody expressed. This interaction, called “synapse”, results in

rapid activation of mTORC1 and ultimately, in positive selection

of the interacting B cell (Ersching et al., 2017).

mTORC1 activation in light zone B cells is critical for

ribosome biogenesis and anabolic cell growth, processes that

precede the proliferative burst that takes place only after B cells

have migrated to the dark zone (Victora and Nussenzweig, 2022)

(Figure 1). Importantly, mTORC1 activity is strictly required to

trigger cell growth but is largely dispensable after activated B cells

increase in size and start to execute rapid rounds of cell division

(Ersching et al., 2017). The inability to shut off mTORC1 activity

by means of constitutively-active nutrient or growth factor

signaling to mTORC1 is detrimental and decreases fitness of

GC B cells (Goldfinger et al., 2011; Ersching et al., 2017; Long

et al., 2022). Interestingly, a moderate, partial increase in

nutrient-Rag GTPase signaling results in enhanced B-cell

activation, enlarged GC and increased high-affinity antibody

production (Ortega-Molina et al., 2019). Moreover,

moderately activating mutations in RagC have been

exclusively found in human follicular lymphoma (FL) and

diffuse large B-cell lymphoma (DLBCL) samples (Green et al.,

2015; Okosun et al., 2016), while a mild inhibition of nutrient

signaling to mTORC1 impairs the GC response (Ortega-Molina

et al., 2021). In addition to its function controlling B-cell growth

and proliferation, mTORC1 plays a key role in regulating

antibody class-switch recombination, a process that is also

tuned by nutrient availability and oxygen tension (Keating

et al., 2013; Zhang et al., 2013; Cho et al., 2016). Collectively,

these results strongly suggest the existence of exquisitely refined

sensitivity of B cells to moderate fluctuations in the nutrient

signaling pathway. Finally, beyond the control of the GC

reaction, activation of mTORC1 also fuels the rapid extra-

follicular proliferation of activated B cells, and this effect is

independent from the differentiation into antibody-secreting

cells, suggesting that B-cell differentiation and cell division

can be uncoupled (Gaudette et al., 2021).

Oxidative metabolism in B cells: Beyond
mitochondrial oxidation of glucose

Despite the relevance of a dynamic control of mTORC1 in

B-cell functions, this pathway is not directly involved in the

regulation of glycolysis upon antigen-stimulation (Doughty et al.,

2006), suggesting that pathways other than glycolysis support the

remodeling that allows B-cell differentiation and function.

Increased glucose uptake following antigen stimulation is not

merely purposed to feed glycolytic flux, but it also yields glucose-

derived pyruvate, ultimately shunted to the mitochondria for an

oxidative process that is further supported by an increase in

mitochondrial mass (Jang et al., 2015; Jellusova et al., 2017) and

by the upregulation of gene programs involved in mitochondrial

respiration. Such parallel increase in Oxphos sustains the

energetic costs of several consecutive rounds of proliferation

during clonal expansion and it is also critical to support PC

differentiation by alleviating the energetic burden imposed by

massive antibody secretion (Adams et al., 2016; Cho et al., 2016;

Price et al., 2018). This increased metabolic capacity of PC is

driven by the expression of specific lineage transcriptions factors,

such as BLIMP1, required for PC differentiation (Price et al.,

2018) and the activation of anabolic factors that positively

regulate Oxphos by driving mitochondrial remodeling, such as

the aforementioned mTORC1 and C-MYC (Tsui et al., 2018).

Glucose-derived pyruvate substantially feeds Oxphos, but

other substrates also contribute to fuel respiration. For

example, while hampering glutamine metabolism has minimal

impact on FO B cells (Choi et al., 2018), glutamine consumption

via Oxphos is largely increased and is required for GC B-cell

proliferation and for PC cells (Garcia-Manteiga et al., 2011; Caro-

Maldonado et al., 2014; Waters et al., 2018) highlighting the

existence of multiple parallel fuel dependencies in active B cells.

In addition to glycolysis and glutaminolysis, recent evidence

shows that FA oxidation (FAO) may be a main energetic

source for GC B cells (Weisel et al., 2020) in contrast to

previous studies pointing to reduced lipid oxidation and

increased pyruvate oxidation in B cells stimulated in vitro
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(Caro-Maldonado et al., 2014). The use of lipids as fuel in GC

B cells involves mitochondrial and peroxisomal FAO, being both

endogenous and exogenously uptaken FA burned preferentially

over glucose (Weisel et al., 2020). This FAO-centric vision of the

GC is in agreement with the simultaneous transcriptional

selective upregulation of genes related with FAO and lipid

metabolism in GC B cells (Cho et al., 2016). However, the

energetic dependence on exogenous FA has been observed in

intestinal PC (Kunisawa et al., 2015; Kim et al., 2016) and

B1 B cells (Clarke et al., 2018; Muri et al., 2019), suggesting

that lipid metabolism may be relevant beyond GC B cells during

the humoral response.

Interestingly, in an apparent contradiction to the increased

catabolism, de novo synthesis of FA from glucose also

constitutes a metabolic adaptation essential to engage PC

differentiation (Dufort et al., 2014). Concomitant synthesis

and breakdown of FA may be perceived as a futile cycle, but

simultaneous catabolism and anabolism of the same substrates

is not uncommon in highly proliferative cells such as cancer

cells and may enable the profound structural changes that

B cells undertake during their PC differentiation process. PC

must expand the endoplasmic reticulum (ER) and Golgi

apparatus in order to boost the synthesis (and secretion) of

antibodies, which may account for 90% of total protein

translation in an extremely energetically onerous process. To

sustain such biosynthetic and secretory capacity, PC must

largely expand the endomembrane compartment, while

simultaneously produce large quantities of ATP from FAO,

so FA are acquired from external sources and endogenously

produced to fulfill both structural and metabolic fates of FA. Of

note, the transcriptional regulator of PC lineage differentiation

is BLIMP1, positive regulator of mTORC1 activity and critical

mediator of the Unfolded Protein Response (UPR) (Tellier

et al., 2016). Activation of mTORC1 boosts mRNA

translation but can also induce proteostatic stress

(Goldfinger et al., 2011). In turn, Blimp1-mediated control

of the UPR helps counteract the stress resulting from

increased translation through the expansion of the ER and

Golgi apparatus and thus, the biosynthetic capacity of the

antibody-producing cell. Moreover, a link between the UPR

effector ATF4, amino acid metabolism and autophagy has been

recently established in lymphoma cells, suggesting the existence

of a functional regulatory connection between UPR and

mTORC1 signaling in B cells (Li et al., 2022).

Cancer research has established a solid link between

metabolism and epigenetic control of transcription and this

concept is emerging in B-cell physiology. Metabolism not only

supplies energy and anabolic bricks to support structural

remodeling during B-cell differentiation, but also impacts on

the epigenetic regulation of specific transcriptional programs.

Thus, metabolic rewiring controls B-cell functions and fate

decisions by changing the availability of metabolites such as

the TCA cycle intermediate α-ketoglutarate, cofactor of the UTX

demethylase that regulates expression of the master regulator for

GC B-cell differentiation BCL6 (Haniuda et al., 2020). The

phenotypic plasticity that B cells show throughout the GC

reaction and the rapid transitions through changes in the

expression of specific gene programs are achieved via

reversible epigenetic remodeling of specific histone marks.

These modifications are frequently anomalous in DLBCL and

FL due to mutations in genes encoding histone remodelers such

as EZH2, CREBBP, EP300 or KMT2D (Green, 2018; Pasqualucci

and Dalla-Favera, 2018; Schmitz et al., 2018; Mondello et al.,

2022). Moreover, serine-glycine metabolism cooperates with

BCL2 driving lymphomagenesis through epigenetic silencing

of tumour suppressor genes (Parsa et al., 2020). Latent

epigenetic differences exist in resting naïve B cells of lupus

patients, involving differential expression of metabolic gene

sets with roles in Oxphos, UPR and the response to hypoxia

(Scharer et al., 2019). Short-chain FA derived from gut

microbiota do not merely act as energetic substrates in B cells,

but as HDAC inhibitors, thus disrupting antibody responses in

healthy mice and murine models of lupus (Sanchez et al., 2020).

Thus, awareness of the functional impact of B-cell metabolism as

a modulator of epigenetic alterations during lymphomagenesis

and in other pathogenic B cells is beginning to emerge.

Concluding remarks

Throughout each transition in the entire multifaceted

lifespan of a B cell, profound metabolic rearrangements

occur (Figure 1). We currently count with a limited number

of photograms of B-cell metabolism, so the plot of metabolic

control of the humoral response remains to be revealed. We

need to deepen our understanding on how metabolism is

integrated with increasing antibody affinity during clonal

evolution, on how conflicting signals are resolved and to

what extent does B-cell metabolism dictate the cyclic

behavior on the GC. GC B cells show profuse synaptic

interactions with the GC microenvironment, but metabolic

cross-talk of B cells and other components of the GC remain

poorly understood. We also need to learn how aberrant

metabolism of B cells precipitates self-reactivity or B-cell

transformation. In this regard, deregulated activity of

epigenetic modifiers is a hallmark of B-cell lymphomas and

our awareness of metabolite availability as a key layer of control

for epigenetic modifiers is emerging. The inability to

recapitulate the cellular interactions of the humoral response

in culture has undermined our insight on B-cell physiology.

However, recent technological advances in single-cell

technologies, high-content in vivo microscopy and in

temporal and spatial tracing of metabolites will enable a

better understanding of B-cell metabolism and continue

settling the perception of its determinant role in dictating

B-cell behavior.
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