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Transforming growth factor-β (TGFβ) is a ubiquitous cytokine essential for

embryonic development and postnatal tissue homeostasis. TGFβ signalling

regulates several biological processes including cell growth, proliferation,

apoptosis, immune function, and tissue repair following injury. Aberrant

TGFβ signalling has been implicated in tumour progression and metastasis.

Tumour cells, in conjunction with their microenvironment, may augment

tumourigenesis using TGFβ to induce epithelial-mesenchymal transition,

angiogenesis, lymphangiogenesis, immune suppression, and autophagy.

Therapies that target TGFβ synthesis, TGFβ-TGFβ receptor complexes or

TGFβ receptor kinase activity have proven successful in tissue culture and in

animal models, yet, due to limited understanding of TGFβ biology, the

outcomes of clinical trials are poor. Here, we review TGFβ signalling

pathways, the biology of TGFβ during tumourigenesis, and how protein

quality control pathways contribute to the tumour-promoting outcomes of

TGFβ signalling.
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Introduction

Transforming growth factor-β (TGFβ), a central modulator of development, growth,

proliferation, immune function, apoptosis, and homeostasis, plays key roles in cellular

communication (Hajek et al., 2012). TGFβ is secreted as a latent cytokine that is

sequestered by extracellular matrix (ECM) proteins (Isogai et al., 2003). Following

enzymatic or allosteric-mediated release and subsequent activation of TGFβ, TGFβ
ligands bind to ubiquitously expressed cell surface receptors (Horiguchi et al., 2012).

Autocrine or paracrine TGFβ signalling modulates cell function by regulating

transcription, translation, and post-translational modifications of several proteins

(Massagué, 2012). Alterations in TGFβ signalling pathways have been implicated in

numerous pathologies, including congenital diseases, fibrotic disorders, immune

dysfunction, and tumourigenesis (Massagué, 2008; Neuzillet et al., 2015). The

regulation of TGFβ signalling in cancer is complex, as it generally plays a tumour

suppressive role in normal tissues and early tumour development (Principe et al., 2014).

In contrast, mutations or abnormalities in the tumour suppressive arms of TGFβ
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signalling are common in advanced cancers (Harradine and

Akhurst, 2006). In tumour cells, this cytokine drives

tumourigenesis by inducing epithelial-mesenchymal transition

(EMT), metastasis, angiogenesis, autophagy, and immune

supression (Bierie and Moses, 2006). In this review, we will

discuss TGFβ signalling pathways and how TGFβ may progress

tumourigenesis.

Transforming growth factor-β
pathways

The TGFβ superfamily consists of 33-members of secreted

cytokines that are ubiquitously expressed in vertebrates and

invertebrates. This superfamily includes TGFβ proteins, bone

morphogenetic proteins (BMPs), activins, inhibins, nodal,

lefty1, lefty2, anti-muellerian hormone (AMH), growth

differentiation factors (GDFs), myostatin, and glial cell-

derived neurotrophic factor (GDNF) (Lichtman et al., 2016).

On the basis of their biological functions and mature protein

structure, these members can be subclassified into four

subfamilies (David and Massagué, 2018). In humans, the

TGFβ subfamily consists of TGFβ1, TGFβ2, TGFβ3, the

activin/inhibin/nodal subfamily consists of activinA,

activinB, nodal, lefty1, lefty2, inhibinα, inhibinβ, the BMP/

GDF subfamily consists of nine BMPs, and nine GDFs, and

the fourth subfamily that has no defined relationship includes

AMH, BMP15, GDF9, GDF15, and GDNF (Mueller and Nickel,

2012).

As homodimers or heterodimers, TGFβ superfamily

members signal through heteromeric TGFβ receptor

complexes. Seven different type I receptors, five type II

receptors, and betaglycan and endoglin type III receptors have

been described in vertebrates and invertebrates (Weiss and

Attisano, 2013). Receptor activation leads to signalling

cascades modulated by several classes of Sma-mothers against

decapentaplegic (Smad) proteins, such as receptor regulated

Smads (R-Smads), common Smads (co-Smads), and inhibitory

Smads (I-Smads) (Massagué, 2012) as well as non-Smad

signalling proteins (Mu et al., 2012). Although an extensive

number of TGFβ superfamily members activate specific

subsets of receptors and signalling molecules, this review will

focus on the TGFβ subfamily.

Synthesis and post-translational
modifications of TGFβ

In most metazoans, three genes encoding TGFβ isoforms

have been described, and in humans the TGFB1, TGFB2, and

TGFB3 genes are located on chromosomes 19, 1, and 14,

respectively (Nishimura et al., 1993; Cruts et al., 1995;

Green et al., 2001). Although TGFB1, TGFB2, and TGFB3

genes are highly conserved across species, there are some

exceptions. For instance, TGFB4 has been identified in

avian species; however, genetic mapping of chicken TGFB4

suggested that it is orthologous to human TGFB1 (Halper

et al., 2004). Moreover, some South African frogs (Xenopus

laevis) express a tgfb5 gene (Kondaiah et al., 1990).

Translation of the TGFB1, TGFB2, and TGFB3 mRNA

generates precursor polypeptides termed pre-pro-TGFβ,
which are composed, respectively of 390, 412, and

412 amino acid residues (Khalil, 1999). The pre-pro-TGFβ
species are composed of a signal peptide, a large amino-

terminal latency-associated peptide (LAP), which ensures

proper folding and transportation through the Golgi

complex, and the residues of the mature ligand (Principe

et al., 2014). Following signal peptide removal, disulfide

isomerase catalyzes the formation of three disulfide bonds

between two pre-pro-TGFβ monomers, linking cysteine

residues at two positions in the LAP and one position in

what will become the mature ligand. This modification gives

rise to pro-TGFβ (Gentry et al., 1988). Within the Golgi

complex membrane, furin and other convertases cleave

LAP to generate small latent TGFβ complexes. Non-

covalent bonds tether LAP to TGFβ, rendering the latter

inactive (Poniatowski et al., 2015). Small latent TGFβ
complexes, composed of a mature 25 kDa TGFβ dimer and

two LAP moieties, are subsequently packaged into secretory

vesicles in the Golgi complex (Dubois et al., 1995). Once

secreted from the cell, the small latent TGFβ complexes are

retained in the extracellular matrix (ECM), bound to latent

TGFβ binding proteins (LTBPs) to form large latent TGFβ
complexes (Massagué, 2012; Principe et al., 2014). TGFβ
dimers can subsequently be released from the large latent

TGFβ complexes through various enzymatic reactions or

allosteric mechanisms (Figure 1) (Wipff et al., 2007; Tatti

et al., 2008).

The enzymatic activation of TGFβ through proteolysis

requires matrix metalloproteinases (MMPs), plasmin, and

other proteases (Kobayashi et al., 2014; Korol et al., 2014).

MMP2 and MMP9 are Ca2+-dependent Zn+2-containing

endopeptidases that target the LAP-binding domains of

LTBPs, releasing TGFβ from the large latent TGFβ complexes.

Plasmin generated at the cell surface, following plasminogen

cleavage by urokinase plasminogen, also contributes to TGFβ
release from LAPs (Yee et al., 1993; Yu and Stamenkovic, 2000).

Alternatively, allosteric activation of TGFβ is dependent on

several LAP-binding cell surface proteins, such as

thrombospondin-1, mannose 6-phosphate receptors, and

integrins, which induce conformational rearrangements of

LAP (Dennis and Rifkin, 1991; Schultz-Cherry and Murphy-

Ullrich, 1993; Sarrazy et al., 2014; Takasaka et al., 2018).

Modifications of LAP are also induced by reactive oxygen

species (Pociask et al., 2004) as well as acidic (pH < 2) or

basic (pH > 12) environments (Lyons et al., 1988). Since these
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diverse LAP conformers no longer favour binding to TGFβ, the
latter is released from the large latent TGFβ complexes.

Smad-dependent TGFβ signalling

After TGFβ ligands are released from large latent TGFβ
complexes, they bind to cognate cell surface receptors. The

Type I and II TGFβ receptors (TGFβRI and TGFβRII) exhibit

serine-threonine kinase activity, and initiate signalling

cascades upon ligand stimulation (Wrana et al., 1994). Type

III TGFβ receptors (TGFβRIIIs) do not exhibit catalytic

activity, but may facilitate the interaction between TGFβ
ligands and TGFβRII (López-Casillas et al., 1994; Mclean

and Di Guglielmo, 2010). TGFβ signalling is initiated when

TGFβ binds to TGFβRII, triggering the association and

phosphorylation of the glycine/serine domain of TGFβRI
(Massagué, 2012). TGFβRI in turn phosphorylates

FIGURE 1
TGFβ ligand maturation. Following Transforming Growth Factor-β (TGFB) gene (red) transcription and TGFB mRNA translation in the nucleus
and endoplasmic reticulum, respectively, TGFβ is synthesized as a precursor pro-TGFβ (pre-pro-TGFβ). Pre-pro-TGFβ contains an amino (N)-
terminal signal peptide latency-associated peptide, andmature ligand. The N terminal signal peptide ensures transportation to the Golgi complex. In
the Golgi complex, the signal peptide is cleaved, and disulfide isomerases catalyze disulfide bonds (SS) between two pre-pro-TGFβmonomers
to generate pro-TGFβ. Furin convertases modify the latency-associated peptides, which non-covalently associate with mature ligands to generate a
small latent TGFβ complex. The small latent TGFβ complex is secreted from the cell and attaches to latent TGFβ binding proteins in the extracellular
matrix to form a large latent TGFβ complex. Mature ligands are released from the large latent TGFβ complexes via allosteric interactions or proteolysis
mediated by enzymes.
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downstream intracellular signalling molecules to induce

canonical Smad-dependent and non-canonical Smad-

independent TGFβ signalling, respectively (Massagué et al.,

2000; Gunaratne and DiGuglielmo, 2013; McLean et al., 2013;

Gunaratne et al., 2014).

All three classes of Smad proteins, R-Smads (Smad2/3), co-

Smad (Smad4), and I-Smads (Smad6/7), temporally regulate

TGFβ signalling (Massagué et al., 2005). Signal initiation

begins when TGFβRI phosphorylates Smad2 or Smad3 on the

carboxyl (C) terminus serine-serine-x-serine (SSXS) motif.

FIGURE 2
Canonical (Smad-dependent) and non-canonical (Smad-independent) TGFβ signalling. (A) Transforming growth factor-β (TGFβ) receptor type
III (TGFβRIII) presents TGFβ to the type II receptor (TGFβRII). The TGFβ-TGFβRII complex phosphorylates TGFβ receptor type I (TGFβRI), which in turn
phosphorylates R-Smads, Smad2 or Smad3. Phosphorylated Smad2/3 are released from the Smad anchor for receptor activation (SARA) protein, and
translocate into the nucleus or form heterodimers/heterotrimers with Smad4 prior to nuclear translocation. Once in the nucleus, Smads
function as transcription factors or interact with other transcription factors to regulate gene expression. Examples of genes regulated by Smads
include, cyclin-dependent kinases (CDKs), Snail Family Transcriptional Repressor 1 and 2 (SNAIL/SLUG), Zinc Finger E-box Binding Homeobox one
and 2 (ZEB1/ZEB2), Twist-related Protein 1 (TWIST1), Forkhead box C2 (FOXC2), Forkhead box A1 (FOXA1), Forkhead box A2 (FOXA2), Paired-related
Homeobox 1 (PRX1), High Mobility Group AT-hook 2 (HMGA2), and SMAD7—which in turn dampens TGFβ signal transduction. (B) In non-canonical
transforming growth factor-β (TGFβ) signalling, TGFβ receptor type I (TGFβRI) phosphorylates numerous downstream signallingmolecules including
TGFβ-activated kinase 1 (TAK1), src homology domain containing protein A (ShcA), and phosphoinositide 3-kinase (PI3K). Although partitioning
defective six homolog (Par6) binds to TGFβRI, it is phosphorylated by TGFβRII. TGFβRI kinase activity is also important for Ras homolog family
member A (RhoA) and cell division control protein 42 (CDC42) activation. The Par6/CDC42/RhoA pathway regulates adherens junctions, tight
junctions, and stress fiber formation. PI3K phosphorylates protein kinase B (AKT), which inhibits Forkhead box O (FoxO) transcription factors that
regulate genes responsible for DNA repair, cell cycle arrest, survival, and T-lymphocyte function. AKT also regulates cell growth, proliferation,
motility, and survival by activating mechanistic target of rapamycin (mTOR). After ShcA is phosphorylated, it forms a complex with growth factor
receptor bound 2 (Grb2) and sons of sevenless (Sos) to phosphorylate membrane bound Ras. This initiates a signalling cascade involving mitogen-
activated protein kinase kinase (Raf), mitogen-activated protein kinase (MEK), and extracellular signal-regulated kinase 1 (ERK1). ERK1 upregulates
activator protein 1 (AP1) and E-twenty-six Like-1 Protein (ELK1) transcription factors. AP1 upregulates genes that regulate differentiation, proliferation,
and apoptosis, whereas ELK1 upregulates genes involved with cell-cell attachments, cell-extracellular matrix (ECM) attachments, and motility.
TGFβRI phosphorylation promotes lysine (K)63-linked polyubiquitination of tumour necrosis factor receptor-associated factor 6 (TRAF6).
TRAF6 forms a complex with TAK1 binding protein two and 3 (TAB2 and TAB3) to recruit TAK1. TGFβRI phosphorylates TAK1, which initiates signalling
cascades that phosphorylate mitogen-activated protein kinase 3/6 (MKK3/6). MKK3/6 phosphorylates c-Jun amino-terminal kinase (JNK) and
p38 MAPK. JNK regulates c-Jun and AP1 transcription factors, whereas p38 MAPK regulates activating transcription factor 2 (ATF2), p53, and
ELK1 transcription factors. cJun upregulates genes involved with proliferation and survival, whereas ATF2 upregulates genes that modulate
development, motility, apoptosis, and inflammation.
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Phosphorylated Smad2/3 is then released from the Smad anchor

for receptor activation (SARA) protein into the cytoplasm

(Tsukazaki et al., 1998; Qin et al., 2002), where it can form

hetero-dimeric or hetero-trimeric complexes with Smad4

(Massague and Wotton, 2000; David and Massagué, 2018).

These complexes subsequently translocate into the nucleus,

where they regulate gene expression directly, by activating

transcription, or indirectly by modulating the activity of other

transcription factors (Finnson et al., 2013). Smad targeted genes

include I-Smads (Chen et al., 1999), cyclin-dependent kinase 4

(CDK4) (Ewen et al., 1995), and EMT-transcription factors,

including Snail Family Transcriptional Repressor one and 2

(SNAIL and SLUG), Zinc Finger E-box Binding Homeobox

1 and 2 (ZEB1 and ZEB2), Twist-related Protein 1 (TWIST1),

Forkhead box C2 (FOXC2), Forkhead box A1 (FOXA1),

Forkhead box A2 (FOXA2), Paired-related Homeobox 1

(PRX1), and High Mobility Group AT-hook 2 (HMGA2;

Figure 2A) (Hajek et al., 2012; Katsuno et al., 2013). Through

negative feedback mechanisms, Smad6 and Smad7 terminate

TGFβ pathway activation (Figure 2A). I-Smads block R-Smad

access to TGFβRI or recruit phosphatases (Iyengar, 2017; Kim
and Baek, 2018), leading to dephosphorylation of active receptors

(Shi et al., 2004). I-Smads also form complexes with E3 ubiquitin

ligases, such as Smad ubiquitination regulatory factor 1 or 2

(Smurf1 or Smurf2), resulting in the degradation of TGFβ
receptors (Kim and Baek, 2018; Miller et al., 2018).

Structure of Smad proteins

Smad structure accounts for differences in Smad function.

Structurally, Smad proteins have a Mad Homology 1 (MH1)

domain, separated by a flexible linker region from aMH2 domain

(Shi et al., 1998; Macias et al., 2015). MH1 domains contain a

nuclear localization signal and β-hairpin loop that mediates

interactions with glycine cysteine-rich Smad-binding elements

on DNA (Jonk et al., 1998; Shi et al., 1998), whereas

MH2 domains interact with TGFβ receptors and mediate

binding to other Smad proteins, transcription factors, and co-

activators or co-repressors of transcription (Wu et al., 2001).

Among the three regions, the greatest variability is observed

within the linker region. The linker region of R-Smads contain

phosphorylation sites for multiple kinases, such as CDKs and

mitogen-activated protein kinases (MAPKs) (Massagué et al.,

2005). Furthermore, within the linker region, both R-Smads and

I-Smads, but not Smad4, have a proline-proline-x-tyrosine

(PPXY) motif to bind to E3 ubiquitin ligases (Qin et al., 1999;

Macias et al., 2015). Although MH1 and MH2 domains are

highly conserved, there are some notable differences. I-Smads are

missing the MH1 domain, therefore, cannot bind to DNA

(Miyazawa and Miyazono, 2017). The MH2 domains of

R-Smads have a β1-strand, L3 loop, and α-helix five structure

that together mediates binding to TGFβRI or SARA (Shi et al.,

1998; Wu et al., 2001; Macias et al., 2015). Although the structure

of Smad2 and Smad3 are similar, there are notable differences.

For instance, Smad2 has two inserts in itsMH1 domain (Shi et al.,

1998). One of these inserts, known as the E3 insert, was once

believed to disrupt the β-hairpin loop, preventing Smad2 from

binding DNA (Dennler et al., 1998; Dennler et al., 1999). Further

analysis indicated that different conformations of the E3 insert

regulate MH1 domain structure, which explains why in some

instances Smad2 has been shown to bind to DNA (Aragón et al.,

2019).

Although Smad4 is essential to many TGFβ-dependent
changes in gene expression, Smad4 is not essential for

R-Smad nuclear translocation nor is it necessary for some

TGFβ-dependent transcriptional functions (Ten Dijke and

Hill, 2004). Smad4 also performs TGFβ-independent functions
that include silencing the expression of TGFβ target genes in

T-lymphocytes (T-cells) (Igalouzene et al., 2022), upregulating

genes that promote natural killer (NK) cell maturation (Wang

et al., 2018), and tumour suppression by mediating Aurora A

kinase degradation (Jia et al., 2014). Although the roles of

Smad4 remain incompletely understood, Smad4 is the only

Smad with a nuclear export signal and a Smad activation

domain (SAD) within its linker region. The SAD region is

recognized by the chromatin modifiers p300 and CREB-

binding protein co-activators (Pouponnot et al., 1998).

Although Smad4 SAD deletion cells are still able to bind

p300 and CREB co-activators, these Smad4-p300 and Smad4-

CREB complexes are unable to activate transcription (De

Caestecker et al., 2000). In this manner, Smad4 contributes to

the regulation of gene expression through p300 and CREB-

binding protein co-activator complexes.

Smad-independent TGFβ signalling

Smad-independent TGFβ signalling occurs through various

pathways (Figure 2B) (Zhang, 2009). One involves the MAPK

cascade via tumour necrosis factor receptor-associated factor 6

(TRAF6). Upon stimulation by TGFβ, TGFβRI associates with
TRAF6, leading to lysine (K)63 polyubiquitination of this

protein. K63-linked polyubiquitination provides a scaffold that

subsequently recruits TGFβ-activated kinase 1 (TAK1), as well as
TAK1-binding proteins. After TAK1-dependent

phosphorylation, MAPK kinase 3/6 phosphorylates c-Jun

amino-terminal kinase (JNK) and p38 MAPK. JNK and

p38 MAPK translocate into the nucleus, where they

phosphorylate several targets, including p53, activator protein

1 (AP1), E-twenty-six like-1 protein (ELK1), activating

transcription factor 2 (ATF2), and cJun (Yamashita et al.,

2008). These transcription factors regulate the expression of

genes involved in apoptosis, inflammation, motility,

development, cell-cell attachments, cell-ECM attachments, and

proliferation (De Borst et al., 2006).
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FIGURE 3
Clathrin- and caveolae-dependent endocytosis regulates the duration and strength of TGFβ signalling. (A) Clathrin-dependent receptor
trafficking is mediated by triskelion shaped clathrin proteins (green). Clathrin tethers transforming growth factor-β (TGFβ) receptors to clathrin-
coated pits via the β2 adaptin of the clathrin coat adaptor complex 2 (AP2). Clathrin-coated pits pinch off the plasma membrane to form clathrin-
coated vesicles that fuse with early endosome membrane compartments by a Rab5-dependent process. In the presence of TGFβ, TGFβ
receptors within clathrin-coated vesicles are active and phosphorylate downstream signalling molecules, such as Smads. Clathrin-coated pits and
vesicles are enriched in Smad anchor for receptor activation (SARA) proteins that bind to R-Smads, which augments TGFβ signalling. Early
endosomes bind to FYVE domain-containing proteins, such as endofin and SARA. Endofin enhances TGFβ signalling in early endosomes by tethering
Smad4 to early endosomes. Clathrin-dependent receptor trafficking promotes R-Smad phosphorylation, which subsequently enters the nucleus
with and without Smad4 to regulate transcription. The fates of the TGFβ receptors subjected to clathrin-dependent receptor trafficking involve
recycling back to the plasma membrane in Rab11-positive vesicles or lysosomal degradation. Lysosomal degradation occurs after early endosomes
mature into Rab7-positive late endosomes, which eventually fuse with lysosomes. (B) Caveolae-dependent receptor trafficking is facilitated by
caveolin-1 proteins (red). Caveolae-coated vesicles are associated with dampening TGFβ signalling; however, non-canonical p38 MAPK signalling
requires caveolae-coated vesicles. Caveolin-1 may bind to TGFβ receptor type I (TGFβRI) directly and attenuate its kinase activity. Caveolae-coated
vesicles are enriched with Smad7-Smurf2 complexes that target TGFβ receptors to proteasome-dependent degradation. Prior to degradation,
caveolae-coated vesicles may fuse with early endosomes in a Rab5-dependent manner or mature into caveolin-1-positive endosomes known as
caveosomes.
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The protein kinase B (AKT) pathway is activated by TGFβRI
phosphorylation of phosphoinositide 3-kinase (PI3K), which in

turn activates AKT (Suwanabol et al., 2012). Downstream targets

of AKT include mechanistic target of rapamycin (mTOR), a

regulator of cell growth, proliferation, motility, survival,

autophagy, transcription, and protein synthesis (Zhang et al.,

2013). Additionally, AKT inhibits Forkhead box O (FoxO)

transcription factors, which are important regulators of CDKs,

survival, DNA repair, and T-cell activity (Zhang et al., 2005;

Zhang et al., 2011).

Smad-independent TGFβ signalling also leads to modulation

of small GTPase activity (Edlund et al., 2002). Specifically,

TGFβRII can phosphorylate partitioning defective six homolog

(Par6) (Ozdamar et al., 2005), whereas Ras homolog family

member A (RhoA), and cell division control protein 42

(CDC42) activation relies on TGFβRI activity (Fleming et al.,

2009; Kim et al., 2016). These proteins modulate cell-cell and cell-

ECM attachments by regulating the function, stability, and

organization of proteins essential to adherens and tight

junctions. RhoA also promotes cell migration by inducing

stress fiber formation (Warner et al., 2010; Nunes de Almeida

et al., 2019). Stress fibers are contractile actomyosin bundles

found in non-muscle cells composed of filamentous actin, α-
actinin, and non-muscle myosin II filaments that may aid in cell

movement (Hakkinen et al., 2011; Lehtimäki et al., 2021).

Tyrosine residues on the src homology domain containing

protein A (ShcA) was also reported to be phosphorylated by

TGFβRI (Lee et al., 2007). ShcA forms a complex containing

growth factor receptor bound 2 (Grb2) and sons of sevenless

(Sos) to activate Ras. The latter initiates downstream MAPK

cascades that ultimately phosphorylates extracellular signal-

regulated kinase (ERK) (Derynck and Zhang, 2003). ERK

phosphorylates transcription factors, such as AP1 and ELK1,

that regulate the expression of genes essential for cell-cell

attachments, cell-ECM attachments, motility, differentiation,

proliferation, and apoptosis (Zhang, 2009; Mu et al., 2012).

TGFβ receptor endocytosis regulates
signalling strength and duration

Endocytosis of TGFβRI, TGFβRII, and TGFβ-TGFβRII
complexes are mediated via clathrin- or caveolae-dependent

mechanisms (Figure 3) (Le Roy and Wrana, 2005). Clathrin-

dependent endocytosis allows TGFβ signalling to continue

following receptor internalization and is associated with signal

amplification (Yakymovych et al., 2018). Clathrin-coated pits

sequester TGFβ receptors via the clathrin coat adaptor complex 2

(AP2) (Yao et al., 2002). AP2 is a hetero-tetramer that binds to

clathrin and consists of four adaptins (β2, µ2, α, and σ2) (Kovtun
et al., 2020). Unlike many receptors within the plasmamembrane

that bind to µ2-adaptin, TGFβ receptors directly bind to β2-
adaptin (Yao et al., 2002). Next, several proteins facilitate

budding and fission of clathrin-coated pits that are

internalized as clathrin-coated vesicles. Clathrin-coated

vesicles subsequently shed AP2 and fuse with the early

endosome membrane compartment in a Rab5-dependent

manner (Semerdjieva et al., 2008). Early endosome membrane

compartments are enriched in phosphatidylinositol 3-phosphate

(PI3P), which serve as recruitment sites for FYVE domain-

containing proteins, such as early endosome antigen 1

(EEA1), endofin, and SARA (Lee et al., 2005). By associating

with SARA on early-endosomal membranes, the R-Smads,

Smad2/3, are poised to interact with TGFβ receptors (Itoh

et al., 2002). Since regions involved in clathrin-dependent

internalization are enriched in SARA, these routes of

subcellular trafficking promote TGFβRI-dependent R-Smad

phosphorylation (Macias et al., 2015). SARA also amplifies

TGFβ signalling because SARA overexpression leads to

endosomal swelling, which delays receptor recycling/

degradation (Hu et al., 2002). In support of this, when the

localization of SARA and EEA1-positive early endosomes was

disrupted, there was a decrease in both TGFβ-induced
Smad2 phosphorylation and Smad2 nuclear translocation

(Tsukazaki et al., 1998; Hayes et al., 2002). Finally, endofin

facilitates TGFβ signalling because it binds to TGFβRI and

Smad4, which brings Smad4 in close proximity to

phosphorylated R-Smads. Indeed, endofin knockdown reduced

transcriptional responses to TGFβ and impaired TGFβ-
dependent apoptosis (Chen et al., 2007). Therefore, clathrin-

dependent trafficking of TGFβ receptors enables R-Smad

phosphorylation in the early endosome and prolongs the

duration in which ligands, receptors, and downstream

signalling molecules are in close proximity. The early

endosome is primarily responsible for sorting endocytosed

TGFβ receptors, which may either recycle back to the plasma

membrane in Rab11-positive vesicles (Yin et al., 2013) or be

degraded in Rab7-positive late endosomes and lysosomes (Feng

et al., 1995) (Figure 3A).

Caveolae are plasma membrane invaginations enriched with

caveolin-1 that are localized in membrane rafts, plasma

membrane subdomains rich in cholesterol and

glycosphingolipids (Golub et al., 2004). Caveolin-positive

vesicles may mature into or fuse with pre-existing caveosomes

or early endosomes in a Rab5-independent or -dependent

manner, respectively (Pelkmans et al., 2004). Caveolin-

dependent endocytosis is associated with dampening and

disrupting TGFβ signalling. Unlike clathrin-coated vesicles,

SARA localizes away from membrane rafts and Smad7-

Smurf2 complexes are commonly associated with caveolin-

positive vesicles. Due to the association with Smad7-Smurf2,

TGFβRII/TGFβRI complexes within caveolin-positive vesicles

are targeted for proteasomal degradation (Guglielmo et al.,

2003; Le Roy and Wrana, 2005). Caveolin-1 also has been

shown to directly bind to TGFβRI following stimulation,

which suppresses Smad2 phosphorylation possibly by
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antagonizing TGFβRI kinase activity (Razani et al., 2001)

(Figure 3B). Caveolin-1 also disrupts TGFβ signalling through

association with CD109, a TGFβ co-receptor. In the presence of

ligands, CD109 promotes the localization of TGFβ receptors in

caveolae and increases receptor degradation (Bizet et al., 2011).

Indeed, after the TGFβRII/TGFβRI complexes are endocytosed

in caveolin-positive vesicles, TGFβ signalling is inhibited

(Guglielmo et al., 2003). However, the activation of some

non-Smad signalling pathways, such as p38 MAPK, rely on

the localization of TGFβ receptors in caveolae (Zuo and Chen,

2009).

In summary, the route of TGFβ receptor subcellular

trafficking regulates signalling duration, strength, and receptor

fate (McLean and Di Guglielmo, 2014). Although some TGFβ
signalling occurs in the absence of receptor internalization,

clathrin- or caveolae-dependent endocytosis can enhance or

dampen TGFβ signal transduction pathways (Yakymovych

et al., 2018).

The role of the ubiquitin-proteasome
pathway in TGFβ signalling

The ubiquitin-proteasome pathway (UPP) also regulates the

strength and duration of TGFβ signalling (Wang, 2003). The

polyubiquitination of TGFβ receptors, R-Smads, and

downstream effectors is dependent on E1 (activating), E2

(conjugating), and E3 (ubiquitin ligase) enzymes (Kim and

Baek, 2018). E1 enzymes hydrolyze ATP to activate the C

terminus of ubiquitin. Activated ubiquitin is then transferred

to an E2 enzyme. E3 enzymes subsequently bind to E2-ubiquitin

conjugates and transfers ubiquitin to K residues on TGFβ
receptors, R-Smads or downstream effectors (Komander,

2009). K48-linked polyubiquitin chains target TGFβ receptors,

R-Smads, and downstream effectors to 26S proteasomes, which

are multi subunit proteases (Finley et al., 2016). Deubiquitinating

enzymes decrease proteasome-dependent degradation by

removing ubiquitin (Kim and Baek, 2018) (Figure 4).

Although ubiquitination is important for proteasome-

dependent degradation, it is also necessary to facilitate

signalling (Adhikari et al., 2007). For instance, K63-linked

polyubiquitination functions as a scaffold to recruit and

activate protein kinase complexes (Yamashita et al., 2008). As

previously discussed, ubiquitin ligases catalyze K63-linked

polyubiquitin chains on TRAF6 to recruit TAK1 to facilitate

Smad-independent TGFβ signalling (Landström, 2010).

Given that TGFβ signalling regulates a diverse set of cellular

processes, modulating TGFβ signalling through a balance of

ubiquitin ligase and deubiquitinating enzyme activity is

important (Ten Dijke and Hill, 2004). By degrading TGFβ
receptors, R-Smads, and downstream effectors, E3 ubiquitin

ligases, protects cells from aberrant TGFβ signalling (Gao

et al., 2009). However, there are numerous examples where

ubiquitin ligases prolong TGFβ signalling. For instance,

Smad2-Smurf2 complexes lead to the destruction of Ski-

related protein N (SnoN) and Ski, which are protooncogenes

that impede TGFβ signalling (Sun et al., 1999; Bonni et al., 2001).

Arkadia, an E3 ubiquitin ligase, amplifies TGFβ signalling by

FIGURE 4
The effect of the ubiquitin-proteasome pathway on TGFβ signalling. Transforming growth factor-β (TGFβ) signalling is tightly regulated by the
ubiquitin-proteasome pathway. After TGFβ binds to the TGFβ-receptors, the ubiquitin-proteasome pathway is activated to prevent uncontrolled
TGFβ signalling. E1 activating enzymes hydrolases ATP to bind to ubiquitin. Ubiquitin is then transferred to an E2 conjugating enzyme. Smad7 binds to
E3 ubiquitin ligases, which conjugates ubiquitin to TGFβ receptors, receptor Smads (R-Smads), Smad4, and R-Smad-Smad4 complexes. This
process is repeated until TGFβ receptors, R-Smads, Smad4 or R-Smad-Smad4 complexes are polyubiquitinated. Polyubiquitinated components of
the TGFβ pathway are then subject to (1) proteasome-dependent degradation or (2) the removal of the ubiquitin-linked chains mediated by
deubiquitinating enzymes (DUBs).
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ubiquitinating I-Smads (Koinuma et al., 2003). Paradoxically, if

deubiquitinating enzymes remove K48-linked polyubiquitin

chains on SnoN, Ski or Smad7, TGFβ signalling is dampened

(Zhao et al., 2011). Therefore, ubiquitin ligases and

deubiquitinating enzymes may both antagonize or promote

TGFβ signalling depending on the function of the

ubiquitinated protein.

Mutations in genes involved in TGFβ
signalling

Alterations in the TGFβ signalling pathway due to genetic

mutations are the underlying cause of various hereditary

congenital malformations, as well as diseases that arise later in

life (Wang et al., 2012; Saito et al., 2018). Germline mutations

impair embryonic development, whereas increased susceptibility

to develop cancer is associated with somatic mutations

(Harradine and Akhurst, 2006). The clinical consequences of

mutations in the TGFβ signalling pathway are complex, because

the tumour microenvironment and TGFβ signalling vary among

patients and among different tissues within the same individual

(Massagué, 2008).

Germline mutations in the TGFβ signalling
pathway

Genetically engineered mouse models with targeted

inactivation of various TGFβ ligands have been generated to

investigate the importance of TGFβ on development and viability

(Glick, 2012). Tgfb1−/− mice can either succumb during mid-

gestation as a result of vascular and hematopoiesis defects, or a

few weeks after as a consequence of systemic inflammation (Shull

et al., 1992; Kulkarni et al., 1993; Dickson et al., 1995). Death

occurs shortly before, during or within minutes of birth in

Tgfb2−/− mice, due to impaired cardiovascular function. These

animals exhibit cardiac, craniofacial, limb, eye, inner ear, and

urogenital defects (Sanford et al., 1997; Dünker and Krieglstein,

2002). Tgfb3−/− mice exhibit cleft palates that interfere with

feeding, eventually resulting in death (Dünker and Krieglstein,

2002; Aluwihare et al., 2009). The majority of Smad-null mice die

in utero, indicating that Smad proteins are required for proper

embryonic development as previously reviewed (Datto and

Wang, 2000). Specifically, Smad2−/− and Smad4−/− mice die

early in embryogenesis, due to defects in the organization of

the primitive germ layers and extensive mesodermal defects

(Nomura and Li, 1998; Chu et al., 2004). Smad3−/− mice are

viable, but exhibit impaired local inflammatory responses and

accelerated wound healing (Ashcroft et al., 1999; Ling and

Robinson, 2002).

In patients, familial juvenile polyposis, which increases the

risk of gastrointestinal cancer, is correlated with SMAD4

mutants that produce truncated proteins with a loss or

partial loss of function (Howe et al., 1998; Johansson et al.,

2015). Although juvenile polyposis patients have been screened

for SMAD2 and SMAD3 mutations, only SMAD4 germline

mutants are identified as an underlying cause of juvenile

polyposis (Bevan et al., 1999). However, screening colorectal

adenoma patients revealed that mutations to the SMAD4 loci

are rare (Lipton et al., 2003). SMAD4mutations in patients with

juvenile polyposis syndrome may also develop hereditary

hemorrhagic telangiectasia, which results in abnormal

vascular structures (Heald et al., 2015).

Somatic mutations in the TGFβ signalling
pathway

Frameshift and missense mutations in TGFBRI are

common in several tumour types (Moore-Smith and

Pasche, 2011). For example, the TGFBRI*6A mutation in

exon one is a loss of three Alanine residues in a 9-Alanine

repeat region that increases cancer susceptibility associated

with impaired anti-proliferative TGFβ signalling (Liao et al.,

2010). Inactivating mutations in TGFBR2 are frequently

present in tumours that exhibit microsatellite instability

(Vincent et al., 1996), such as those found in subsets of

colon carcinomas, which express truncated mutant forms of

TGFβR2 (Ogino et al., 2007). SMAD4 is the most common

Smad family gene mutated in malignant tumours (Sarshekeh

et al., 2017). Inactivating SMAD4 mutations have been found

in approximately 50% of pancreatic adenocarcinomas (Howe

et al., 1998), 20% of colorectal carcinomas (Chu et al., 2004),

and 5% of head and neck squamous cell carcinomas (Lin et al.,

2019a). Smad4 mutations also correlate with tumour

formation (Lin et al., 2019b) and may predict poor

prognosis and aggressive tumour phenotypes (Fang et al.,

2021). For instance, mice with conditional targeted

inactivation of Smad4 in the oral epithelium developed

spontaneous squamous cell carcinomas (Bornstein et al.,

2009). Although somatic mutations of the TGFβ pathway

may promote tumour formation, similar mutations in

cancerous cells that rely on TGFβ can decrease tumour

growth (Pino et al., 2010). Since somatic mutations of the

TGFβ pathway may promote or block tumourigenesis

depending on the stage of the disease, this is important to

bear in mind when assessing the benefits and risks of using

TGFβ signalling inhibitors in cancer treatment

(Khoshakhlagh et al., 2019).

TGFβ signalling in tumourigenesis

Cells escape the tumour suppressing arms of TGFβ signalling
through mutations that impede specific TGFβ pathways or
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abnormalities in processes that dampen TGFβ signalling (David

and Massagué, 2018). Functional inactivation of the tumour

suppressing arms of TGFβ signalling can contribute to

carcinogenesis through various mechanisms (Massagué, 2008;

David and Massagué, 2018). Major mechanisms that contribute

to the pro-tumourigenic effects of TGFβ include inhibition of

immune function, activation of angiogenesis/lymphangiogenesis,

and the initiation of EMT (Ferrari et al., 2009; Flavell et al., 2010;

Batlle and Massagué, 2019).

Inhibition of anti-cancer immune
responses

As prolonged activation of the immune system can induce

inflammation and tissue damage, the immune system is

modulated through inhibitory mechanisms (Sitkovsky and

Ohta, 2005). Cells in the tumour and its microenvironment

benefit from these immunological safeguards by producing

excessive amounts of immunosuppressive cytokines, such as

FIGURE 5
Tumour recognition and destruction mediated by the innate and adaptive immune systems. Tumour cells release antigens and danger signals
that serve as a chemotactic gradient to recruit cells of the innate immune system ((Natural Killer (NK) cells, macrophages, dendritic cells, and
granulocytes (neutrophils, basophils, and eosinophils)). Cells of the innate immune system may destroy tumours using cytolytic/phagocytic
functions or activate the adaptive immune system. The adaptive immune system is activated by humoral signals, such as interferon-γ (IFNγ),
which is released by NK cells, dendritic cells, and macrophages. Furthermore, antigen presenting macrophages and dendritic cells deliver tumour
antigens using the major histocompatibility complex to Naive T-lymphocytes (T-cells) or B-lymphocytes (B-cells). Naive T-cells are stimulated to
differentiate into Cytotoxic T-cells and Helper T-cells. B-cell differentiation into cytotoxic antibody-producing plasma cells is triggered by B-cell
receptors binding to Helper T-cells or tumour antigens. The adaptive immune system facilitates tumour destruction via Cytotoxic T-cells releasing
enzymes into tumour cells or antibodies produced by plasma cells.
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TGFβ (Flavell et al., 2010; Batlle and Massagué, 2019). TGFβ
inhibits many components of both the innate and adaptive

immune systems, which creates an environment favourable for

tumour growth (Moo-Young et al., 2009).

Tumour cells are targeted for destruction by cells of the

innate immune system, which include monocytes, macrophages,

dendritic cells, neutrophils, basophils, eosinophils, and NK cells

(Gajewski et al., 2013). Through phagocytosis, macrophages,

neutrophils, and dendritic cells engulf tumour cell debris and

tumour cells missing essential cell surface proteins or expressing

danger signals (Chan and Housseau, 2008; Sarode and Sarode,

2014; Zhou et al., 2021). Macrophages, neutrophils, and dendritic

cells also attach antigens to their major histocompatibility

complexes (MHCs) to activate T- and B- lymphocytes (T- and

B-cells) of the adaptive immune system (Figure 5) (Gajewski

et al., 2013). The effects of TGFβ on dendritic cells include

interference with antigen presenting activity, immobilization,

and upregulation of TGFβ production, creating a positive

feedback loop to maintain a decrease in immune responses

against the tumour (Esebanmen and Langridge, 2017).

Furthermore, by interfering with dendritic cell antigen

presenting activity, TGFβ blocks naive T-cell and B-cell

differentiation into anti-tumour phenotypes (Liu et al., 2018).

TGFβ within the tumour microenvironment may manipulate

macrophages and neutrophils to differentiate into phenotypes

that contributes to tumour growth rather than destroy tumour

cells. These macrophages and neutrophils are typically referred to

as tumour-associated macrophages (TAMs) and tumour-

associated neutrophils (TANs), respectively (Fridlender et al.,

2009; Danhier et al., 2017). TGFβ-recruited TAMs can

phagocytose antigen-containing particles prior to their

recognition by dendritic cells. Therefore, TAMs suppress the

antigen presenting abilities of dendritic cells, hindering activation

of the adaptive immune system (Liu et al., 2018; Batlle and

Massagué, 2019). TGFβ recruited TANs have decreased

cytotoxicity and secrete extensive quantities of MMPs to free

TGFβ from large latent TGFβ complexes, which increases the

concentration of active TGFβ ligands in the tumour

microenvironment, contributing to a positive feedback loop

(Figure 6) (Germann et al., 2020).

NK cells are specialized leukocytes that do not rely on MHCs

or humoral signals to recognize tumour cells (Abel et al., 2018).

Instead, NK cells recognize tumour cells using cell surface

receptors. Upon binding to tumour cells, NK cells release

interferon-γ (IFNγ) into the tumour microenvironment and

cytolytic antibodies directly into the tumour cell (Castro et al.,

FIGURE 6
The inhibition of anti-cancer immune responses by TGFβ. In the absence of immunosuppressive cytokines, cells of the innate and adaptive
immune system destroy tumour cells as described in Figure 7. However, the addition of transforming growth factor-β (TGFβ) suppresses tumour
recognition and cytotoxic functions of the innate and adaptive immune systems. For instance, TGFβ suppresses antigen presenting function of
macrophages, neutrophils, and dendritic cells by downregulation the major histocompatibility complex. TGFβ decreases Natural Killer cell
receptors, which spares tumour cells from Natural Killer cell-mediated destruction. TGFβ dampens immune cell recruitment by disrupting
interferon-γ (IFNγ) production in Natural Killer cells, dendritic cells, and macrophages. TGFβ induces macrophages and neutrophils to differentiate
into tumour-associated macrophages and tumour-associated neutrophils, respectively, which augment tumourigenesis. TGFβ disrupts B-cell
differentiation into plasma cells and attenuates antibody production. TGFβ also alters Naive T-cell differentiation to favour tumour promoting
Regulatory T-cells instead of Cytotoxic T-cells or Helper T-cells that mediate tumour cell destruction. Regulatory T-cells promote tumourigenesis
by suppressing Cytotoxic T-cell function.
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2018). Thus, NK cells eliminate tumour cells by triggering an

antibody-dependent cell-mediated cytotoxic response and

activate other leukocytes using IFNγ (Figure 5) (Abel et al.,

2018). TGFβ blocks NK cell-mediated adaptive immune

system activation by downregulating the transcription factor

T-bet, leading to reduced IFNγ expression (Hayashi et al.,

2003; Mohammadzadeh et al., 2014). The TGFβ-dependent
loss of IFNγ decreases the activity of leukocytes,

downregulates antigen presenting MHCs in antigen presenting

leukocytes, and impedes chemotaxis (Castro et al., 2018). TGFβ
also downregulates NK receptors responsible for recognizing and

destroying tumour cells (Figure 6) (Castriconi et al., 2003).

Like the innate immune system, the adaptive immune system

facilitates tumour cell death using humoral immunity and cell-

mediated immunity. Cell-mediated immunity and humoral

immunity is facilitated by T-cells. Following antigen

presentation, naive T-cells differentiate into effector T-cells,

such as cytotoxic T-cells and helper T-cells (Fazilleau et al.,

2009; Farhood et al., 2019). Cytotoxic T-cells specifically

eliminate cells expressing the antigen presented whereas

helper T-cells release humoral signals to activate other

leukocytes (Figure 5) (Belardelli and Ferrantini, 2002;

Fazilleau et al., 2009). In tumour microenvironments with

elevated TGFβ levels, decreased numbers and limited anti-

tumour cytolytic activity of cytotoxic T-cells have been

observed, through mechanisms that include induction of

T-cell apoptosis (Thomas and Massagué, 2005; Flavell et al.,

2010; Liu et al., 2018). TGFβ also disrupts T-cell anti-

tumourigenic activity by upregulating genes that promote

naive T-cell differentiation into less cytotoxic phenotypes,

such as Tregs (Figure 6) (Zhang et al., 2018). Plasma cells are

adaptive immune system cells that mediate humoral immunity.

Upon antigen presentation, B-cells differentiate into plasma cells

that produce antibodies to eliminate tumour cells (Figure 5)

(Kurosaki et al., 2015). TGFβ attenuates the anti-tumourigenic

capacity of B-cells by interfering with their differentiation into

plasma cells, antibody production, and proliferation (Figure 6)

(Schwartz et al., 2016).

FIGURE 7
TGFβ augments tumourigenesis by inducing angiogenesis. (A) As tumours grow, the concentration of transforming growth factor-β (TGFβ) in
the tumour microenvironment increases. TGFβ upregulates genes involved with proliferation and migration in mural cells, which results in
endothelial cell migration and leaky vessels. TGFβ binds to TGFβ receptors on endothelial cells to upregulate vascular endothelial growth factor
(VEGF) andmatrix metalloproteinases (MMPs). Both proteins are secreted into the basal lamina and increase proportionally to TGFβ. VEGF binds
to endothelial cells and stimulates proliferation and migration. MMPs breakdown proteins in the basal lamina to remodel the extracellular matrix
(ECM) to carve out space for vessel formation. The new vessels grow and become more organized as time passes. (B) TGFβ binds to TGFβ receptors
on endothelial cells and upregulate MMP2, MMP9, thrombospondin-4 (TSP-4), microRNA-29s (miR-29a), VEGF, and protein kinase B (AKT). miR-29a
blocks the translation of phosphatase and tensin homolog (PTEN), which is a known AKT inhibitor. Since the AKT pathway has been linked to
angiogenesis, TGFβ signalling may induce angiogenesis through the AKT pathway.
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Activation of angiogenesis and
lymphangiogenesis

Angiogenesis promotes tumour growth and invasion because

as tumours grow, blood carrying oxygen and nutrients is blocked

from reaching interior tumour cells (Nishida et al., 2006). To

bypass this, tumour microenvironments are enriched with

cytokines, such as TGFβ, that alter cellular processes within

endothelial cells and mural cells to generate new vessels

(Figure 7A) (Ferrari et al., 2009). The effects of TGFβ on

angiogenesis, endothelial cells, and on mural cells are

complex. Although in normal vessels TGFβ supports vascular

development by recruiting mural cells toward endothelial cells

(Walshe et al., 2009), TGFβ in tumour vasculature induces the

differentiation of endothelial cells into mural cells (Hirschi et al.,

2003). Then, mural cells secrete angiogenic factors and form

defective interactions with endothelial cells resulting in

disorganized vasculature (Sun et al., 2021). In endothelial

cells, binding of TGFβ to TGFBRII leads to the activation of

two distinct type I receptors: endothelial cell-specific activin

receptor-like kinase 1, which signals through Smad1/5/8, as

well as the ubiquitous TGFβRI, which signals through Smad2/

3 (COLLETTA et al., 1988; Goumans et al., 2002; Mallet et al.,

2006; Ito et al., 2009). Smad1/5/8 signalling induces endothelial

cell proliferation and migration (Ray et al., 2010), whereas

Smad2/3 signalling induces endothelial cell differentiation into

mesenchymal-like mural cells (Hirschi et al., 2003; Jiang et al.,

2018). TGFβ can promote angiogenesis through TGFβRI, but
inhibits growth factor-induced endothelial sprouting/branching

through mechanisms that involve cross-talk with Notch-

activated pathways (Mallet et al., 2006; Aspalter et al., 2015).

In mural cells and endothelial cells, TGFβ also induces Smad-

dependent expression of vascular endothelial growth factor

(VEGF), thrombospondin-4 (TSP-4), MMPs, microRNA-29a,

and other genes that stimulate endothelial cell proliferation

and migration (Massagué, 2008; Ferrari et al., 2009).

VEGF enhances endothelial cell migration, proliferation, and

resistance to apoptosis (Ferrari et al., 2009; Suzuki et al., 2012) by

activating two tyrosine kinase VEGF receptors (VEGFR1 and

VEGFR2). VEGFR1 activation is involved with migration

whereas VEGFR2 activation regulates proliferation and

survival (Wang et al., 2017). Interestingly, TGFβ activates

apoptosis, which suggests that VEGF and TGFβ have

opposing roles on endothelial cell survival. However, many

studies suggest that pro-apoptotic TGFβ signalling is necessary

for angiogenesis because it ensures less branching and increases

vasculature organization (Haque and Morris, 2017).

Furthermore, TGFβ upregulates ECM remodelling proteins in

endothelial cells, such as TSP-4 and MMPs (Tirino et al., 2013;

Muppala et al., 2017). By a Smad3-dependent mechanism, TGFβ
activates post-translation processes that increase TSP-4 protein

levels (Muppala et al., 2017). The importance of TSP-4 on

endothelial cell proliferation and migration during

angiogenesis was verified when TGFβ-induced angiogenesis

was attenuated in Tsp-4−/− mouse models (Muppala et al.,

2017). Additionally, TGFβ upregulates the expression of

MMP2 and MMP9 in endothelial cells and cells of the

tumour microenvironment, thus facilitating ECM remodelling

and releasing ECM-sequestered cytokines (Yu and Stamenkovic,

2000). Therefore, MMPs play a role in TGFβ-mediated

angiogenesis by releasing latent TGFβ from LAP and LTBP

(Tatti et al., 2008) as well as generating the space required for

endothelial cell migration, proliferation, and microvessel

formation (Park et al., 2018). Finally, microRNA-29a silences

phosphatase and tensin homolog (PTEN) RNA expression

(Wang et al., 2013), leading to increased AKT pathway

activity and activation of TGFβ-induced angiogenesis (Chen

et al., 2020). Since blocking PTEN activity increases the

activity of the AKT pathway (Chen et al., 2020), the Smad-

independent PI3K/AKT TGFβ signalling pathway may play a

major role in TGFβ-induced angiogenesis (Figure 7B).

Tumour cells primarily metastasize through the lymphatic

system due to the thinner walls and increased permeability of

lymphatic vessels, relative to blood vasculature (Chaffer et al.,

2016). Furthermore, cancer cells may drain directly into the

lymphatic system if they break free from tumours (Karlsson

et al., 2017). Two mechanisms for TGFβ contribution to

metastasis through the lymphatic system have been

proposed. Due to the greater representation of leukocytes

in the lymphatic system, lymph node metastasis requires

immune suppression (Liu and Cao, 2016). Therefore, the

inhibitory effects of TGFβ on leukocytes present in the

lymphatic system may promote tumour cell survival and

increases dissemination (Liu and Cao, 2016). Additionally,

Smad-dependent and -independent TGFβ signalling induces

lymphangiogenesis, formation of new lymphatic vessels from

pre-existing lymphatic vessels (García-Caballero et al., 2017),

by upregulating VEGF-C, which in turn promotes growth,

proliferation, migration, and survival of endothelial cells

bordering lymphatic vessels (Pak et al., 2019). Cells of the

tumour microenvironment that respond to TGFβ, such as

TAMs, may also mediate lymphangiogenesis via a VEGF

receptor 3-dependent process (Alishekevitz et al., 2016).

Epithelial-mesenchymal transition (EMT)

Epithelial-mesenchymal transition (EMT), a biological

process whereby cells of epithelial origin acquire

characteristics of mesenchymal cells, is essential for

embryogenesis and wound healing (Tan et al., 2015; Chaffer

et al., 2016). EMT is involved in the ability of carcinoma cells to

acquire motile and invasive phenotypes, thus contributing to

tumour progression and metastasis (Craene and Berx, 2013).

During EMT, there is a loss of epithelial properties, such as

apical/basolateral polarity, cytoskeleton polarization, cell-cell
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adhesions (adherens junctions, tight junctions, and gap

junctions), and attachment to the basal lamina. Subsequently,

the cells acquire spindle-shaped morphology, transient focal

point cell-cell attachments, lamellipodia/filopodia formation,

front-back polarity, stress fibers, and increased motility

(Figure 8) (Chaffer et al., 2016; Karlsson et al., 2017).

The profound phenotypical and morphological

characteristics observed during EMT are amplified by signals

that tumour cells receive from the tumour microenvironment,

such as TGFβ (Kawata et al., 2012). TGFβ contributes to the

initiation of the EMT program, via transcription-dependent and

-independent mechanisms (Gunaratne and DiGuglielmo, 2013;

Tirino et al., 2013; Ganesan et al., 2016; Tripathi et al., 2019).

TGFβ upregulates various EMT-transcription factors (SNAIL,

SLUG, TWIST, ZEB1, ZEB2, FOXC2, FOXA1, FOXA2, PRX1,

and HMGA2), which decrease the expression of epithelial genes,

whilst increasing that of mesenchymal genes (Figure 9) (Barrallo-

Gimeno and Nieto, 2005; Kokudo et al., 2008; Kume, 2008;

Miyazono, 2009; Xu et al., 2009; Mikheeva et al., 2010; Lee

and Yutzey, 2011; Wu et al., 2011; Kaufhold and Bonavida,

2014; Ganesan et al., 2016; Niu et al., 2016; Katsura et al.,

2017; Vu and Datta, 2017; Maturi et al., 2018; Atala, 2019;

Stemmler et al., 2019). For example, SNAIL, SLUG, and

ZEB1 downregulate the expression of E-Cadherin, a protein

required for strong adherens junctions observed in epithelial

cells, whereas TWIST upregulates the expression of N-Cadherin,

a mesenchymal protein that forms weak transient cell-cell

interactions (Barrallo-Gimeno and Nieto, 2005; Mikheeva

et al., 2010; Dhasarathy et al., 2011; Lee and Yutzey, 2011;

Kaufhold and Bonavida, 2014; Maturi et al., 2018). An in-

depth analysis of genes targeted by EMT-transcription factors

that mediate the transition of epithelial to mesenchymal

phenotypes are outlined in previous reviews (Wrana, 2013;

Batlle and Massagué, 2019).

TGFβ can promote EMT through non-canonical, Smad3-

dependent regulation of RNA splicing. Phosphorylation of

Smad3 on Thr179, subsequent to TGFβ receptor stimulation,

impairs binding to Smad4 and to DNA (Gao et al., 2009; Inui

et al., 2011; Tang et al., 2011), but induces Smad3 association

with the RNA-binding protein poly (RC) binding protein 1

(PCBP1) in the nucleus (Tripathi and Zhang, 2017). The

Smad3-PCBP1 species catalyzes alternative splicing of

myriad transcripts involved in EMT, including RNAs

encoding the CD44 glycoprotein, which modulates cell-cell

adhesion (Ponta et al., 2003). Multiple CD44 splice variants

exist. CD44E is preferentially expressed in normal epithelial

cells, whereas the mesenchymal isoform CD44s is ubiquitous.

In epithelial carcinoma cells, Smad3-PCBP1 complexes induce

a splicing switch from CD44E to CD44s, resulting in activation

of EMT and invasion (Thomas and Massagué, 2005).

Similarly, complex formation between Smad3, PCBP1, and

the RNA-binding protein Rbfox2 mediates expression of the

alternative TAK1 splice variant TAK1ΔGlu 12 (TAK1ΔE12)
(Braeutigam et al., 2014). TAK1ΔE12 is constitutively active,

which means downstream signalling kinases, such as

p38 MAPK and JNK, are constitutively phosphorylated

(Yamashita et al., 2008; Tripathi et al., 2019). Transcription

factors regulated by p38 MAPK and JNK are involved with

FIGURE 8
Epithelial-mesenchymal transition. Epithelial-mesenchymal transition (EMT) is the biological process of an epithelial cell loses its epithelial
properties, such as apical/basolateral polarity, tight junctions, gap junctions, adherens junctions, and hemidesmosomes, and develop mesenchymal
properties, which includes the capacity to breakdown the basal lamina, assert back/front polarity, spindle-shaped morphology, induce stress fiber
formation, and N-Cadherin-dependent cell-cell attachments.
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upregulating genes that promote proliferation and EMT

(Figure 9) (Zhao et al., 2017).

Finally, TGFβ can also promote EMT by upregulating DNA

methyltransferases, which hypermethylate promoters of various

genes involved in the regulation of the cell cycle, apoptosis, cell-

cell attachments, ECM production, and cell movement (Lu et al.,

2017). For example, in ovarian carcinoma cells, reduced

transcription of CDH1, which encodes E-Cadherin, is

associated with hypermethylation in the presence of TGFβ
(Figure 9) (Cardenas et al., 2014).

Similar to EMT, endothelial-mesenchymal transition

(EndMT) occurs when endothelial cells lose tight junctions

and downregulate various endothelial cell markers, such as

VE-Cadherin, to acquire mesenchymal properties, including

expression of α-smooth muscle actin and N-Cadherin (Hong

et al., 2018). EndMT is important during cardiac development

and wound healing, and is believed to be an important

contributor to certain pathologies (Lin et al., 2012). EndMT

has been described in cardiovascular pathologies, such as

atherosclerosis, cardiac fibrosis, and pulmonary hypertension

(Jimenez and Piera-Velazquez, 2016). Recently, evidence has

emerged that some cancer-associated fibroblasts (CAFs) have

an endothelial origin (Zeisberg et al., 2007). These CAFs express

α-smooth muscle actin and type I collagen, which are markers

associated with excessive scarring and ECM remodelling (Yeon

et al., 2018). A pathway linking TGFβ to EndMT involves TGFβ-
mediated upregulation of SNAIL, which in turn induces

downregulation of VE-Cadherin (Platel et al., 2019).

Additionally, when TGFβ-dependent ERK phosphorylation

was blocked, TGFβ-dependent EndMT was attenuated (Wylie-

Sears et al., 2014).

There are several factors involved with TGFβ-dependent
EMT/EndMT regulation. First, the chromatin structure and

epigenetics of a cell dictate if SNAIL and other transcription

factors can access genes subject to their regulation (Millanes-

Romero et al., 2013; Kaufhold and Bonavida, 2014). Second,

miRNAs block the expression of EMT/EndMT-transcription

factors. For instance, microRNA-34 and microRNA-200

FIGURE 9
TGFβ signalling pathways that induce epithelial-mesenchymal transition. As the concentration of transforming growth factor-β (TGFβ)
increases, the epithelial-mesenchymal transition (EMT) program becomes more pronounced. After TGFβ binds to the TGFβ receptors, it upregulates
EMT-transcription factors (EMT-TFs), such as Snail Family Transcriptional Repressor one and 2 (SNAIL/SLUG), Zinc Finger E-box Binding Homeobox
one and 2 (ZEB1/ZEB2), Twist-related Protein 1 (TWIST1), Forkhead box C2 (FOXC2), Forkhead box A1 (FOXA1), Forkhead box A2 (FOXA2),
Paired-related Homeobox 1 (PRX1), and High Mobility Group AT-hook 2 (HMGA2). EMT-TFs downregulate epithelial markers ((E-Cadherin, claudins,
occludins, cytokeratins, integrins, microRNA (miR)-34, and miR-200)) and upregulate mesenchymal markers ((N-Cadherin, vimentin, matrix
metalloproteinases (MMPs), fibronectin, α-smooth muscle actin (α-SMA), and miR-21)). TGFβ induces EMT by increasing DNA methyltransferase
activity. In the presence of TGFβ, DNA methyltransferase methylates (M) the promoters of epithelial genes, such as Cadherin 1(CDH1). Also, when
TGFβ receptor type I phosphorylates Smad3 at threonine 179 (T179-Smad3), it may associate with the RNA-binding protein poly (RC) binding protein
1 (PCBP1). Smad3-PCBP1 complexes alter CD44 splicing from CD44E, which is found in epithelial cells, to CD44s. CD44s splice variants modulate
cell-cell adhesion to promote EMT. The Smad3-PCBP1 complex associated with Rbfox2 that mediates alternative splicing of TGFβ-activated kinase 1
(TAK1) to favour TAK1ΔGlu 12 (TAK1ΔE12) variants. TAK1ΔE12 is constitutively active, which leads to the constitutive phosphorylation of p38 MAPK
(p38) and cJun N-terminal Kinase (JNK). P38 and JNK upregulate genes that promote EMT.
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prevent the translation of SNAIL and ZEB1, respectively (Chaffer

et al., 2016; Imani et al., 2017; Title et al., 2018). Finally, each cell

type has different intracellular signalling configurations.

Therefore, the rate in which different cell types conduct

Smad-dependent or -independent signalling is not the same

(Wu et al., 2016). In conclusion, cells that upregulate

microRNAs that block EMT/EndMT-transcription factor

translation, contain DNA methylation in the promoters of

genes regulated by EMT/EndMT-transcription factors, and

favour tumour suppressive TGFβ pathways are less likely to

undergo TGFβ-dependent EMT/EndMT.

The relationship between autophagy
and the tumour promoting properties
of TGFβ

Immunosuppression, increased angiogenesis, and EMT are

the most widely studied mechanisms whereby TGFβ promotes

tumourigenesis. However, the pro-tumourigenic activity of

TGFβ likely includes additional biological processes, such as

autophagy (Suzuki et al., 2010). Autophagy, Greek for self-

devouring, is a catabolic process where cells degrade and

recycle their own macromolecules and organelles primarily via

lysosomes (Kaur and Debnath, 2015). Autophagy is essential for

recycling the building blocks of lipids, carbohydrates, and

proteins as well as eliminating invading pathogens, protein

aggregates, and damaged organelles (Bernard and Klionsky,

2013). Although autophagy is primarily facilitated by

lysosomes, which are acidic organelles that contain luminal

degradative hydrolases, other acidic vesicles, such as late

endosomes, contribute to autophagic degradation (Lawrence

and Zoncu, 2019).

The idea that TGFβ-dependent tumourigenesis may rely on

autophagy is supported by the extensive roles that autophagy

plays in tumour development, maintenance, and metastasis

(Mathew et al., 2007). Similar to TGFβ, the tumour regulatory

consequences of autophagy are context dependent, as autophagy

can result in either tumour suppression or promotion, depending

on the stage of tumour development (Kiyono et al., 2009; Glick

et al., 2010). In non-cancerous tissues, autophagy functions as a

homeostatic safeguard by removing protein aggregates, damaged

organelles, and other metabolic stressors, all of which protects

against neoplastic transformation (Mathew et al., 2009; Klionsky

et al., 2016). However, autophagy participates in the survival of

established tumour cells under conditions of hypoxia, oxidative

damage, metabolic stress, and starvation. Furthermore, cancer

cells with elevated rates of autophagy tend to grow more rapidly

and are prone to metastasize (Kiyono et al., 2009; Rebecca and

Amaravadi, 2016; Alizadeh et al., 2018). Autophagy has been

linked to EMT,MMP secretion, angiogenesis, evasion of immune

surveillance, promigratory cytokine secretion, anoikis resistance,

and stemness in tumour cells (Mowers et al., 2017). Autophagy

has also been implicated in resistance to chemotherapeutic agents

that target rapidly dividing cells, because it promotes tumour cell

dormancy (Table 1) (O’Donovan et al., 2011). Accordingly,

silencing of autophagic proteins can increase the efficacy of

chemotherapeutic agents (Zhang et al., 2015). Autophagy can

also improve survival of circulating tumour cells and

establishment of the pre-metastatic niche (Mowers et al.,

2017), as well as increase tumour cell survival after metastasis

(Pavlides et al., 2012; Rebecca and Amaravadi, 2016). Overall,

autophagy plays important roles in the regulation of EMT,

immune surveillance, and angiogenesis (Suzuki et al., 2010;

Tuloup-Minguez et al., 2013; Alizadeh et al., 2018; Wu et al.,

2018; Losier et al., 2019).

Mechanism of TGFβ-induced autophagy

Both Smad-dependent and -independent TGFβ signalling

can contribute to increases in the rate of autophagy (i.e.

autophagic flux). Smad-dependent signalling activates

transcription of genes essential to autophagy, such as

autophagy-related gene (ATG)5, ATG7, BECLIN1, and

DAPK1 (Figure 10A) (Suzuki et al., 2010; Ma et al., 2017).

TGFβ can also increase steady-state levels of beclin1,

autophagy-related protein (Atg)7, Atg5, uncoordinated 51-

like autophagy activating kinase 1 (ULK1), and microtubule-

associated protein light chain 3-II (LC3-II) (Xu et al., 2012;

Trelford and Guglielmo, 2020). Non-canonical TAK1-mediated

TGFβ signalling has also been implicated in regulation of

autophagy. Specifically, TGFβ induces phosphorylation and

activation of 5’ adenosine monophosphate-activated protein

kinase (AMPK) by TAK1 (Herrero-Martín et al., 2009), thereby

increasing autophagy as AMPK activates ULK1 and suppresses

TABLE 1 The tumour promoting properties of autophagy.

The tumour promoting properties of
autophagy

—

Primary tumour Secondary tumour

Increased EMT Tumour cell
dormancy

Increased Motility Drug resistance

Anoikis resistance Survival

Immunosuppression Establishing
metastatic

Drug resistance colonies

Secretes tumour —

promoting cytokines —

Cell adhesion turnover —

Epithelial-mesenchymal transition (EMT).
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mTOR (Mcalpine et al., 2013). mTOR antagonizes autophagy

through the addition of an inhibitory phosphate to ULK1,

which prevents the formation of the autophagy initiating

ULK1 complex (Makhov et al., 2014). TAK1 and JNK

signalling have also been linked to increased steady-state

levels of LC3 and beclin1. LC3 and beclin1 steady-state levels

are correlated to the number of autophagosomes, double

membrane vesicles that sequester cellular cargo prior to

fusing with lysosomes, and increased lysosomal degradation

(Figure 10B) (Shin et al., 2013). In support of this, TGFβ
increases autophagosomes production, LC3 co-localization

with autophagosomes or lysosomes, and autophagosome-

lysosome fusion in a variety of cell types (Figure 10C&D)

(Alizadeh et al., 2018; Trelford and Guglielmo, 2020).

In non-small cell lung cancer cells transfected with a

pMRX-IP-green fluorescent protein (GFP)-LC3-red

fluorescent protein (RFP)-LC3ΔGly construct, TGFβ
decreased the GFP/RFP ratio, which verified that TGFβ

FIGURE 10
The mechanism of TGFβ-dependent autophagy. (A) In Smad-dependent transforming growth factor-β (TGFβ) signalling described in Figure 2,
phosphorylated receptor Smads (R-Smads) enter the nucleus with Smad4 and upregulate genes essential to autophagy. Although R-Smad
transcription factors may function independently of Smad4, Smad4 knockdown blocked TGFβ-dependent autophagy. (B) In Smad-independent
TGFβ signalling described in Figure 4, polyubiquitination of tumour necrosis factor receptor-associated factor 6 (TRAF6) recruits TGFβ-
activated kinase 1 (TAK1) binding proteins two and 3 (TAB2/3), which leads to TAK1 phosphorylation. Phosphorylated TAK1 activates p38 mitogen-
activated protein kinase (p38) and c-Jun amino-terminal kinase (JNK) that phosphorylate several transcription factors that upregulate microtubule-
associated protein light chain 3B (LC3B) and beclin1 (BECN1) expression, respectively. TAK1 also phosphorylates 5’ adenosine monophosphate-
activated protein kinase (AMPK), which is an inhibitor of an autophagy suppressor called mechanistic target of rapamycin (mTOR). mTOR suppresses
autophagy by adding an inhibitory phosphate to uncoordinated-51-like autophagy activating protein kinase 1 (ULK1). LC3B, BECN1, and
ULK1 promote autophagosome assembly, which may increase lysosomal-dependent degradation. (C) Both Smad-dependent and -independent
TGFβ signalling induces macroautophagy. Macroautophagy is initiated when complexes containing ULK1 phosphorylate beclin1. Beclin1 is then
primed to form protein complexes that are recruited to the rough endoplasmic reticulum membrane to nucleate phagophores. As the phagophore
membranes are elongated with lipids and LC3B, cargo proteins, and organelles, such as mitochondria, are sequestered within autophagosomes.
Once phagophore assembly is complete, it forms a mature double membrane vesicle called an autophagosomes. Autophagosomes fuse with
lysosomes to generate autolysosomes. The autophagosomes and cargo are degraded by lysosomal proteases. (D) Schematic illustrating that in the
absence of TGFβ there are few autophagosomes and autolysosomes. In the presence of TGFβ, the number of autophagosomes and autolysosomes
is increased.
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upregulated autophagic flux (Trelford and Guglielmo, 2020).

However, the TGFβ-dependent increase in autophagic flux

was attenuated by Smad4 knockdown or TAK1/TRAF6/

p38 MAPK pathway disruption (Trelford and Di

Guglielmo, 2021). In the same cell line system, TGFβ
increased the proportion of phosphorylated ULK1 mediated

by AMPK and further investigation showed that

ULK1 inhibition blocked TGFβ-dependent autophagy

(Trelford and Di Guglielmo, 2021; Trelford and Guglielmo,

2021). In summary, Smad-dependent and -independent TGFβ
signalling activate autophagy in a ULK1-dependent manner

(Trelford and Di Guglielmo, 2021).

The activation of autophagy through TGFβ
augments tumourigenesis

Autophagy and TGFβ signalling are reciprocally regulated. In
fact, autophagy inhibition blocks Smad-dependent TGFβ
signalling by impairing TGFβ receptor endocytosis (Trelford

and Di Guglielmo, 2022). Also, siRNA targeting of ATGs

disrupt TGFβ-induced apoptosis and cell cycle arrest (Irimie

et al., 2015). TGFβ-induced autophagy has been implicated in

EMT, angiogenesis, and immune suppression (Figure 11A). For

instance, TGFβ signalling pathways that activate autophagy

regulate pro-tumourigenic TGFβ outcomes. Indeed, disrupting

FIGURE 11
The interplay between autophagy and TGFβ signalling in tumourigenesis. (A) A schematic summarizing the effect of TGFβ-induced autophagy
on EMT, immune surveillance, angiogenesis, andmetastasis. Epithelial cells acquiremutations to the TGFβ pathway until they become cancerous and
proliferate rapidly to form the primary tumour. TGFβ-induced autophagy protects tumour cells from the innate immune system (macrophages,
dendritic cells, neutrophils, Natural Killer cells) and cells of the adaptive immune system (Naive T-cell, Cytotoxic T-cells, Helper T-cells, B-cells,
and plasma cells). Furthermore, TGFβ and autophagy can prevent activation of immune cells that reside in lymph nodes. TGFβ-induced autophagy
promotes the release of vascular endothelial growth factor (VEGF) that stimulate angiogenesis. Over time, cells acquire a mesenchymal-like
phenotype and release matrix metalloproteinases (MMPs) to breakdown the basal lamina and intravasate into the bloodstream. TGFβ-induced
autophagy promotes intravasation because it protects cells that detach from the basal lamina against anoikis-dependent cell death. The
mesenchymal-like tumour cells extravasate from the blood vessel at a distant site from the primary tumour. Autophagy is critical for promoting
phenotypes to help tumour cells adapt to new environments and establish secondary tumour sites. (B) As the concentration of transforming growth
factor-β (TGFβ) increases, the immune response is inhibited, whereas angiogenesis, epithelial-mesenchymal transition (EMT), and autophagy are
activated.
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Smad4 and TAK1/TRAF6/p38 MAPK signalling pathways

blocked TGFβ-dependent E-Cadherin to N-Cadherin shift and

stress fiber formation (Trelford and Di Guglielmo, 2022).

Attenuation of TGFβ-induced migration has also been

reported following inhibition of autophagy (Alizadeh et al.,

2018). In pancreatic ductal adenocarcinoma cells, autophagy is

required for TGFβ-induced migration, proliferation, and

invasion (He et al., 2019; Li et al., 2021). TGFβ-induced
autophagy also decreases the expression of proinflammatory

cytokines in macrophages (Pokharel et al., 2016).

Furthermore, genomic analysis of colon cancer revealed that

autophagy upregulates immune checkpoint molecules that

dampen the immune response, whereas EMT, TGFβ, and

angiogenic pathways were enhanced (Zhu et al., 2020). In vivo

xenograft models of breast cancer demonstrate that TGFβ-
induced autophagy protected fibroblasts from cell death-

mediated by nutrient starvation and increased CAF

phenotypes (Liu et al., 2016). Although the research of the

effect of TGFβ-induced autophagy in tumourigenesis is scarce,

data shows that as TGFβ signalling and autophagy are

upregulated, angiogenesis and EMT increase whereas the

immune response is dampened (Figure 11B) (Bustos et al., 2020).

Autophagy cargo receptors bridge
autophagy and TGFβ signalling

Although there are several catabolic processes that regulate

protein quality control in mammalian cells, the UPP and

autophagy/lysosome pathway are the two central processes

(Wojcik, 2013). Due to difference in substrate selectivity,

preparation for degradation, and degradative organelles, the

UPP and autophagy do not necessarily compete with one

another. Instead, their relationship may be described as

compensatory. For instance, when autophagy or the UPP are

disrupted, the other major route of protein degradation increases

protein turnover to compensate for the disruption (Wojcik,

2013). One explanation is that both lysosome and

proteosome-dependent degradation rely on ubiquitination to

identify proteins destined for degradation (Lecker et al., 2006;

Pankiv et al., 2007; Kirkin et al., 2009). Also, both autophagy and

the UPP depend on cargo adaptor proteins such as protein 62/

sequestosome 1 (p62/SQSTM1) to deliver substrate proteins

(Cohen-Kaplan et al., 2016). Currently, the mechanism of

how p62/SQSTM1 decides which pathway receives the

ubiquitinated protein remains unknown. Thus far, what has

been shown is that p62/SQSTM1 is an autophagy cargo

receptor protein that functions in autophagic degradation,

regulates EMT, binds to ubiquitin, and is important for TGFβ
signalling (Puissant et al., 2012a; Moscat and Diaz-Meco, 2012;

Bitto et al., 2014).

P62/SQSTM1 is composed of several domains including a

phox bem1 (PB1) domain, ZZ-type zinc finger (ZZ) domain,

TRAF binding (TB) domain, LC3-interacting region (LIR), and

ubiquitin-associated (UBA) domain. The UBA domain allows

p62/SQSTM1 to functions as a ubiquitin receptor protein that

targets ubiquitinated proteins to proteasomes (Puissant et al.,

2012b; Cohen-Kaplan et al., 2016). In addition to regulating

autophagy and the proteasome, p62/SQSTM1 can sequester

several downstream TGFβ signalling molecules, including

p38 MAPK, TRAF6, and aPKC using the ZZ, TB, and

PB1 domains, respectively. These proteins have been

implicated in modulating autophagy induction and TGFβ
receptor trafficking (Sanz et al., 1999). Furthermore, using the

PB1 domain, p62/SQSTM1 self-oligomerizes to sequester

intracellular cargo during cell stress or disruption to protein

turnover pathways (Lippai and Low, 2014). Also, between the ZZ

and TB domains, there is a region of p62/SQSTM1 that interacts

with Raptor, a component of mechanistic target of rapamycin

complex 1, which is an additional link between p62/SQSTM1 and

autophagy (Figure 12).

An image based genome wide small interfering RNA screen

in mammalian cells identified Smurf1 as a mediator of selective

autophagy (Orvedahl et al., 2011). Since we know that

Smurf1 also mediates the UPP, this suggests that TGFβ-
specific signalling modulators also have the potential to

regulate protein degradation pathways. Therefore, there is

evidence of crosstalk between TGFβ signal transduction

pathways, autophagy, and the UPP. Given that autophagy,

proteasomes, and p62/SQSTM1 regulate TGFβ-dependent
EMT (Bertrand et al., 2015; Moon et al., 2017; Alizadeh

et al., 2018) and are altered by TGFβ treatment (Bonni

et al., 2001; Liang et al., 2020), proteins such as p62/

SQSTM1 may be important to understanding the crosstalk

between protein degradation pathways and TGFβ signalling.

Although the role of p62/SQSTM1 in tumourigenesis is context

dependent, it may be an important pharmacological target for

regulating TGFβ signalling transduction in cancer (Yuan et al.,

2013).

Targeting TGFβ signalling in cancer
therapy

Due to the abnormal TGFβ signalling in tumour cells and

elevated TGFβ ligand concentrations in tumour

microenvironments, modern adjuvant therapies aim to

antagonize TGFβ signalling (Yingling et al., 2004). Although

TGFβ antagonists are ineffective at treating tumourigenesis as

monotherapies, antagonizing TGFβ as part of combination

therapies is promising (Teixeira et al., 2020). Current

strategies employed to mitigate pro-tumourigenic TGFβ
signalling have been extensively reviewed elsewhere (Sheen

et al., 2013; Kim et al., 2021). As such, this review will

summarize therapeutic strategies undergoing clinical

investigations.
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FIGURE 12
The structure of p62/SQSTM1. From the amino (N)-terminal to carboxyl (C)-terminal, p62/SQSTM1 is comprised of the phox bem1 (PB1), ZZ-
type zinc finger (ZZ), tumour necrosis factor receptor-associated factor (TRAF) binding (TB), microtubule-associated protein light chain 3 (LC3)-
interacting region (LIR), and ubiquitin-associated (UBA) domains. The PB1 domain allows protein 62/sequestosome 1 (p62/SQSTM1) to interact with
atypical protein kinase C (aPKC) and self-oligomerize. The ZZ and TB domain have been shown to interact with downstream transforming
growth factor-β (TGFβ) signalling molecules, such as p38 mitogen-activated protein kinase (MAPK) and TRAF6, respectively. Between the ZZ and TB
domains, p62/SQSTM1 associates with Raptor, which is a component of mechanistic target of rapamycin complex 1 (mTORC1). The LIR binds to
LC3 and is necessary to facilitate selective autophagy. The UBA domain recognizes ubiquitin prior to delivering ubiquitin-conjugated proteins to
proteasomes or lysosomes.

FIGURE 13
TGFβ signalling targeted therapies. (A) Trabedersen (AP12009), AP11014, and AP15012 are antisense oligodeoxynucleotides that decrease TGFB
expression via mRNA targeting. (B) Fresolimumab and ABBV-151 are monoclonal antibodies against TGFβ ligands that block TGFβ from binding to
TGFβ receptor type II (TGFβRII). AVID200 and M7824 are ligand traps that compete with TGFβRII for TGFβ ligands. Galunisertib and Vactosertib are
TGFβ receptor type I (TGFβRI) kinase antagonists. (C) Chloroquine is an autophagy inhibitor that blocks autophagosomes and endosomes from
fusing with lysosomes as well as lysosomal-dependent degradation. Chloroquine impedes TGFβ receptor internalization and trafficking through
early endosome, late endosome, and lysosome membrane compartments. Chloroquine also decreases receptor regulated Smad (R-Smad)
phosphorylation, R-Smad nuclear translocation, and TGFβ-dependent epithelial-mesenchymal transition (EMT).
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Modern adjuvant therapies antagonize pro-tumourigenic

TGFβ signalling by targeting TGFβ ligand production, TGFβ-
TGFβ receptor interactions, and TGFβ receptor kinase activity

(Kim et al., 2021). Antisense oligodeoxynucleotides, such as

Trabedersen (AP12009), AP11014, and AP15012 attenuate the

mRNA expression of TGFβ2, TGFβ1, and TGFβ1, respectively.

Although AP11014 and AP15012 are in pre-clinical development

(Sheen et al., 2013), Trabedersen has proven to be safe and

effective and is undergoing phase III clinical trials (Bogdahn

et al., 2011). TGFβ-TGFβ receptor interactions are

pharmacologically blocked using ligand traps or neutralizing

antibodies against TGFβ ligands or TGFβ receptors. AVID200,

a TGFβ trap comprised of TGFβRII ectodomains fused to human

fragment crystallizable domains, has demonstrated high affinity

for TGFβ1 and TGFβ3 in clinical trials (Yap et al., 2020).

Furthermore, the success of pre-clinical studies of soluble

TGFβRII and betaglycan receptors verify that ligand trapping

is an effective approach at antagonizing TGFβ signalling in vivo

(Bandyopadhyay et al., 2002). As for neutralizing antibodies,

Fresolimumab, a pan TGFβ human monoclonal antibody, is in

clinical trials for malignant melanoma (Morris et al., 2014).

TGFβRI kinase inhibitors, such as Vactosertib and

Galunisertib, are safe and effective antagonists of TGFβ
signalling and clinical trials assessing their potential in

combination therapies are in progress (Figure 13) (Herbertz

et al., 2015; Song et al., 2019).

Given that TGFβ protects tumour cells from the immune

system and cancer cells stimulate immune checkpoint

inhibitory receptors, anti-tumourigenic immunotherapies

are being developed to stimulate immune-mediated

destruction of tumour cells (Bai et al., 2019). As such,

numerous clinical trials are assessing the efficacy of

combining immune checkpoint inhibitors alongside TGFβ
signalling antagonists (Maruyama et al., 2022). For

instance, ABBV-151 and Budigalimab (formerly known as

ABBV-181), anti-TGFβ1 and anti-programmed cell death

receptor one antibodies, respectively, have begun phase I

clinical trials for advanced solid tumours (Powderly et al.,

2020). Likewise, the safety and efficacy of Vactosertib or

Galunisertib in conjunction with Durvalumab, a

monoclonal programed cell death ligand 1 (PD-L1)

antibody, are under investigation in lung, pancreatic,

colorectal, and gastric cancer clinical trials (Bai et al.,

2019). Finally, M7824, a bifunctional fusion protein

containing an extracellular TGFβRII domain and antibody

against PD-L1, localizes to tumour microenvironments,

sequesters TGFβ ligands, and stimulates T-cell immune

activity (Figure 13) (Knudson et al., 2018; Paz-Ares et al.,

2018; Lind et al., 2020).

Although the dual blockage of immune checkpoint

inhibitors and TGFβ signalling is promising, several

obstacles with respect to antagonizing TGFβ signalling in

tumourigenesis remain. For instance, targeting TGFβ

signalling has been successful in vitro and in pre-clinical

studies; however, these outcomes fail to translate in clinical

trials (Teixeira et al., 2020). Limited understanding of the

interplay between the numerous proteins involved in TGFβ
synthesis, activation, signalling, and signalling crosstalk are

among the shortcoming of utilizing modern TGFβ inhibitors

in adjuvant combination therapies (Kim et al., 2021). Indeed,

the combination of the ubiquitous expression of TGFβ ligands,
lack of dosing regimens, and its dual role in tumourigenesis

pose a challenge to utilizing TGFβ antagonists in cancer

therapy (Sheen et al., 2013).

To date, few autophagy inhibitors have been approved for

clinical trials for anticancer therapy. Among those approved,

diprotic weak bases, such as chloroquine and

hydroxychloroquine, and the proton pump inhibitor,

pantoprazole, antagonize autophagy by limiting endosomal

and/or lysosomal acidification, which blunts lysosomal fusion

and lysosomal hydrolase activity (Beil et al., 1992; Halcrow et al.,

2021). However, anti-tumourigenic properties of chloroquine,

hydroxychloroquine, and pantoprazole rely on both autophagy

inhibition and decreasing glycolysis, lactate production, and

cytosolic pH (Halcrow et al., 2021). Despite there being no

clinical trials investigating autophagy inhibitors in

combination with TGFβ signalling antagonist, in vitro studies

suggest that chloroquine can disrupt TGFβ signalling (Wu et al.,

2018). In Mv1Lu cells, chloroquine antagonized TGFβRII
internalization and decreased co-localization with EEA1, Rab7,

and LAMP1-positive membrane compartments. Furthermore,

R-Smad phosphorylation, R-Smad nuclear translocation, and

mesenchymal phenotypes in NSCLC cells treated with

TGFβ1 were suppressed by chloroquine (Figure 13) (Trelford

and Di Guglielmo, 2022). As such, autophagy inhibitors may be

applicable in targeting tumourigenesis driven by aberrant TGFβ
signalling without the need to utilize a direct inhibitor of the

TGFβ pathway.

Concluding remarks

This review highlights TGFβ signalling pathways that

contribute to homeostasis and tumour biology. TGFβ
enhances tumourigenesis by promoting proliferation,

immune suppression, angiogenesis, lymphangiogenesis,

EMT, EndMT, and autophagy. Components of the TGFβ
pathway pharmaceutically targeted in clinical trials are

limited to TGFβ synthesis, TGFβ-TGFβ receptor

interactions, and TGFβRI kinase activity. Although some

combination therapies may improve patient prognosis, the

efficacy of TGFβ signalling antagonists are underwhelming.

Based on the existing literature, there is an abundance of

studies exploring TGFβ-dependent EMT, angiogenesis, and

immune suppression. Even though there is still much to be

learned about these processes and how they interact with each
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other to promote tumourigenesis, studies exploring the impact

that TGFβ has on other tumour promoting biological

processes are scarce. Indeed, further work is needed to

explore the relationship between TGFβ and autophagy as

well as other processes involved with protein quality

control, which may yield new therapeutic approaches in

targeting TGFβ-dependent tumourigenesis.
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