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Background:Growing evidence suggests the links betweenmoyamoya disease

(MMD) and autoimmune diseases. However, the molecular mechanism from

genetic perspective remains unclear. This study aims to clarify the potential

roles of autoimmune-related genes (ARGs) in the pathogenesis of MMD.

Methods: Two transcription profiles (GSE157628 and GSE141025) of MMD were

downloaded from GEO databases. ARGs were obtained from the Gene and

Autoimmune Disease Association Database (GAAD) and DisGeNET databases.

Differentially expressed ARGs (DEARGs) were identified using “limma” R

packages. GO, KEGG, GSVA, and GSEA analyses were conducted to elucidate

the underlying molecular function. There machine learning methods (LASSO

logistic regression, random forest (RF), support vector machine-recursive

feature elimination (SVM-RFE)) were used to screen out important genes. An

artificial neural network was applied to construct an autoimmune-related

signature predictive model of MMD. The immune characteristics, including

immune cell infiltration, immune responses, and HLA gene expression in MMD,

were explored using ssGSEA. The miRNA-gene regulatory network and the

potential therapeutic drugs for hub genes were predicted.

Results: A total of 260 DEARGs were identified in GSE157628 dataset. These

genes were involved in immune-related pathways, infectious diseases, and

autoimmune diseases. We identified six diagnostic genes by overlapping the

three machine learning algorithms: CD38, PTPN11, NOTCH1, TLR7, KAT2B, and
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ISG15. A predictive neural network model was constructed based on the six

genes and presented with great diagnostic ability with area under the curve

(AUC) = 1 in the GSE157628 dataset and further validated by GSE141025 dataset.

Immune infiltration analysis showed that the abundance of eosinophils, natural

killer T (NKT) cells, Th2 cells were significant different between MMD and

controls. The expression levels of HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-

DRB6, HLA-F, and HLA-G were significantly upregulated in MMD. Four

miRNAs (mir-26a-5p, mir-1343-3p, mir-129-2-3p, and mir-124-3p) were

identified because of their interaction at least with four hub DEARGs.

Conclusion: Machine learning was used to develop a reliable predictive model

for the diagnosis of MMD based on ARGs. The uncovered immune infiltration

and gene-miRNA and gene-drugs regulatory network may provide new insight

into the pathogenesis and treatment of MMD.

KEYWORDS

moyamoya disease, machine learning, bioinformatics, immune infiltration,
autoimmune-related genes

Introduction

Moyamoya disease (MMD) is an uncommon, chronic

cerebrovascular disorder characterized by progressive occlusion of

the supraclinoid internal carotid artery (ICA) and its main branches

within the circle ofWillis. MMD, also known as an abnormal netlike

vascular disease at the base of the brain, is a term coined by Suzuki

and Takaku in 1969 to describe the classic angiographic

appearance—a puff of cigarette smoke drifting in the air (Suzuki

and Takaku, 1969). Important clinical features include ischemic

stroke, often presented in childhood, and hemorrhagic stroke,

generally observed in adults. The incidence rate is twice higher in

females than males, and children around 5 years and adults in their

mid-40s are particularly affected (Kuroda andHoukin, 2008).MMD

is the most common pediatric cerebrovascular disease in Japan,

affecting approximately three out of every 100,000 children (Scott

and Smith, 2009).MMDconventionally refers to patients with above

idiopathic pathology without a previously diagnosed condition.

Distinct from the definitive MMD, Moyamoya (MM) syndrome

(also named Quasi-Moyamoya disease, secondary Moyamoya

disease, and akin-Moyamoya disease) is the occurrence of

angiographic MM in association with acquired (i.e., autoimmune

diseases) or inherited disorders [i.e., neurofibromatosis type 1, sickle

cell anemia, Down syndrome (DS)] (Scott and Smith, 2009).

The exact etiology of MMD remains unknown; however,

hereditary, immunogenic inflammatory, and hemodynamic

factors are known to be responsible. The close relationship

between patients with MM syndrome and autoimmune

diseases, such as type 1 diabetes mellitus, thyroid disease,

systemic lupus erythematosus (SLE), and DS has been

reported (Huang et al., 2017). A study in a primarily white,

midwestern United States population showed that the prevalence

of autoimmune diseases was significantly higher in patients with

MMD, particularly type 1 diabetes mellitus (8.5% versus 0.4% in

the general population), thyroid disease (17.0% versus 8.0% in the

institutional general patient population), and hyperlipidemia

(27.7% versus 16.3% in the general population). A meta-

analysis conducted in 2014 revealed that elevated thyroid

autoantibodies and elevated thyroid function are

independently associated risk factors for MMD (Lei et al.,

2014). Autoimmunity is the main link between SLE and MM

syndrome since immune complexes lead to vasculitis and narrow

or occluded vessels (El Ramahi and Al Rayes, 2000; Jeong et al.,

2008). Chen et al. (2016) found that the overall prevalence of

autoimmune diseases in patients with unilateral MMD was

significantly higher than that in patients with bilateral MMD.

Although the close relationships between autoimmune diseases

and MDD diseases have been recognized, the underlying

mechanisms remain to be clarified.

Advances in molecular biology and next-generation

sequencing technologies have made it possible to study disease

mechanisms at the genetic and mRNA levels. Gene expression

profiling through methods such as microarray and RNA

sequencing based on the Gene Expression Omnibus (GEO)

database is widely used to explore differentially expressed

genes (DEGs), analyze potential function pathways, and

determine molecular mechanisms involved in various

cerebrovascular diseases (Chen et al., 2022). A recent

bioinformatics study identified the potential neutrophil-

associated genes in MMD (Jin and Duan, 2022). However, the

role of autoimmune-related genes (ARGs) in the

pathophysiology of MMD is still unclear. In recent years, the

development of machine learning algorithms has provided more

choices for diagnostic models as precision medical predictive

tools. Our study integrated least absolute shrinkage and selection

operator (LASSO) logistic regression, random forest (RF),

support vector machine-recursive feature elimination (SVM-

RFE), and artificial neural network to screen and identify
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diagnostic markers and construct an autoimmune-related

signature predictive model of MMD. The immune

characteristics, including immune cell infiltration, immune

responses, and HLA gene expression in MMD, were explored.

The miRNA-gene regulatory network and the potential

therapeutic drugs for hub genes were predicted.

Materials and methods

Downloading and processing of data

Microarray data containing two transcription profiles

(GSE157628 and GSE141025) were downloaded from the

NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/). The

dataset of GSE157628 was utilized as the exploratory dataset, and

the GSE141025 profile acted as the validation dataset. The

GSE157628 profile included micro-samples of the middle

cerebral artery (MCA) collected from 11 patients with MMD

and nine age- and gender-matched control samples (three from

patients with epilepsy and six from patients with ICA aneurysms)

at the platform of GPL16699. The expression profiles of MCA

samples from four patients with MMD and four matched

superficial temporal artery controls in GSE141025 were

extracted for dataset validation. If multiple probes matched

one gene, the probe with the maximal median expression

values was annotated into the homologous gene symbol

through the platform’s annotation information.

Collection of autoimmune-related genes

ARGs were obtained from the Gene and Autoimmune

Disease Association Database (GAAD) (Lu et al., 2018) and

DisGeNET databases (Piñero et al., 2020) after deleting

duplicate genes. GAAD contained 44,762 associations between

49 autoimmune-related diseases and 4,249 genes through text

mining and manual curation. DisGeNET (v7.0), one of the

largest publicly available collections of genes and variants

associated with human diseases, contained 1,134,942 gene-

disease associations (GDAs), between 21,671 genes and

30,170 diseases, disorders, traits, and clinical or abnormal

human phenotypes.

Identification of differentially expressed
autoimmune-related genes

The principal component analysis was conducted by using

the factoextra R package. To identify the DEARGs, we performed

differential expression analysis using the “limma” package in R

software to detect DEGs between the MMD and control groups

in the training dataset (GSE157628). The DEGs were screened

with the criteria of |log2FoldChange| > 1 and p < 0.05. Volcano

maps and clustering heatmaps were prepared to visualize the

differences using the “ggplot2” and “ComplexHeatmap”

packages in the R software. We intersected the DEGs with

ARGs to identify DEARGs and visualized them with the

“VennDiagram” package.

Functional enrichments between
moyamoya disease tissues and controls

To uncover the biological function in MMD, gene set

enrichment analysis (GSEA) was used to enrich the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways using

the “clusterProfiler” package. Gene set variation analysis (GSVA)

algorithm was used to calculate the Reactome

(“c2.cp.reactome.v7.5.1.symbols” gene set from the Molecular

Signatures Database) (Liberzon et al., 2015) processes score using

the “GSVA” R package.

Authentication of the organ/tissue-
specific expressed DEARGs

To understand the tissue/organ-specific expression of these

DEARGs, we analyzed the gene distribution in tissues using the

online tool BioGPS (http://biogps.org/) (Wu et al., 2009). The

following criteria had to be met (Wang et al., 2020): 1) the

expression level of transcripts mapped to a single organ system

was >10 times the median, and 2) the second-highest level was

not more than one-third of the highest expression level.

Protein-protein interaction network and
functional annotation of DEARGs

The PPI network of DEARGs was prepared using the online

tool STRING (https://string-db.org/) with a minimum required

interaction score of 0.4. We downloaded the interaction

information and visualized the PPI network using Cytoscape

software (v3.8.2). ClueGO, a plugin app of Cytoscape for the

function enrichment, was used to annotate the biological

processes (BP) of Gene Ontology (GO) and KEGG pathways

of this network and the genes participating in these terms. The R

package “DOSE” was used to perform Disease Ontology (DO)

analysis (Yu et al., 2015).

Screening for crucial DEARGs and
candidate signatures

First, we applied five methods (Closeness, Degree,

MCC(Maximal Clique Centrality), MNC (Maximum
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neighborhood component), and Radiality) in cytoHubba to select

the top 30 genes and intersected them through the Venn plot to

find the common genes (Chin et al., 2014). Based on common

genes, we constructed a co-expression network via GeneMANIA

(http://www.genemania.org/) to identify internal associations

(Warde-Farley et al., 2010).

Second, to further identify the crucial DEARGs and candidate

signatures, three machine learning [LASSO logistic regression, RF,

and support vector machine (SVM)] algorithms were adopted. The

LASSO logistic regressionmodel was used to select optimal variables

using the penalty coefficient. RF is a machine learning algorithm

with an ensemble of multiple decision trees that combines the

knowledge generated by a collection of individual trees using

randomness. The top 10 variables were selected as the most

important features in the methods. SVM is a supervised machine

learning technique widely utilized for classification and regression.

To avoid over-fitting, the SVM-RFE requires training multiple

classifiers on subsets of features of decreasing size to search for

the best features. In the present study, we overlapped genes identified

by the three methods and designated the communal gens as our

candidate signatures for constructing the next diagnostic model.

Construction of the artificial neural
network diagnostic model

We constructed a back propagation artificial neural network

model using the “neuralnet” package. The expression profiles of

the above screened signatures in the GSE157628 dataset were

extracted and normalized. The min-max method was selected,

and the data were mapped in the range of zero to one before

training the neural network. The number of neurons was

between the input and output layer sizes, usually two-thirds of

the input size. A single hidden layer with four nodes was used.

We calculated the classification score of the obtained disease

neural network model as follows:

Predicting score � ∑gene expression*neural networkweight

The diagnostic ability was evaluated through the receiver

operating characteristic (ROC) curve and confusion matrix.

Another external dataset, GSE141025, was used to validate thismodel.

Immune characteristics of the moyamoya
disease microenvironment

xCell Aran et al. (2017), a novel gene signature-based method

to identify 64 immune and stromal cell types, was used to score

the abundance of immune cells in MMD. Single sample gene set

enrichment analysis (ssGSEA) was used to analyze the immune

cells and activities between MMD and controls. We also

compared the expression levels of HLA molecules between the

two groups. The significantly different immune characteristics

were depicted with boxplots and heatmaps.

The association of the crucial gene signatures with the scores

of infiltrating immune cells, immune activities, and expression of

HLAmolecules was explored using Pearson’s correlation analysis

in R software. The resulting associations were visualized as a

heatmap prepared with the “ggplot2” package.

Prediction of a miRNA-genes regulatory
network and potential drugs

NetworkAnalyst is a user-friendly online tool to create PPI

networks, cell-type or tissue-specific PPI networks, gene

regulatory networks, gene co-expression networks, and

networks for toxicogenomics and pharmacogenomics studies

(Zhou et al., 2019). We used the NetworkAnalyst to predict

the miRNA-genes regulatory network through the Tarbase

database (Karagkouni et al., 2018).

The Drug-Gene Interaction Database (DGIdb) (http://www.

dgidb.org/) is an online database to predict drug-gene interaction

based on the data mined from DrugBank, PharmGKB, Chembl,

Drug Target Commons, and TTD. The DGIdb was searched to

make predictions on potential molecule-related drugs that

interact with crucial DEARGs. Only the drugs with identified

interaction types persisted, and the Drugs-Genes interactions

were visualized through a Sankey diagram.

Sample collection and real-time
quantitative polymerase chain reaction

We recruited ten patients who were diagnosed with MMD in

Xiangya Hospital of Central South University for this research

between June 2022 and October 2022. A total of 10 healthy

controls with gender and age matched were also selected.

The detailed procedures of RT-qPCR were described in our

previous studies (Li et al., 2022a; Li et al., 2022b). Birefly,

peripheral blood monocytes (PBMCs) were isolated from the

blood samples of patients and health persons. We extracted the

total RNA from the PBMCs, performed reverse transcription

reactions, and then amplified the cDNA. The results were

analyzed using the 2−ΔΔCT method and expressed as ratio of

the internal control, GAPDH. The primer sequences used for RT-

qPCR are listed in Supplementary Table S1.

Results

Differential expression analysis

The study flowchart is depicted in Figure 1. Principal

component analysis showed that the MMD tissues and
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FIGURE 1
Flow chart of the study. DEGs, differentially expressed genes; GSEA, gene set enrichment analysis; ssGSEA, Single sample gene set enrichment;
GSVA, gene set variation analysis; GO: BP, Gene Ontology: biological processes; KEGG, Kyoto Encyclopedia of Genes and Genomes; DO, Disease
Ontology; ARGs, autoimmune-related genes; DEARGs, differentially expressed autoimmune-related genes; LASSO, the least absolute shrinkage and
selection operation; RF, random forest; SVM-RFE, Support vector machine-recursive feature elimination; ML, machine learning; BP neural
network, back propagation neural network; ROC, Receiver operating characteristic curve.

FIGURE 2
PCA and DEG analysis between MMD tissues and controls. (A) Principal component analysis between MMD tissues and controls. (B) A volcano
plot shows the DEGs. Blue dots show the down-regulated genes and red dots represent the up-regulated genes. (C) A heat map shows the
expression patterns of DEGs. PCA, principal component analysis; DEGs, differentially expressed genes; MMD, moyamoya disease.
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controls could be clearly distinguished in the GSE157628 dataset

(Figure 2A). Differential expression analysis was further

performed to screen for DEGs. Based on the selection criteria,

1696 DEGs (750 upregulated and 946 downregulated) were

identified (Figure 2B). The expression patterns of these DEGs

were visualized through a hierarchical clustering heatmap

(Figure 2C).

Functional enrichment analyses in
moyamoya disease

GSEA and GSVA were performed to reveal the underlying

biological pathways in MMD. The KEGG and Reactome

analysis focus on the biological pathways. Compared with

the comprehensive KEGG pathway, the Reactome pathway

has more specific functions and focuses more on

biochemical reactions. In our analysis, both methods were

adopted. The KEGG analysis based on GSEA showed that

the autoimmune thyroid disease, cell adhesion molecules,

and rheumatoid arthritis pathways were upregulated

(Figure 3A). In contrast, metabolism-related pathways

(arginine and proline metabolism, lysine degradation, and

one carbon pool by folate) were downregulated in MMD

tissues (Figure 3B) compared with controls. The top

20 significantly differential Reactome pathways between

MMD and controls are presented in Figure 3C, showing

upregulated sodium-coupled phosphate cotransporters,

chylomicron remodeling, and ligand-receptor interactions

pathways. At the same time, aggrephagy and regulation of

PTEN localization were downregulated in MMD tissues

compared with controls (Figure 3C).

FIGURE 3
Biological KEGG and Reactome pathways involved in MMD based on GSEA and GSVA. (A) and (B) Up-regulated and down-regulated KEGG
pathways from GSEA results, respectively. (C) The top differentially regulated reactome pathways from GSVA results.

Frontiers in Molecular Biosciences frontiersin.org06

Li et al. 10.3389/fmolb.2022.991425

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.991425


Construction of protein-protein
interaction network of DEARGs

After combining the GAAD and DisGeNET databases,

4371 ARGs were obtained. We overlapped the DEGs and

ARGs, resulting in 260 DEARGs in MMD (Figure 4A). To

elucidate the molecules’ functional associations, we imported

these genes into the STRING database to construct a PPI network

and further visualized it in Cytoscape. After removing nodes

without interaction with other genes, a PPI network with

225 nodes and 602 edges was constructed (Figure 4B).

Functional enrichment analyses of
DEARGs

For exploring the function and pathway of the DEARGs, we

used ClueGO, a plugin of Cytoscape, and the “DOSE” package.

The biological processes-genes network showed that

mononuclear cell migration and regulation of viral life cycle

were most enriched for DEARGs (Figure 5A and Supplementary

Figure S1A). The cAMP signaling pathway, PI3K-Akt signaling

pathway, antigen processing and presentation, and microbial

infection-related pathways were enriched in the KEGG analysis

(Figure 5B and Supplementary Figure S1B). To uncover the

diseases that these genes may be involved in, a DO analysis

was conducted, which showed that these genes participated in the

development of different cancers, infectious diseases, and

autoimmune diseases.

Identification of tissue/organ-specific
expressed genes

A total of 70 tissue/organ-specific expressed genes were

identified for 260 DEARGs by BioGPS (Table 1). We observed

FIGURE 4
Identification and PPI network construction of DEARGs. (A) A venn plot show 260 DEARGs in MMD. (B) PPI network of DEARGs. The blue nodes
represent the down-regulated genes and the red nodes represent the up-regulated genes. The dot size indicates the degree of the nodes. DEARGs,
differentially expressed autoimmune-related genes.
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that the system with the greatest distribution of tissue-

specific expressed genes was the hematologic/immune

system (30/70, 42.90%). The second organ-specific

expressed system was the nervous system, which included

11 genes (11/70, 15.70%), followed by the digestive system (7/

70, 10.00%), endocrine system (5/70, 7.10%), and genital

system (4/70, 5.70%).

Screening for crucial DEARGs and
candidate signatures

First, we integrated five methods (Closeness, Degree,

MCC, MNC, and Radiality) in cytoHubba and overlapped

the top 30 genes from each method for robustness

(Supplementary Figure S2 and Supplementary Table S2). A

total of 15 shared genes were identified (Figure 6A). A co-

expression network was constructed (Figure 6B), and

20 genes were identified that interacted with the 15 key

DEARGs. In the complex PPI network, the interaction of

the physical interactions accounted for 38.45%, predicted for

35.98%, co-expression for 20.16%, and colocalization

for 3.44%.

Second, we applied three machine learning algorithms

(LASSO regression, RF, and SVM-RFE) to screen further

the most important signatures. Seven genes were

determined by LASSO regression with the optimal values

(Figures 7A, B). We selected the top 10 genes ranked by

the variable importance in RF (Figure 7C). The error fell to

the lowest perigee, and the accuracy reached the peak when

the number of features was set to 14 in the SVM-RFE method

(Figures 7D, E). We identified six diagnostic genes by

overlapping the three algorithms (Figure 7F): CD38,

PTPN11, NOTCH1, TLR7, KAT2B, and ISG15. The detailed

descriptions of the six diagnostic signatures are listed in

Table 2. The correlation among these genes was studied by

Pearson’s method and presented with a heatmap

(Supplementary Figure S3).

FIGURE 5
Biological annotations and DO analysis of DEARGs. (A) and (B) The enrichment network of biological processes and KEGG pathways with the
participated genes in Cluego software. (C) The diseases of DEARGs involved through Disease Ontology analysis. DEARGs, differentially expressed
autoimmune-related genes; DO, Disease Ontology.
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Construction and validation of the
biological processes neural network
diagnostic model

Based on the above screened six diagnostic signatures, we

used the GSE157628 dataset as the training set to construct the

back propagation artificial neural network model using the R

package “neuralnet”. After performing the preprocessing and

scaling of this dataset, a neural network model with one hidden

neuron layer was established. According to the output results of

the neural network model (Figure 8A, Supplementary Table S3,

and Supplementary Figure S4), the entire training was performed

in 179 steps with an error of 0.021. Among the output results, the

predicted weights of each hidden neuron layer

were −14.758, −1.778, −5.728, and 13.268 for MMD. The

confusion matrix and ROC curves show that the predicted

scores (namely neuroMMD) present great diagnostic ability

with AUC = 1 in the GSE157628 dataset (Figures 8B, C). The

relative expression levels of these six diagnostic signatures are

depicted through raincloud plots, indicating that CD38,

NOTCH11, TLR7, and ISG15 were upregulated, and PTPN11

and KAT2B were downregulated (Figure 8D). We also recruited

an external GSE141025 dataset that demonstrated the

discriminatory performance of neuroMMD scores for MMD.

The confusion matrix and ROC curves validated the great

diagnostic ability of neuroMMD scores in MMD (Figures 8E,

F). Although these genes from the verifying dataset showed the

same expression trends as the training dataset, only CD38 and

PTPN11 reached statistical significance (Figure 8G). Our RT-

qPCR results also verified the same expression trends of

CD38 and PTPN11 as the GSE157628 and

GSE141025 datasets, and we also found the significant up-

regulation of NOTCH1 of MMD patients in our results

(Supplementary Figure S5).

Identification of differential immune
characteristics between moyamoya
disease and controls

Based on xCell analysis results, we identified three immune

cells (eosinophils, natural killer T cells, and Th2 cells) with

significant infiltration differences between diseased tissues and

controls. Among them, eosinophils and NKT were increased in

diseased tissues, while Th2 cells were decreased. We also

assessed the differences in immune activities and responses

between MMD and controls using the ssGSEA algorithm

(Figure 9A). Three immune activities (interleukins,

interferon, and LCK molecules) showed significant

differences between groups (Figure 9B). Seven differential

expressed HLA molecules were also discovered (Figure 9C),

and all were upregulated. The differential immune

characteristics between MMD and controls are depicted

through a heatmap (Figure 9D).

The correlation analysis between six hub DEARGs and

differential immune characteristics showed that the

upregulated genes were positively correlated with increasing

immune characteristics and negatively with decreasing

immune characteristics. In contrast, the downregulated genes

showed inverse effects.

TABLE 1 70 Identified tissue/organ-specific expressed genes by BioGPS.

System/Organ Counts Frequency
(%)

Genes

Haematologic/Immune
cells

30 42.90 TNFRSF17, CTSS, FPR2, HLA-DMA, HLA-DRB5, ICAM3, ITGA4, KLRD1, STAT4, MBD4, CARD8,
KLRK1, PTPN22, TLR7, CCL4, INPP5D, NLRP12, PYCARD, OAS2, ISG20, KCNJ2, FCHSD2, FUT1,
TOP1, CBLN2, XRN2, C3AR1, ZCCHC7, SPATA13, MILR1

Nervous 11 15.70 FGF1, GRIA2, PPP2R2B, TAC1, UCHL1, PPP1R17, SERPINI1, DNAJC6, PDE2A, AAK1, NMNAT2

Digestive 7 10.00 MBL2, SLC22A1, PEMT, CEBPA, SPRY4, APCS, APOA2

Endocrine 5 7.10 CALCA, CA3, FAM47E, SLC26A4, SPINK1

Genital 4 5.70 PGF, PRKAA1, DIAPH2, ARHGAP35

Bonemarrow 3 4.30 BPI, CAMP, DEFA3

Smooth muscle 3 4.30 BDNF, CCL7, CCL11

Adipocyte 2 2.90 COMP, MME

Immune organs 2 2.90 LEF1, NLRP11

Heart 1 1.40 NPPA

Respiratory 1 1.40 LAMP3

Tongue/Skeletal Muscle 1 1.40 TTN
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Establishment of miRNA-gene and drug-
gene regulatory networks

To identify the regulatory and therapeutic mechanisms for

MMD, we predicted the miRNA and drugs targeting the six hub

DEARGs through the Tarbase and DGIdb databases,

respectively. A total of 131 miRNAs were found to potentially

regulate the hub ARDEGs (Figure 10A). Genes with the most

regulated miRNAs were identified as KAT2B (regulated by

56 miRNAs), followed by PTPN11 (43 miRNAs), NOTCH1

(35 miRNAs), ISG15 (29 miRNAs), CD38 (13 miRNAs), and

TLR7 (5miRNAs) (Supplementary Table S4).We also discovered

that four miRNAs (mir-26a-5p, mir-1343-3p, mir-129-2-3p, and

mir-124-3p) interacted with four hub genes.

The DGIdb was applied to predict possible medicines or

molecular compounds reacting with the hub ARDEGs. After

excluding drugs/compounds for which the interaction types with

genes were not clear, 13 potential target drugs/compounds

remained for MMD treatment (Figure 10B and

Supplementary Table S5). Of these, six drugs interacted with

TLR7; two targeted CD38, KAT2B, and NOTCH1; one drug

targeted ISG15. PTPN11 interacted with no potential drug.

Discussion

As the most common pediatric cerebrovascular disease in

Japan, the incidence of frequently recurrent ischemic episodes

(transient ischemic attacks or strokes) is 70%–80% in children

with MMD (Currie et al., 2011). MMD cannot be effectively

treated with pharmacological interventions alone; therefore,

surgical procedures for revascularization (direct, indirect, and

combined bypass) are required. There is much controversy

surrounding the optimal treatment for this disorder (Jang

et al., 2017; Deng et al., 2018). The incidence of perioperative

complications such as stroke, hyperperfusion syndrome, and

acute thrombogenesis is also concerning (Kim et al., 2016). It

is of profound significance to understand the pathophysiologic

processes of MMD and prevent the occurrence of this disorder.

However, the molecular etiology of MMD remains unclear.

FIGURE 6
Venn diagram and co-expression of key DEARGs. (A) A Venn diagram shows that 15 key DEARGs are common genes from five cytoHubba
methods. (B) 15 key DEARGs and their co-expressed genes analyzed by GENEMANIA. DEARGs, differentially expressed autoimmune-related genes.
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Previous studies have suggested the role of comorbidities as the

link between autoimmune diseases and MMD (Kim et al., 2010;

Chen et al., 2016). Therefore, analysis of ARGs may help

determine the pathogenesis of MMD.

This study aimed to elucidate the critical processes and ARGs

responsible for developing MMD by integrating bioinformatics

and machine learning methods. Machine learning and artificial

intelligence have become indispensable productivity tools for the

21st century for precision medicine. Machine learning and

artificial intelligence differ from traditional biomedical

research because they use huge volumes of data to uncover

natural laws, which are then applied to medical research. The

field of bioinformatics involves the development of

computational tools and approaches for acquiring, storing,

visualizing, and interpreting medical or biological data.

Combining machine learning and bioinformatics will facilitate

the generation, analysis, maintenance, and interpretation of

information derived from molecular genetics tests. Apart from

FIGURE 7
Screen for crucial DEARGs based on machine learning algorithms. (A,B) Feature selection by LASSO regression model (A) The coefficients
change of different genes with different lambda (B) By verifying the optimal parameter (lambda) in the LASSO model, the partial likelihood deviance
(binomial deviance) curve was plotted vs log(lambda). (C) The genes ranked by the feature importance based on random forest algorithm. The darker
the color, the more important the gene is. (D) and (E) The error and accuracy of model changed with different number of features in support
vector machine-recursive feature elimination method, respectively. (F) A Venn diagram demonstrating six diagnostic markers shared by the three
algorithms.

TABLE 2 Detail information about the six hub genes identified by machine learning.

Gene Description Chromosome logFC P.Value Change

CD38 CD38 molecule 4 1.257 0.029 UP

PTPN11 protein tyrosine phosphatase non-receptor type 11 12 −1.021 0.007 DOWN

NOTCH1 notch receptor 1 9 1.104 0.005 UP

TLR7 toll like receptor 7 X 1.417 0.006 UP

KAT2B lysine acetyltransferase 2B 3 −1.435 0.046 DOWN

ISG15 ISG15 ubiquitin like modifier 1 1.072 0.023 UP
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the field of oncology research, the integrated approach is widely

applied in cardiovascular diseases, such as myocardial infarction

(Wu et al., 2022), heart failure (Tian et al., 2020), and aortic valve

calcification (Xiong et al., 2022). Through machine learning and

bioinformatics technology, our study revealed the differential

expression of ARGs and their potential biological functions in

MMD for the first time. A predictive model with hub ARGs was

constructed by using an artificial neural network. Immune cell

infiltration, immune activities, and HLA molecule expression

were investigated in MMD. The elucidated correlations between

ARGs and immune characteristics may help further explain the

interplay of ARGs and the immune microenvironment in MMD.

In our study, a total of 1696 DEGs (750 upregulated genes

and 946 downregulated genes) between MMD and controls were

screened. In biological function analysis, the pathways of

autoimmune diseases (such as autoimmune thyroid disease,

rheumatoid arthritis, the intestinal immune network for IgA

production, and SLE), cell adhesion molecules (CAMs), and

chylomicron remodeling were more enriched in MMD than

controls. When overlapped with the ARGs, we further

intersected 260 DEARGs involved in bacterial infectious

disease, rheumatic disease, and collagen disease in DO

analysis. Moyamoya vasculopathy in patients with the

underlying causal condition is usually regarded as “MM

syndrome”. MMD concurrent with Graves’ disease (GD) was

first reported by Kushima et al. (1991). Over the past two

decades, reports of these two concurrent diseases have

increased (Tendler et al., 1997; Ni et al., 2014; Chen et al.,

FIGURE 8
Construction and validation a BP neural network diagnostic model. (A) Results of neural network visualization. The positive weights are
connected with red lines, and the negative weights are connected with gray lines. The thickness of the lines reflects the value of the weights. (B) A
confusionmatrix shows the classification ability of neural network in training dataset. (C) ROC curve shows the diagnostic ability of neural network in
training dataset. (D) The expression levels of six hub DEARGs in training dataset. (E) A confusion matrix shows the classification ability of neural
network in test dataset. (F) ROC curve shows the diagnostic ability of neural network in test dataset. (G) The expression levels of six hub DEARGs in
test dataset.
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FIGURE 9
The significantly differential immune characteristics between MMD and controls. (A) The significantly differential immune cells. (B) The
significantly differential immune activities. (C) The significantly differential expressed HLA molecules. (D) A heat map shows the landscapes of
immune characteristics between MMD and controls. (E) The correlation of immune characteristics and six hub DEARGs. Significance level was
denoted by *p-value <0.05, **p-value <0.01, ***p-value <0.001.

FIGURE 10
The miRNA-Genes regulatory network (A) and Drug-Genes interactions (B).
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2015). The associations between thyroid function and thyroid

autoantibodies with MMD were also discovered (Kim et al.,

2010). A case-control study found that compared with control

subjects, the thyroid function and thyroid autoantibodies are

elevated in pediatric patients with MMD (Li et al., 2011), further

supported by another study without age stratification (Lei et al.,

2014). Studies about SLE associated with MM syndrome have

rarely been conducted and are published mostly in the form of

case reports (El Ramahi and Al Rayes, 2000; Jeong et al., 2008).

According to a recent review, MMD complicated with SLE

mostly occurred in female patients [84.6% (11/13)], and most

of these patients developed MMD by the age of 30 years (Tanaka

et al., 2020). Among the 13 patients, 10 were from East Asian

countries. Complications with rheumatoid arthritis and MMD

are rare (Paciaroni et al., 2005). The common molecular

characteristic of SLE and rheumatoid arthritis is the change in

CAMs (da Rosa Franchi Santos et al., 2020), which was also

identified by our enrichment analysis in MMD. CAMs, which are

transmembrane proteins that facilitate cell-to-cell or cell-to-

extracellular matrix binding, may be categorized into three

different types named immunoglobulin supergene family

members, selectins, and integrins. CAMs regulate the

inflammatory response and endothelial function. Therefore,

they may be targeted in cardiovascular disease (Kunutsor

et al., 2017), such as atherosclerosis (Ling et al., 2012) and

ischemic stroke (Yilmaz and Granger, 2008). DIAPH1 may be

a novel MMD risk gene that impairs vascular cell actin

remodeling that may cause neointimal expansion and

progressive narrowing of the bilateral internal carotid arteries

in MMD pathogenesis (Kundishora et al., 2021). Soriano et al.

(2002). found significantly elevated levels of soluble CAMs in the

cerebrospinal fluid of children with MM syndrome compared

with the control group, suggesting the potential roles of CAMs in

MMD. These results indicate the crucial association between

MMD and autoimmune diseases. By examining the common

pathogenesis of these disorders, we can clarify the etiology of

MMD. CAMs may act as a bridge that triggers the common

pathogenesis processes.

We also performed enrichment analysis of DEARGs in

MMD, suggesting that infectious diseases (such as

Staphylococcus aureus infection, Epstein-Barr virus infection,

and tuberculosis), cAMP signaling pathway, and PI3K-Akt

signaling pathway were involved. The infection hypothesis has

occasionally been proposed as one of three mechanisms while

investigating the pathogenesis of MMD, apart from autoimmune

and HLA abnormality. Infections associated with MMD have

been reported in many cases, including bacterial meningitis due

to pneumococcus, tuberous infection, and viral infection by the

varicella-zoster virus, Epstein-Barr virus, and Leptospira

infection (Houkin et al., 2012). Czartoski proposed that the

inflammation and subsequent post-infectious autoimmune

response associated with meningitis can lead to a progressive

vasculopathy, which may cause arterial occlusions in MM

syndrome after autopsy in a patient with pneumococcal

meningitis (Czartoski et al., 2005). Despite suggesting a

possible infectious cause in MMD, these results were only

based on case studies, and no specific pathogen has been

identified. A large-sample study is indispensable to finding the

relationship between infections and MMD. The DEARGs we

identified as associated with these diseases may provide a

molecular-level explanation.

A PPI network was constructed based on the DEARGs to

explore relationships among proteins. We found 15 potential

genes overlapping the top 30 genes identified by six algorithms

(Closeness, Degree, MCC, MNC, and Radiality) in cytoHubba.

To further screen out the hub genes, three machine learning

methods (LASSO regression, RF, and SVM-RFE) were applied,

and six genes (CD38, PTPN11, NOTCH1, TLR7, KAT2B, and

ISG15) were selected to construct a predictive model using BP

artificial neural network in the GSE157628 dataset. The

GSE141025 dataset also verified the predictive performance

with great diagnostic ability, which proved the applicability of

our model. Type I interferons (IFNs) induce the expression of

over 500 genes, collectively referred to as IFN-stimulated genes

(ISGs). ISG15 is a ubiquitin-like protein that can conjugate to

substrate proteins (ISGylation) in response to microbial

infection. This IFN-α/β-inducible ISG15 does not serve as a

substrate for ISGylation-based antiviral immunity but for

regulating IFN-α/β by USP18 and preventing IFN-α/β-
dependent auto-inflammation (Zhang et al., 2015). The

antiviral and antineoplastic roles of ISG15 have been

extensively studied (Mustachio et al., 2018; Perng and

Lenschow, 2018). RNF213 is an interferon-induced mega

protein frequently mutated in MMD as a susceptibility gene

(Liu et al., 2011). A recent study pointed out that RNF213, an

ISG15 interactor, can act as a sensor for ISGylated proteins to

counteract infection (Thery et al., 2021). In our immune

infiltration analysis, we observed that the activity of IFNs and

the expression of ISG15 genes were higher in MMD than in

controls. Therefore, the overexpression of ISG15 induced by

IFNs may be involved in the pathogenesis of MMD through

its interaction with RNF213. This finding may provide a new

direction for basic experiments in the future. PTPN11, the gene

encoding the protein tyrosine phosphatase SHP2, is a

ubiquitously expressed non-receptor tyrosine phosphatase that

regulates cell survival, proliferation, differentiation, migration,

and adhesion. Germline mutations in PTPN11 cause Noonan

syndrome, the clinically related LEOPARD syndrome (LS), and

leukemogenesis (Tartaglia et al., 2006; Alfayez et al., 2021). Seki

et al. found that the expression of SHP2 was markedly elevated in

the thickened aortic intima in rats with balloon-induced injury in

an atherosclerosis animal model (Seki et al., 2002). The inhibition

of SHP2 can protect against atherosclerosis by inhibiting smooth

muscle cell proliferation (Chen et al., 2018). The most prominent

pathological change in MMD is the inner elastic lamellar’s

breakage and smooth muscle cells’ destruction and
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proliferation in the tunica media (Huang et al., 2017). There are

some common pathogenesis links between MMD and

atherosclerosis. MMD susceptibility variant

RNF213 p. R4810K can increase the risk of recurrent

cerebrovascular events, such as ischemic stroke caused by

large-artery atherosclerosis (Okazaki et al., 2019; Kim et al.,

2021). Considering no direct evidence connecting CD38,

PTPN11, NOTCH1, TLR7, and KAT2B with the pathogenesis

of MMD, their roles in atherosclerosis may also provide a new

perspective and direction for future research on the molecular

targeted therapy of MMD (Salagianni et al., 2012; Briot et al.,

2015; Xu et al., 2016; Qi et al., 2021).

Considering the important roles of immune activities in

MMD, we also studied the immune characteristics from the

perspective of immune cell infiltration, activities of immune

responses, and HLA molecule expression. Our results showed

that the abundance of eosinophils and natural killer T (NKT)

cells is significantly elevated while Th2 cells were decreased in

MMD compared to controls. The expression levels of HLA-A,

HLA-B, HLA-C, HLA-DMA, HLA-DRB6, HLA-F, and HLA-G

were significantly upregulated inMMD. The abnormality of HLA

is considered one of the molecular mechanisms leading to the

occurrence ofMMD.Hong et al. (2009) found that the phenotype

frequencies of HLA-DRB1(*) 1302 and DQB1(*) 0609 were

significantly increased in familial MMD compared to both

controls and non-familial Korean patients with MMD. In a

Japanese case-control study on MMD, the HLA-DRB1*04:

10 allele was found to be a predisposing genetic factor, and

the frequency of autoimmune thyroid diseases was increased in

HLA-DRB1*04:10-positive patients with MMD compared with

that in HLA-DRB1*04:10-negative patients with MMD (Tashiro

et al., 2019). Recent research in Chinese Han population

indicated that the genetic polymorphism of HLA-DQA2 and

HLA-B was identified as a risk factor for MMD (Wan et al.,

2021).

Gene-miRNAs modify the appearance of proteins with the

progression of diseases by targeting their main targets. In this

study, we also constructed a gene-miRNA regulatory network,

and four miRNAs (mir-26a-5p, mir-1343-3p, mir-129-2-3p, and

mir-124-3p) were identified because of their interaction at least

with four hub DEARGs. Mir-26a-5p can alleviate cardiac

hypertrophy and dysfunction (Shi et al., 2021) and protect

against myocardial ischemia/reperfusion injury (Xing et al.,

2020). Mir-1343-3p plays a significant role in the development

of human cancers such as lung cancer (Zhang et al., 2020),

colorectal carcinoma (Bhat et al., 2022), and hepatocellular

carcinoma (Mou and Sun, 2022). The involvement of mir-

1343-3p in cardiovascular diseases is also reported (Sharma

et al., 2020). The potential role of mir-129-2-3p in ischemic

stroke was identified by suppressing SYK gene expression

(Huang et al., 2019). Mir-124-3p contributes to the

development of different cardiovascular diseases, such as

atherosclerosis, myocardial infarction, and ischemic stroke (de

Ronde et al., 2017; Badacz et al., 2021). These four miRNAs may

be used as interventional targets for examining the mechanisms

of ARGs in MMD since they interact with at least four hub

DEARGs. Moreover, a total of 13 potential drugs/compounds

were predicted for MMD treatment by targeting the hub ARGs in

our study.

Further studies are warranted to address some limitations of

the present study. First, although the diagnostic model

constructed by an artificial neural network performed well in

the training and testing datasets, the sample size was very small,

especially for the validation dataset, where only four samples

were available in each group. Therefore, studies with larger

sample sizes are essential. Second, in the GSE157628 dataset,

six control samples were collected from theMCA of patients with

ICA aneurysms. Considering the different hemodynamic and

genetic effects, the normal artery of patients with aneurysms may

differ from normal vessels at the transcriptional level. However,

the collection of normal vessels from healthy control, in essence,

is against medical ethics. Setting the normal artery from patients

with aneurysms as the control group in studying MMD is

acceptable (Kanamori et al., 2021). Third, the results were

based on bioinformatics and conducted RT-qPCR, but in vitro

and in vivo experiments should be conducted to verify the results.

Conclusion

In our analysis, a total of 260 DEARGs were identified in

MMD, which were involved in autoimmune-related diseases and

immune responses. Six ARGs (CD38, PTPN11, NOTCH1, TLR7,

KAT2B, and ISG15) were selected by three machine learning

methods (LASSO regression, RF, and SVM-RFE). They were

finally used to construct a predictive model using BP artificial

neural network that could be used to identify patients with

MMD. Immune infiltration analysis showed that immune

activities and HLA expression levels in MMD were enhanced.

Finally, a gene-miRNA network was prepared, and

pharmacological agents targeting hub genes were predicted as

potentially effective in treating MMD.
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