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The Mycobacterium tuberculosis genome harbours nine toxin-antitoxin (TA)

systems of the mazEF family. These consist of two proteins, a toxin and an

antitoxin, encoded in an operon. While the toxin has a conserved fold, the

antitoxins are structurally diverse and the toxin binding region is typically

intrinsically disordered before binding. We describe high throughput

methodology for accurate mapping of interfacial residues and apply it to three

MazEF complexes. The method involves screening one partner protein against a

panel of chemically masked single cysteine mutants of its interacting partner,

displayed on the surface of yeast cells. Such libraries have much lower diversity

than those generated by saturationmutagenesis, simplifying library generation and

data analysis. Further, because of the steric bulk of themasking reagent, labeling of

virtually all exposed epitope residues should result in loss of binding, and buried

residues are inaccessible to the labeling reagent. The binding residues are

deciphered by probing the loss of binding to the labeled cognate partner by

flow cytometry. Using thismethodology, we have identified the interfacial residues

for MazEF3, MazEF6 and MazEF9 TA systems of M. tuberculosis. In the case of

MazEF9, where a crystal structure was available, there was excellent agreement

between our predictions and the crystal structure, superior to those with

AlphaFold2. We also report detailed biophysical characterization of the

MazEF3 and MazEF9 TA systems and measured the relative affinities between

cognate and non-cognate toxin–antitoxin partners in order to probe possible

cross-talk between these systems.
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Introduction

There are several methods currently available to determine

the structures of proteins and protein:protein complexes such

as X ray crystallography, nuclear magnetic resonance (NMR)

spectroscopy and cryo-electron microscopy (cryo-EM) (Shi,

2014; Nogales and Scheres, 2015; Kay, 2016; Earl et al., 2017;

Jiang and Kalodimos, 2017). While these methods generate a

wealth of information, they are time consuming, require a high

concentration of purified protein, and are difficult to

parallelize. Several in silico methods, including, homology

modelling, threading, ab initio modelling and machine

learning based structure prediction, have been developed to

reduce and complement such laborious tasks (Floudas, 2007;

Dorn et al., 2014). In the case of homology modelling, there is

a threshold of sequence similarity that should be crossed

(Dorn et al., 2014), and in the case of threading, it is often

difficult to find the best template for a protein with

unknown structure, and predict structures for a protein

with low sequence identity to the templates (Smith et al.,

1997). Ab initio modelling is limited to smaller, monomeric

proteins, which are typically ~100 residues or less (Faver et al.,

2011).

Recently, sequence based co-evolution approaches (Göbel

et al., 1994; Shindyalov et al., 1994; Pollock et al., 1999) have

been used to infer protein structural details (Marks et al., 2012;

Sahoo et al., 2015). During the course of evolution, certain

specific interaction that influence the structure and function of

the protein are maintained either by conservation of these

interacting pairs of residues or by correlated mutations at

these positions (Godzik and Sander, 1989; Melero et al., 2014).

Several methodologies have been developed to identify co-

evolving residues within the protein as well as between

interacting pairs of proteins and this information act as

constraints for model generation of proteins in isolation as

well as for modelling of the tertiary structures of protein

complexes (Morcos et al., 2011; Kamisetty et al., 2013; Hopf

et al., 2014, 2019; Anishchenko et al., 2017; Várnai et al., 2017;

Schmidt and Hamacher, 2018; Szurmant and Weigt, 2018).

The increase in the number of available protein sequences

make this methodology a very convenient tool. However, the

effectiveness of this method depends on the occurrence of a

large number of homologous sequences, which thereby limits

its utility (Kamisetty et al., 2013). Recently machine learning

based methods have yielded very promising results (Floudas,

2007; Dorn et al., 2014; Bertoni et al., 2017; Jumper et al., 2021;

Tunyasuvunakool et al., 2021; Mirdita et al., 2022). However,

the prediction of structures of hetero-oligomeric

macromolecular structures, in the absence of structural and

sequence based homologs remains challenging (Jumper et al.,

2021; Tunyasuvunakool et al., 2021; Mirdita et al., 2022).

Previously, we developed a saturation suppressor

mutagenesis based methodology to identify interacting

residues in a protein and successfully used this to identify the

correct structure of the membrane protein, dgkA (Sahoo et al.,

2015). The methodology can be further extended to find

interacting residues in a protein complex, first through the

identification of interacting residues in the two proteins,

subsequently leading to the identification of interacting pairs.

There are several knownmethods tomap interacting residues at a

protein:protein interface. One such methodology to map

functional binding site residues is alanine scanning

mutagenesis (Cunningham and Wells, 1989; Wells, 1991;

Weiss et al., 2000). A disadvantage of this method is that

mutating a residue to alanine does not always inhibit the

binding of the cognate partner. Another commonly used

methodology is the chemical modification of protein

molecules by covalent conjugation (Paus and Winter 2006;

Ivanenkov et al., 2010). A common approach to such

modification is solvent-accessible cysteine labeling using thiol-

reactive dyes (Frillingos et al., 1998; Javitch et al., 2002). This

method affords the site-specific labeling of a protein at a unique

engineered (or native) surface cysteine. Maleimide is one of the

most common reactive groups for cysteine coupling as the

coupling reaction is highly specific and efficient.

In the present study, we outline a rapid and efficient method

for accurate mapping of protein:protein interactions in the

MazEF3, MazEF6 and MazEF9 TA systems of Mycobacterium

tuberculosis. To identify the interacting residues, we used our

previously described, cysteine scanning mutagenesis coupled

with fluorescence-activated cell sorting (FACS) methodology

(Najar et al., 2017, 2018). This method involves screening a

panel of purified cognate proteins or peptides (toxin/antitoxin)

against a panel of chemically masked single cysteine mutants of

the interacting partner displayed on the surface of yeast cells.

Such libraries have much lower diversity than those generated by

saturation mutagenesis, simplifying library generation and data

analysis. Further, because of the steric bulk of the masking

reagent, labeling of virtually all exposed epitope residues

should result in loss of binding and buried residues should be

inaccessible to the labeling reagent. The binding residues are

deciphered by probing the loss of binding of labeled surface

displayed protein with its cognate partner by flow cytometry. We

have sorted all the libraries together in a pooled format using 1D

sort. We also validated our deep sequencing results with a few

cysteine mutants both using yeast surface display (YSD) and in

vivo inMycobacterium smegmatis. The periodicity of mutational

sensitivity in the antitoxins was analysed to infer the locations of

helical regions in the bound antitoxin. Further, we compared the

results obtained from experimental studies with homology

modelling and models generated from AlphaFold2 as well as

with the recently solved crystal structure of the MazEF9 complex.

We observe that for these hetero-oligomeric TA complexes,

AlphaFold2 fails to provide reliable models. Our study

provides inferences about the putative interacting residues in

both globular toxins and intrinsically disordered antitoxins.
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Thus, our methodology can be extended to other systems where

complex structures are either not available or are poorly

predicted by the existing modelling programs.

We have also performed detailed functional and biochemical

characterisation of theMazEF3 andMazEF9 TA systems fromM.

tuberculosis. In earlier studies, it was shown that growth of M.

bovis BCG and M. tuberculosis were inhibited in a bacteriostatic

manner by the inducible expression of the MazF3, F6, and

F9 toxins (Tiwari et al., 2015). Here, using nano-differential

scanning fluorimetry (nano-DSF) we have measured the relative

stabilities of MazE antitoxins, MazF toxins and MazEF

complexes. In addition, size exclusion chromatography

coupled with multi angle light scattering (SEC-MALS) was

performed to characterize the oligomeric status of the free

toxins, antitoxins and the TA complexes. We performed YSD

and microscale thermophoresis (MST) to determine the relative

binding affinities of the toxin with its cognate full-length

antitoxin, a peptide containing the C-terminal region of the

antitoxin, as well as with the non-cognate full-length

antitoxins or peptides containing the C-terminal regions of

the antitoxins. The studies reveal significant cross-talk

between various members of these TA systems.

Materials and methods

Plasmids and host strains

The mazE and mazF genes were cloned individually under

the control of the T7 promoter in the pET-Duet-1 vector for co-

expression of the toxin and antitoxin to isolate the toxin-

antitoxin (TA) complexes. To purify the individual toxins and

antitoxins of the mazEF TA systems, the mazE and mazF genes

were cloned individually in the pET-15b vector.

Escherichia coli host strain BL21 (DE3) pLysE was used for

expressing the proteins (complexes as well as the toxins and the

antitoxins). The Saccharomyces cerevisiae strain EBY100 was

used for yeast surface display to monitor the binding and

expression of the displayed proteins cloned in the yeast

surface display vector pPNLS (Chao et al., 2006).

Cloning of the wild-type and cysteine
mutants of mazE and mazF genes

For cloning of the wild-type (WT) genes, the codon

optimized genes of each TA system were PCR amplified from

the pET Duet-1 vector. PCR amplified products were gel purified

and in vitro recombined using Gibson assembly with either pET-

15b vector for protein purification, or pPNLS vector for YSD

(Gibson et al., 2009). Recombined products were transformed

into E. coli and plasmid identities were confirmed by Sanger

sequencing. The base pair and amino acid sequences of the

proteins used in the study along with their molar extinction

coefficients are provided as supplementary text.

The WTmazF6 gene cloned in pET-15b vector was used as a

template to introduce the cysteine mutants by PCR as described

earlier (Chattopadhyay et al., 2022a) and the amplified products

were then PCR purified and in vitro recombined using Gibson

assembly with either pET-15b or pPNLS. Selected individual

cysteine mutants of MazE3, MazE9, MazF9 cloned in pETCON

vectors for YSD were synthesised by GenScript (United States).

Cysteine mutagenesis of mazE3 and
mazF3

The MazE3 protein has a cysteine residue at position 98 in

the WT sequence and MazF3 protein has two cysteine residues at

positions 62 and 71 in the WT sequence. To find whether these

are involved in the interaction with MazF3 and

MazE3 respectively, the cysteine residues were mutated to

alanine. While serine is structurally more similar to cysteine,

it is also appreciably more hydrophilic. We therefore replaced

WT cysteine residues with alanine instead of serine to prevent the

formation of any additional non-covalent interaction with

surrounding residues, such as hydrogen bonding through the

side chain hydroxyl of serine. The mutations were introduced by

three fragment recombination using Gibson assembly (Gibson

et al., 2009).

Expression and purification of the mazEF
TA system proteins

The toxins, antitoxins and complexes were purified as

described previously (Sharma et al., 2020). The MazEF3 and

MazEF9 TA complexes were co-purified, as the toxins had an

N-terminal 6x-His tag. The proteins MazE3, MazF3, MazE9 and

MazF9 were purified from the pET-15b vector. All the

individually expressed toxins and antitoxins have an

N-terminal 6x-His tag and a C-terminal 3x-FLAG tag. Ni-

NTA affinity purification chromatography was used for

purification of complexes as well as individual toxins and

antitoxins. Briefly, cultures were grown in terrific broth (TB)

media, induced with 1.0 mM IPTG at an OD of 0.6 for 5 h at 37°C

for MazE-MazF (His)6 complex expression, for 16 h at 20°C for

the (His)6MazE (FLAG)3 antitoxin expression, and for 7 h at

20°C for the (His)6MazF(FLAG)3 toxin expression. Cells were

harvested by centrifugation (1800g, 20 min, 4°C). The pellet was

resuspended in resuspension buffer pH 8.0 (10 mM HEPES,

100 mM NaCl, 100 mM arginine, 10% glycerol, 5 mM β-ME

containing Protease Inhibitor Cocktail Tablet from Roche) and

sonicated, followed by centrifugation at 25,000g, 30min, 4°C. The

His-tagged proteins as well as the complexes were trapped on Ni-

NTA resin by mixing 2 ml of the Ni Sepharose 6 Fast Flow (GE
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Healthcare) with the supernatant, at 4°C for 4 h. The unbound

fraction was removed, and the resin was washed with two column

volumes of the wash buffer (10 mM HEPES, 100 mM NaCl,

100 mM arginine, 10% glycerol, 5 mM β-ME, 50 mM imidazole,

pH 8.0). The complex was then eluted with elution buffer

(10 mM HEPES, 100 mM NaCl, 100 mM arginine, 10%

glycerol, 5 mM β-ME, gradient of imidazole (100–900 mM),

pH 8.0) in 1 ml fractions. The eluted fractions were subjected

to 15% Tricine SDS-PAGE, and the protein concentration was

determined by absorbance (A280) measurements, using their

respective molar extinction coefficients. All the proteins were

stored in storage buffer (10 mMHEPES, 100 mMNaCl, 100 mM

arginine, 10% glycerol, 5 mM β-ME, 500 mM imidazole, pH 8.0,

additional cOmplete™ Protease Inhibitor Cocktail Roche for the

antitoxins) at -80°C after concentration. The buffer conditions

were optimised for the purification of allM. tuberculosis proteins.

Removing any of the buffer components have been associated

with formation of visible aggregates as discussed previously

(Chattopadhyay et al., 2022b). Further, a C-terminal MazE3

peptide (residues 72–106), MazE9 peptide (residues 43–76),

synthesized from GeneScript was also used in the study.

Thermal stability measurement using
nanoDSF

Thermal stabilities of MazEF complexes, MazE antitoxins

and MazF toxins were measured using nanoDSF (Prometheus

NT.48) as described previously (Chattopadhyay and

Varadarajan, 2019; Chattopadhyay et al., 2022a). Thermal

denaturation experiments were carried out at 10 µM protein

concentration in the elution buffer for free toxin and antitoxin, as

well as TA complex and the normalised first derivative is plotted

as a function of temperature as described previously

(Chattopadhyay and Varadarajan, 2019; Chattopadhyay et al.,

2022a).

Oligomeric state analysis of the free
toxins, antitoxins and TA complexes by
size exclusion chromatography coupled
with multi angle light scattering (SEC-
MALS)

The MazEF complexes, MazE antitoxins and MazF toxins

were eluted on a Superdex-200 analytical gel filtration column

(GE Healthcare) equilibrated in the elution buffer (10 mM

HEPES, 100 mM NaCl, 100 mM arginine, 500 mM imidazole,

pH 8.0) and their profiles were monitored with in-line UV

(SHIMADZU), MALS (mini DAWN TREOS, Wyatt

Technology Corporation) and refractive index (RI) detectors

(WATERS 24614) for molecular weight, aggregation and

oligomerization analysis at a flow rate of 500 μl/min. For each

measurement, 100 µg of each of the proteins were injected. UV,

MALS and RI data were collected at room temperature and

analysed using ASTRA™ software (Wyatt Technology) (Sharma

et al., 2020).

Binding studies of MazF toxins to full
length MazE antitoxins and C-terminal
peptides by microScale
thermophoresis (MST)

The purified toxinsMazF3 andMazF9 were buffer exchanged

with 10 mM HEPES, pH 8.0 to remove the primary amines

(present in the storage buffer). The toxins were then labeled using

the Monolith™ Protein Labeling Kit RED-NHS (NanoTemper

Technologies) according to the manufacturer’s instructions. The

labeled toxins, MazF3 and MazF9, were used as targets at a

concentration of 200 nM each, and were titrated with different

concentrations (ranging from 1 pM to 55 μM) of unlabeled

antitoxins (full-length and C-terminal peptide) MazE3 and

MazE9 respectively. The measurements were done at LED/

excitation power setting 20–80%, and at two MST power

settings of medium and high. The data was analysed using

MO. Affinity Analysis software (version 2.2.5, NanoTemper

Technologies) at different standard MST-off times (Wienken

et al., 2010; Jerabek-Willemsen et al., 2011; Seidel et al., 2012). To

check the presence of any crosstalk between different members of

M. tuberculosis toxins and antitoxins, the binding of the labeled

MazF9 toxin was also probed with different concentrations of the

unlabeled full-length antitoxin MazE6 and the peptide

containing the C-terminal region of the antitoxin MazE3

(ranging from 1 pM to 5 μM).

MSA and conservation score calculation of
M. tuberculosis Maz toxins and antitoxins

The multiple sequence alignment of M. tuberculosis toxins

MazF1-MazF9 and antitoxins MazE1-MazE9 were carried out

using Clustal Omega (Sievers et al., 2011). TheMSA generated by

Clustal Omega was further used as an input to calculate the

evolutionary conservation score from the online server ConSurf

(Ashkenazy et al., 2016).

M. tuberculosis MazEF complex structure
prediction using AlphaFold2

AlphaFold2, a neural network-based deep learning method

(Jumper et al., 2021), was used for the TA complex structure

prediction. For prediction of complex structures, the input

sequence was provided with the known stoichiometry T2A2T2

and the AlphaFold2-multimer-v2 model type was used. The
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mmseq2 mode was used for multiple sequence alignment (MSA)

and Amber force field was further used for relaxation of the

predicted models. The predictions were run on ColabFold

(Mirdita et al., 2022).

Modelling of MazEF3, MazEF6 and
MazEF9 complexes and identification of
putative interacting residues

Models previously generated for MazEF3, MazEF6 and

MazEF9 complexes using homology modelling were used in

this study (Tandon et al., 2020). The template for homology

modelling was identified from already available structures of

MazE andMazF from other organisms based on identity with the

query protein (Supplementary Table S1) (Kamada et al., 2003;

Simanshu et al., 2013). Additionally, sequence homologs were

extracted using BLASTP and aligned with each other, guided by

the structure of the template. Apart from homology modelling

based on the best template, the query toxins and antitoxins were

also aligned with their homologs to find conserved residues and

then compared with the available crystal structure data to

increase the confidence of predicted toxin/antitoxin interfacial

residues (Tandon et al., 2020). The interacting residues of the

toxin and antitoxin were identified from the surface accessibility

calculations of the residues of the toxin and antitoxin in both the

free and bound forms, using NACCESS (Hubbard and Thornton,

1993). Parallelly we overlaid the homologymodelledMazF toxins

with the template MazF toxin from Bacillus subtilis (PDB ID:

4ME7), the residues of modelled toxin which were closest (≤5Å)
to the interacting residues of the template MazF toxin were

predicted to be interacting. All putative interacting residues

predicted from either procedure, were mutated to cysteine

using inverse PCR (Jain and Varadarajan, 2014). For the

antitoxins, we individually mutated each of the last 35 C-

terminal residues of each toxin to cysteine since in most

available TA complex structures, it is largely the C-terminal

half of the antitoxin that is involved in toxin binding. This was

later coupled with YSD and chemical labeling (Najar et al., 2017)

for the identification of the interacting residues.

Yeast surface display of MazE antitoxins
and MazF toxins

MazE antitoxins and MazF toxins were expressed on the

yeast cell surface and the expression was quantitated as described

earlier (Chattopadhyay et al., 2022b). For binding, a slightly

modified protocol was used, where 10 µM of the cognate partner,

having a 3X FLAG tag was incubated with the yeast cells, and the

bound protein amount was detected by the anti FLAG antibody

(1:300 dilution) and rabbit anti mouse conjugated to Alexa fluor

633 (1:1,600 dilution) as described earlier (Ahmed et al., 2022a).

Inverse PCR with adjacent non-
overlapping primers to generate single
cysteine mutants

An inverse PCR based approach with two non-overlapping

but adjacent primers, complementary to different strands of

the template was used to generate the single cysteine mutants

(Jain and Varadarajan, 2014). PCR amplified products at all

the positions were pooled, digested by DpnI overnight,

followed by gel extraction. The gel extracted products were

then phosphorylated and ligated to generate a circular

product. The ligation was confirmed by agarose gel

electrophoresis. Ligated products were purified by passing

through a column and transformed in high efficiency

bacterial electrocompetent cells. The pooled library of each

maz gene was transformed in EBY100 cells and eight colonies

from each library were sent for sequencing. In all the libraries,

at least seven different cysteine mutants were found which

indicated a good diversity.

Sorting and deep sequencing of cysteine
library for the identification of interacting
residues

The yeast cells containing libraries were grown and

induced for protein expression as explained earlier (Ahmed

et al., 2022a). The ranges of dissociation constants of the

labeled cysteine libraries of toxin and antitoxin for binding

to their respective cognate partners were measured using yeast

surface display. The cells containing cysteine libraries were

incubated with 5 mM EZ-Link™ Maleimide-PEG2-Biotin for

1 h at 4°C with shaking, to mask the cysteine residue (107 cells

in 500 μl, 5 mM EZ-Link™ Maleimide-PEG2-Biotin). The

cells were washed thrice with 200 µl PBS and incubated

with the cognate partner. The partner concentrations used

were around the concentration of the dissociation constant for

the libraries. We sorted the populations based on 1D binding

histograms followed by deep sequencing as explained

previously (Ahmed et al., 2022b; 2022a) to reconstruct the

binding mean fluorescence intensity (MFI) for each mutant in

the unlabeled and cysteine masked library. The sorting of

MazE and MazF mutants was done using a BD Aria III cell

sorter.

In our experimental setup we used an agglutinin-based

system to display our mutants. The proteins were fused to the

C-terminal Aga2p, and Aga2p is fused to the Aga1P through

the disulphide linkages. It is difficult to confirm if the cysteine

residues were reduced because the addition of reducing agents

will strip the displayed proteins from the surface. In one of our

previous study, where we displayed the CcdB cysteine mutants

on the yeast cell surface and binding was probed with the

GyrA14 protein. The binding was reduced only in the case of
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CcdB-Gyrase interfacial mutants when cysteine residues were

masked (Najar et al., 2017). The residues adjacent to the active

site showed no loss in binding upon masking, indicating that

the surface exposed cysteine residues were in the reduced

form. In the present study, we found several positions

where cysteine mutation did not affect the binding,

however, upon making cysteine residue the binding was

reduced. Further we used a CcdB M32C mutant as a

labeling control which loses binding to GyrA14 only after

labeling with Biotin-PEG2-Maleimide. This indicates that the

cysteine was in the reduced form and could react with the

Biotin-PEG2-Maleimide.

Sample preparation for deep sequencing

Deep sequencing libraries were constructed as described

previously (Ahmed et al., 2022a; 2022b). Briefly, the sorted

populations were grown on SDCAA agar plates for 48 h,

following which the colonies were scraped and plasmid was

extracted from the cells. For deep sequencing, the maz genes

were PCR amplified using primers that bind upstream and

downstream of the maz gene sequences. The primers had

NNN at the 5’ end, followed by multiplex identifier (MID)

sequence to identify the DNA molecules from different sorted

populations. PCR was done for 15 cycles, and the amplified

product was gel extracted. Equal amounts of DNA were

pooled from each sorted population, and the QC was

performed to analyse the quality of pooled DNA with

Bioanalyzer DNA High Sensitivity chip using Bioanalyzer

2,100 (Agilent). The pooled DNA library was generated

using TruSeq™ DNA PCR-Free kit from Illumina and the

sequencing was done on an Illumina HiSeq 2,500 platform at

Macrogen, South Korea.

Analysis of deep sequencing data

Sequencing was performed using the Illumina HiSeq

2,500 platform with paired end reads at Macrogen, Korea.

The maximum read length that can be obtained from this

platform is 2*250 bases from a paired end read. Deep

mutational scanning (DMS) data for the mazE and mazF

mutants obtained from the Hiseq 2,500 platform was

processed using a slightly modified version of an already

existing in-house protocol (https://github.com/

skshrutikhare/cys_library_analysis) as described previously

(Ahmed et al., 2022a; 2022b). Briefly, the methodology

consists of the following steps: assembling the paired end

reads, quality filtering, binning, alignment and mutant

identification. Paired end reads were first assembled using

the PEAR v0.9.6 (Paired-End Read Merger) tool (Zhang et al.,

2014) followed by a “quality filtering” step which involves the

deletion of terminal “NNN” residues in the reads and removal

of reads not containing the relevant MID and/or primers along

with the reads having mismatched MIDs. Finally, only those

reads having bases with Phred score ≥20 are retained. A

further filtering is carried out in the binning step, which

eliminates all those reads which have incorrectly placed

primers, truncated MIDs/primers (due to quality filtering)

and shorter/longer sequences than the length of the wild

type sequences. The remaining reads were binned according

to the respective MIDs. In the alignment step, reads were

aligned with the wild type mazE and mazF sequence using the

Water v6.4.0.0 program (Smith and Waterman, 1981) and

reformatted. The default values of all parameters, except the

gap opening penalty which was changed to 20, were used. In

the final step of “substitution”, reads were classified based on

insertions, deletions and substitutions (single, double

mutants etc).

MFI reconstruction from 1D binding
histograms

In the case of sorting from 1D binding histograms, the

binding MFI of each mutant in both labeled and unlabeled

libraries was estimated as explained earlier (Ahmed et al.,

2022a). Briefly, reads for each mutant were normalized across

different bins individually (Equation 1), and the fraction of

each mutant (Xi) distributed amongst the different bins was

calculated (Equation 2) as given above. The reconstructed MFI

for an individual mutant was calculated by the summation of

the product, obtained upon multiplying the fraction (Xi) of

the mutant in a particular bin (i) with MFI of the

corresponding bin obtained from the FACS experiment

(Fi), across the various bins populated by the respective

mutant (Eq. 3). The MFI was calculated at a stringency of

100 reads (the minimum value of the sum of the number of

reads in all gates combined) (Ahmed et al., 2022a; 2022b).

Mutants with a total read number greater than the stringency

value were considered for the analysis.

Normalized read of mutant in bin i(Ni)
� Number of reads ofmutant i in bin i

∑Reads in bin i
(1)

Fraction of mutant in each gate (Xi) � Ni

∑n
1Ni

(2)

Reconstructed MFI � ∑
n

1
Fi p Xi (3)

Ratio of depletion of a particular mutant (Unlab/Lab),

MFIMutant
depletion �

MFIunlabeled
MFIlabeled

(4)

Finally, normalization was done with the WT ratio of

depletion as given below:
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Normalised Fold Change of depletion � MFIMutant
depletion

MFIWT
depletion

(5)

where MFIWT
depletion is ~1 as expected.

A log2 (fold change) depletion value was finally used for

analysis.

Prediction of helical structural features
from mutational data

The MFIbind values for cysteine mutants were averaged over a

window of seven residues for MazE3, MazE6 and MazE9 to

obtain MFIavg which was then subtracted from the MFIbind values

to obtain the corrected cysteine mutational scores. These values

were fitted to a simple sinusoidal curve, y = a sin (2π x/b + c),

where π = 3.14, a = amplitude, b = periodicity and c = phase. For

the few residues for which we have no Cysteine mutational data,

we have used WT values.

Analysis of expression and binding of the
identified MazE and MazF cysteine
mutants on the yeast cell surface

The individual cysteine mutants identified from deep

sequencing were transformed into S. cerevisiae EBY100 cells

as explained earlier (Ahmed et al., 2022a; Chattopadhyay

et al., 2022b). The FACS sample preparation and the

estimation of expression and binding on the yeast cell surface

of the transformed MazE and MazF cysteine mutants were

carried out in a similar manner as described earlier

(Chattopadhyay et al., 2022b).

Biophysical characterisation of the
MazF6 cysteine mutants

A few of the individual cysteine mutants identified from deep

sequencing and validated individually on YSD of the

MazF6 toxin were cloned in pET-15b vector and transformed

into Escherichia coli host strain BL21 (DE3) for protein

expression and purification. The protein purification was

carried out as described earlier (Sharma et al., 2020). 10 µM

of each of the purified proteins was then subjected to thermal

denaturation experiments using nanoDSF (Prometheus NT.48)

as described previously (Chattopadhyay and Varadarajan, 2019).

The oligomeric state of the purified toxins was also analysed by

SEC-MALS as described in earlier (Sharma et al., 2020). Briefly,

100 µg of each of the proteins was injected for each measurement

and UV, MALS and RI data were collected at room temperature

and analysed using ASTRA™ software (Wyatt Technology) as

described previously (Sharma et al., 2020).

In vivo activity of the MazE and MazF
cysteine mutants

For overexpression studies in Mycobacterium smegmatis,

the wild type or mutant MazF3 and MazF9 was cloned in an

anhydrotetracycline based integrative expression vector

(Agarwal et al., 2018). The wild type or mutant antitoxin

MazE3 and MazE9 were cloned into an episomal acetamide

inducible vector, pLam 12. For growth inhibition studies, the

expression of toxin and antitoxin was induced in early-log

phase cultures of recombinant M. smegmatis strains by the

addition of 50 ng/ml anhydrotetracycline (for toxins) or

0.2% acetamide (for antitoxins). The growth of various

strains was determined by measuring OD600 nm at regular

intervals.

Calculation of sensitivity, specificity and
accuracy of our methodology and
AlphaFold2

To determine the performance of our methodology and

AlphaFold2, we compared the interface residues identified

from DMS-FACS, predicted from AlphaFold2 model with the

MazEF9 crystal structure and calculated the sensitivity,

specificity and accuracy as described below:

Sensitivity � TP

TP + FN
(6)

Specificity � TN

TN + FP
(7)

Accuracy � TP + TN

TP + TN + FP + FN
(8)

where TP, TN, FP and FN refer to number of True Positive, True

Negative, False Positive and False Negative respectively.

Results

TA complexes are more stable than
individual toxins and antitoxins, and form
higher oligomeric states

The proteins were eluted using a gradient of imidazole

(100–900 mM). The final concentrations of MazEF3 and

MazEF9 complexes were 2 mg/ml and their corresponding

yields were 2 mg/L. The concentrations of purified MazE3,

MazE9, MazF3 and MazF9 were 1 mg/ml, 4 mg/ml, 0.8 mg/ml

and 3 mg/ml respectively. Their corresponding yields were 1 mg/

L, 4 mg/L, 1.6 mg/L and 6 mg/L respectively. MazF3 and

MazF9 showed Escherichia coli cell lysis upon toxin induction

at 37°C. Therefore, in all cases the toxin expression was carried

out at low temperatures.
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FIGURE 1
Biophysical characterisation of the MazEF3 and MazEF9 TA systems. (A,B) Thermal unfolding profiles of 10 µM of MazEF3, MazEF9 complexes,
MazE3, MazE9 antitoxins and MazF3, MazF9 toxins were carried out using nanoDSF. First derivatives of thermal unfolding profile of (A) purified
MazEF3 complex (blue), MazE3 antitoxin (green) and MazF3 toxin (red), and (B) purified MazEF9 complex (blue), MazE9 antitoxin (green) and
MazF9 toxin (red). (C–J)Oligomeric stoichiometry analysis of the MazEF3 and MazEF9 TA systems by SEC MALS. Traces for refractive index are
shown in blue. The molar mass and fits of all traces are plotted as a function of elution time as approximately horizontal red and black lines,

(Continued )
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All the 6x-His-tagged purified proteins and complexes

(10 µM) were subjected to thermal denaturation on the nano-

DSF platform. The unfolding was monitored using intrinsic

fluorescence of tryptophan and tyrosine residues as a function

of temperature, and the apparent Tm was calculated (Figures

1A,B). In the cases of the antitoxins MazE3 andMazE9, there was

no transition, which indicated that the proteins were intrinsically

disordered. All the studied toxins showed proper thermal

transitions and Tm values were 47 and 61°C for MazF3 and

MazF9 respectively. The thermal stabilities of TA complexes are

expectedly higher than that of the free toxins and antitoxins

(Figures 1A,B) (Cherny et al., 2005; Nieto et al., 2007; Sahoo et al.,

2015). The studied complexes showed Tm values of 71 and 83°C

for MazEF3 and MazEF9 respectively.

Toxins and antitoxins of the MazEF family are dimeric when

present in their free forms (Kamada et al., 2003; Simanshu et al.,

2013; Zorzini et al., 2014). It has been observed that when the

toxins interact with antitoxins, they form hetero-hexameric

structures (T2A2T2) in several cases (Kamada et al., 2003;

Simanshu et al., 2013). The oligomeric status of free toxins,

antitoxins and TA complexes was determined by SEC-MALS.

Approximately 100 μg of each of the individual proteins and

complexes were analysed under non-denaturing conditions by

SEC-MALS in 10 mMHEPES pH 8.0 buffer (containing 100 mM

NaCl, 100 mM arginine and 500 mM imidazole) at room

temperature.

For the MazEF3 TA system, two different peaks were

observed in the RI trace for the individual samples of the

antitoxin MazE3, toxin MazF3, complex MazEF3 and in vitro

reconstituted complex formed between toxin MazF3 and

C-terminal MazE3 antitoxin peptide in excess (Figures 1C–F).

The peak 2 of MazE3 and MazF3 represent higher order

aggregates (molecular weight 500 kDa approx.), whereas the

peak 1 corresponds to their dimeric forms (Figures 1C,D).

The additional peaks in case of MazE3 could be higher order

cysteine aggregates (Figure 1C). The mass fraction of peak 1 of

MazEF3 (Figure 1E) which has a molecular weight of 77.6 kDa,

was 14.5% and similar to its homolog MazEF in E. coli and

Bacillus subtilis (Kamada et al., 2003; Simanshu et al., 2013), and

this peak corresponds to the hetero-hexameric form of the

complex (T2A2T2). The mass fraction of peak 1 of the

complex formed between MazE3 peptide and MazF3, which

has a molecular weight of 43.8 kDa was 93%, and this peak

corresponds to the hetero-tetrameric (AT-TA) form of the

complex (Figure 1F). In the case of the MazEF9 TA system,

we also observed two different peaks in the RI trace for the

antitoxin MazE9, toxin MazF9, complex MazEF9 and in vitro

reconstituted complex formed between toxin MazF9 and

C-terminal MazE9 antitoxin peptide in excess (Figures 1G–J).

Peak 1 of MazE9 and MazF9 correspond to the dimeric form of

the antitoxin (molecular weight 26.9 kDa) and toxin (molecular

weight 36.2 kDa) respectively (Figures 1G,H). For MazEF9, peak

2 showed the highest mass fraction (77.2%) with a molecular

weight of 84.7 kDa (Figure 1I), which again corresponds to the

hetero-hexameric form of the complex (T2A2T2), which is also

similar to its homolog MazEF in E. coli and B. subtilis (Kamada

et al., 2003; Simanshu et al., 2013). The mass fraction of peak 1 of

the complex formed between MazE9 peptide and MazF9, which

has a molecular weight of 43.2 kDa was 87%, and this peak

corresponds to the hetero-tetrameric (AT-TA) form of the

complex (Figure 1J). Calculated molecular weights of all the

peaks of the MazEF TA systems are shown in Supplementary

Table S2.

MazF toxins are more conserved and likely
share a similar structural fold as compared
to the corresponding MazE antitoxins

MSA for M. tuberculosis MazE antitoxins (MazE1-MazE9)

was carried out using Clustal Omega (Supplementary Figure

S1A). The percent identity amongst the variousM. tuberculosis

MazE antitoxins is in the range of 4–33% (Supplementary

Figure S1B). The MSA was used as an input with MazE1 as

the query sequence to calculate the conservation score amongst

the various M. tuberculosis MazE antitoxins using ConSurf

(Supplementary Figure S1C). The M. tuberculosis MazE

antitoxins in general show low sequence identity and an

overall poor conservation amongst themselves. An MSA for

M. tuberculosis MazF toxins (MazF1-MazF9) was also carried

out using Clustal Omega (Supplementary Figure S2A). The

percent identity amongst the various M. tuberculosis MazF

toxins is in the range of 9–57% (Supplementary Figure S2B).

The MSA was used as an input with MazF1 as the query

sequence to calculate the conservation score for the various

M. tuberculosis MazF toxins using ConSurf (Supplementary

Figure S2C). The M. tuberculosis MazF toxins in general

showed moderate sequence identity and moderate

conservation amongst themselves suggesting they might have

a similar fold. Across all the MazF toxin structures available in

PDB, the backbone root-mean-square deviation (RMSD) is in

the range of 0.53–3.03 Å.

FIGURE 1 (Continued)
respectively. The peaks analysed for molecular weight determination are numbered on top of each graph. The oligomerization status of (C)
antitoxin MazE3, (D) toxin MazF3, (E) MazEF3 complex, (F) in vitro assembled MazEF3 complex with excess MazE3 C-terminal peptide (MazF3:
MazE3 peptide:1:2), (G) antitoxin MazE9, (H) toxin MazF9, (I)MazEF9 complex, (J) in vitro assembled MazEF9 complex with excess MazE9 C-terminal
peptide (MazF9:MazE9 peptide:1:2) is shown. The molar mass and mass fraction of each of the peaks are listed in Supplementary Table S2.
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Significant cross-talk is observed between
pairs of non-cognate TA systems

The toxins MazF3 and MazF9 were fluorescently labeled with

NT-647-NHS dye. The affinities of the fluorescently labeled toxins to

their cognate full-length antitoxins or C-terminal antitoxin peptides

were analysed using MST as described earlier (Chattopadhyay et al.,

2022b). A fixed concentration of 200 nM of the labeled dimeric

toxins was titrated with different concentrations of the unlabeled

antitoxins (either full length or the peptide, 1 pM-5 μM). The

C-terminal peptide which lacks the dimerizing N-terminal

domain will be present as a monomer in the solution and thus

the monomeric concentration was used for dissociation constant

calculations. For the full length antitoxins, which exist as dimers in

solution, the monomeric concentration was used to calculate the

dissociation constants for reasons described below. In the case of

titration of toxins with the antitoxin peptide, it was assumed that

only one peptide will bind to a toxin dimer. To estimate the

dissociation constant, it was assumed that the binding of toxins

to each protomer of the full length antitoxins is identical and

independent. The structures of MazEF TA complexes determined

so far are hetero-hexamers, in which each protomer of the dimeric

antitoxin binds one toxin dimer (Kamada et al., 2003; Simanshu

et al., 2013). It is for this reason that we used the dimeric

concentration of the toxin and the monomeric concentration of

the antitoxin in affinity calculations. The binding study shows that

the toxin MazF3 binds with the antitoxin MazE3 peptide (residues

72–106) with an apparent KD of 299 nM (Supplementary Figure

S3A). The apparent high KD may arise due to the aggregation of

both the toxin and antitoxin. For the MazEF9 system, it was

observed that the toxin MazF9 binds with the full length

antitoxin MazE9 with a KD of about 8.9 nM and to the

MazE9 peptide (residues 43–76) with a KD of about 5.7 nM

(Supplementary Figure S3B,C) using MST. The similar binding

affinities in theMazEF9 system, suggest that the C-terminal peptides

could be used in place of the full-length antitoxins for further

binding assays with the toxins, because of the susceptibility of the

full-length antitoxins to degradation by proteases. Labeled

MazF9 toxin showed significant binding to its non-cognate

antitoxin, MazE3 peptide (KD 200 nM, Supplementary Figure

S3D), indicating possible cross-talk between these two TA

systems (MazEF3 and MazEF9). However, no such interaction

was observed between the non-cognate partners of the toxin

MazF9 and full-length antitoxin MazE6 (Supplementary Figure

S3E). The overall summary of interactions in the MazEF TA

system using MST is shown in Supplementary Figure S3F.

Pooled cysteine libraries can be used to
identify interacting residues

The interaction between toxins and antitoxins has a very high

affinity (De Jonge et al., 2009; Fernández-Bachiller et al., 2016;

Kang et al., 2018). The apparent high affinity is likely because of

the extensive interaction surface observed between the cognate

pairs. As observed for the structures solved for the TA complexes

so far, the entire C-terminus and in some cases residues of the

N-terminal region of the antitoxin wrap around the toxin and are

involved in a number of non-covalent interactions. We measured

the affinity of the interaction between WT cognate MazEs and

MazFs of MazEF3, MazEF6 and MazEF9 systems and observed a

strong interaction between them (Supplementary Figure S3). The

cysteine libraries were displayed on the yeast cell surface

and their binding was screened against a panel of purified

cognate proteins (toxin/antitoxin) before and after labeling

(Figure 2).

The MazE3 (C98) and MazF3 (C62, C71) proteins have

cysteine residues in the WT sequence. The role of these cysteine

residues in binding was identified using cysteine labeling as

discussed in the Methods section. Using yeast cells expressing

WTMazE3 or MazF3 on the surface, binding to purified MazF3

and MazE3 respectively was probed before and after labeling

with 5 mM Biotin-PEG2-maleimide. After labeling, MazE3 WT

showed reduced binding (Supplementary Figures S4A,C),

suggesting that the cysteine residue in MazE3 is close to the

MazE3-MazF3 interface. However, we did not observe any

difference in the expression and binding of cells before or

after the labeling for MazF3 , suggesting that the cysteine

residues in MazF3 are far from the interface of MazF3-

MazE3 (Supplementary Figures S4A,C). Since MazF3 C62A-

C71A had better expression and binding than WT, it was used

for library construction. The modelled MazEF3 and

MazEF9 structures were also consistent with this

observation. The predicted interacting residues from the

homology model for the MazEF3 complex were mutated to

cysteine in the background of C98A and C62A-C71A for

MazE3 and MazF3 respectively. For the MazEF6 and

MazEF9 systems, the predicted interacting residues from the

homology models were mutated to cysteine in the background

of the WT gene.

The binding of libraries across a range of concentrations of

the cognate partner and the apparent KD of the libraries were

measured (Supplementary Figure S5). The dissociation constants

obtained for MazE3, MazF3, MazE6, MazF6, MazE9 and

MazF9 libraries, were in the same range as the dissociation

constants obtained for the respective WT proteins. MazE3,

MazF3, MazE6, MazF6, MazE9 and MazF9 library had

apparent KD’s of 1.7, 154, 1.4, 0.13, 1.2 and 6.1 nM

respectively (Supplementary Figure S5).

The cysteine libraries were displayed on the yeast cell surface

and sorted based on the level of binding into different bins as

described above (Figure 3). The residues selected for cysteine

mutagenesis were mapped on the MazEF models and are

highlighted in red (Figures 4A–F). The maz genes from the

sorted populations were then amplified and sequenced on an

Illumina Hiseq 2,500 platform.
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In the case of sorting from a one dimensional binding

histogram, we reconstructed the binding MFI of each cysteine

mutant from the labeled and unlabeled conditions (Figure 4G-L).

A stringency of 100 reads in all the gates combinedwas used as a cut-

off for further analysis of mutants. We observed varying levels of

binding upon mutation even in the absence of labeling, which

ranged from complete to no loss of binding (Figure 4G-L). The

residues which showed ≥15% reduction in binding upon mutation

were classified as interacting residues. A second class of interacting

residues was also identified as those which showed further reduction

in binding upon labeling. The residues which had unlabeled to

labeled binding ratio ≥1.2 were considered in this secondary

category for all the libraries (Figure 4G-L, Supplementary Tables

S3). The cut-off was determined by statistical k-means clustering as

described previously (Chandra et al., 2021).

Homology and AlphaFold2 models were
only partially consistent with the
experimental data

Due to lesser homologs for the MazEF complexes, we initially

compared the crystal structures of the MazF toxins with

AlphaFold2 predictions. The analysis was carried out between

available MazF toxin structures with their respective models. The

backbone RMSD calculated between the predicted and solved

crystal MazF toxin structures is in the range of 0.38–1.4 Å. Since

the predicted toxin structures were in agreement with the

corresponding crystal structures, we proceeded ahead with the

prediction of MazEF complex structures by AlphaFold2.

Models of the TA complexes were generated using homology

modelling and AlphaFold2multimer model-type (Tandon et al.,

2020; Mirdita et al., 2022). To ascertain the predicted interacting

residues of the toxin and antitoxin, the surface accessibilities of

the residues of the toxin and antitoxin in both the free and bound

forms in the model structure were calculated using NACCESS

(Hubbard and Thornton, 1993). The predicted interface residues

for the toxin involved in antitoxin binding were identified using

the difference between the solvent accessible surface area of the

toxin residues in the free form and antitoxin-bound form, (ΔASA
cut-off ≥ 1 Å2). The interacting residues were also identified

experimentally using cysteine labeling and FACS coupled to deep

sequencing.

Out of twenty-one and thirty-five individual mutants selected

for the experimental MazF3 and MazE3 library studies

respectively, data for only 16 mutants of MazF3 and

FIGURE 2
Schematic representation of cysteine scanningmutagenesismethodology. Cysteinemutants of MazF andMazE are introduced at the predicted
ligand binding interface. Themutant is displayed as a fusion protein on the surface of yeast cells and its binding to the cognate partner is observed by
flow cytometry (A) The interaction between WT toxin and antitoxin. (B) Introduction of a cysteine mutation in the protein may generate different
populations, depending on the location of mutation. Non interacting residues are marked as NI, partially interacting as PI, destabilizing
mutations as DM and hot spot residues as I. Mutation at non-interacting sites will not affect binding. However, mutation at the interface or
destabilizingmutations will result in a reduced binding wherein the hot-spot residues will lose binding to a very high degree whereas other interfacial
residues may or may not show reduced binding. Destabilizing mutations typically occur at buried sites. (C) Labeling of cysteine with biotin-PEG2-
maleimide should result in loss of binding of all interacting residues. Buried sites are expected to be shielded from labeling.
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21 mutants of MazE3 were analysed after deep sequencing, as the

remaining mutants had very low reads numbers and so they were

omitted from the analysis (Figures 5A,B, Supplementary Figures

S6A–C, Supplementary Tables S4,S5). The interacting residues

obtained from homology model and AlphaFold2 models were

mapped onto the model MazEF3 complex (Supplementary

Figures S6A-C). A small subset of 6 residues for the

MazF3 toxin and 8 residues for the MazE3 antitoxin was

found to be present in both the experimentally identified

positions and residues identified from homology models

(Figures 5A,B). However, other residues which were predicted

to be at the interface according to the models did not show any

difference in binding upon mutation and/or labeling compared

to theWT (Supplementary Tables S4,S5). Additionally, we found

reduced binding for some of the mutants, which according to the

model were not a part of the predicted set of the interacting

residues (Supplementary Tables S4,S5). The

AlphaFold2 predictions showed an overlap of 8 and

14 residues for MazF3 toxin and MazE3 antitoxin respectively

(Figures 5A,B). Though the overlap between the experimental

results and AlphaFold2 predictions was higher than the

homology models, the number of false positives was also

much higher for AlphaFold2 predicted complex structures

(Figures 5A,B).

For the MazEF6 system, out of twenty-one and thirty-five

individual mutants selected for the experimental MazF6 and

MazE6 library studies respectively, data for only 15 mutants of

MazF6 and 33 mutants of MazE6 were analysed after deep

sequencing, whereas the remaining mutants had very low

reads, and were therefore omitted from the analysis (Figures

5C,D, Supplementary Figures S6D-F, Supplementary Tables

S6,S7). As with the MazEF3 system, AlphaFold2 predictions

had a large number of false positives for the MazEF6 system

as well (Supplementary Tables S6,S7).

In the case of the MazF9 and MazE9 libraries, we selected

26 and 35 putative residues respectively as explained in the

previous section for experimental studies (Figures 5E,F,

Supplementary Figure S6G-I, Supplementary Tables S8,S9).

We could analyse only 15 mutants for MazF9 and 23 for

MazE9 after deep sequencing of the samples, the remaining

mutants had low reads, and hence were omitted from the

analysis (Figures 5E,F, Supplementary Figure S6G-I). A small

subset of 7 residues for MazF9 and 14 for MazE9 were common

between the experimentally studied positions and residues

generated by homology modelling (Figures 5E,F). The

predicted complexes from AlphaFold2 showed an overlap of

6 residues and 15 residues of MazF9 toxin and MazE9 antitoxin

respectively with the experimental results, with a higher fraction

of false positive results (Figures 5E,F). There were other residues

in the case of MazEF9 system which were at the interface

according to the model but did not show any difference in

binding upon mutation and/or labeling compared to the WT

from experimental data (Supplementary Tables S8,S9). Here also,

we found reduced binding for a few mutants, which according to

the model were not part of the predicted set of interacting

residues (Supplementary Tables S8,S9).

Interface identification from DMS-
cysteine labeling is more accurate than
AlphaFold2 for MazEF9

Recently, the MazEF9 crystal structure was solved (Chen

et al., 2020). The surface accessibilities for each of the residues

of the toxin and antitoxin in both the free and bound forms

were calculated using NACCESS (Hubbard and Thornton,

1993). All residues with |ΔASA| ≥ 1 Å2 were identified as

interface residues. The interacting residues obtained from

the ΔASA calculation were mapped on the

MazEF9 complex crystal structure in red colour for toxin

and grey colour for antitoxin (Figure 6A). The output

generated by PDBsum from the MazEF9 crystal structure is

shown in Figure 6B. The residues identified experimentally

from deep sequencing were mapped on the model structure in

magenta colour for toxin MazF9 and yellow colour for

antitoxin MazE9 (Figure 6C). A subset of 6 residues for

MazF9 and 18 for MazE9 were common between the

FIGURE 3
FACS of MazE andMazF libraries. The unlabeled libraries were
incubated with the cognate partner (MazF3-200 nM, MazE3-
200 nM; MazF6-375 pM, MazE6- 600 pM; MazF9-10 nM, MazE9-
200 nM). In the case of labeled libraries, the cells expressing
cysteine mutants were incubated with 5 mM of labeling reagent,
followed by binding with cognate partner at identical
concentration used for the unlabeled library. (A,B) FACS of the six
pooledMazF andMazE libraries. Histogram showing binding of the
(A) unlabeled and (B) labeled libraries. The vertical gates were used
to sort different populations based on the binding profiles as
described (Ahmed et al., 2022a). Deep sequencing was used to
reconstruct the binding MFI of individual members in the
unlabeled and labeled libraries (Ahmed et al., 2022a).
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FIGURE 4
Heat map of fold change of binding after labeling in MazE and MazF libraries from 1D sorts. (A–F)Overlay of MazF toxin from B. subtiliswith the
modelled structures of MazF3, MazF6 and MazF9 toxins. B. subtilisMazF is in cyan colour (A)MazF3 (26%), (B)MazF6 (38%) and (C)MazF9 (34%) have
moderate (%) sequence identity with the B. subtilisMazF and are shown in blue. The residues in the modelled toxins which were closest in space to
the interacting residues of B. subtilis were predicted to be interacting with the cognate antitoxins, are shown in red and were chosen for
experimental studies. The bottom panel shows the antitoxin in green which is modelled in complex with the cognate toxin shown in blue, using
homology modelling by Modeller v9.14 for (D) MazEF3, (E) MazEF6 and (F) MazEF9 complexes. The predicted interface residues for the toxin are
shown in red. Heatmaps showing log2 (fold-change) of depletion values after labeling of (G)MazE3, (H)MazF3, (I)MazE6, (J)MazF6, (K)MazE9 and (L)
MazF9 cysteine libraries. A stringency of 100 reads in all the gates combinedwas used as a cut-off for further analysis ofmutants. The fold-change cut
off for identification of the interacting residues, was determined by k means clustering. Blue to red represents increasing log2 (fold change) of
depletion values after labeling which is defined as log2(MFIMutant

depletion

MFIWT
depletion

). Where, MFIMutant
depletion � MFIunlabeled

MFIlabeled
. Red denotes positions where substitutions have the

maximum affect whereas yellow denotes the residues where there is no effect upon mutation, similar to WT. Blue denotes residues which show
increased binding after labeling.
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experimentally studied positions and residues obtained from

the crystal structure (Figures 6D,E, Supplementary Tables

S8,S9). There were other residues in the case of the

MazEF9 system which were at the interface according to

the crystal structure but were not chosen for cysteine

mutagenesis (Figures 6D,E). Due to the poor homology

between MazF homologues, most of the interacting

residues of the toxin were not selected for the cysteine

mutagenesis study. In the case of the antitoxin, from the

crystal structure we found interfacial residues in the

20–72 stretch. However, based on previous studies, we had

shortlisted only the last 35 residues of the C-terminus of the

antitoxin (43–76) as part of the predicted interface for

cysteine mutagenesis. We could not analyse 11 mutants for

MazF9 and 12 for MazE9 as these mutants had low reads.

From the YSD studies we found a few false positives that were

not part of the set of interacting residues in the crystal

structure (Figures 6D,E, Supplementary Tables S8,S9).

Upon analysing these mutants, most of them were found

to be in close proximity to residues which are a part of the

interface. Some of these cysteine mutants were also found in

loop regions and mutations on this loop may have caused

aggregation and thus, caused a decrease in the binding signal.

One of the mutants, S85, from the crystal structure appeared

to be a part of the interface, but did not show any change in

the ΔASA. From previous studies also, we have observed that

in the case of a few surface residues, that are not part of

the interface in the crystal structure, yet mutations at

these positions result in decreased binding (Ahmed et al.,

2022a).

We calculated the sensitivity and accuracy of our

methodology as described in Equation 6 and 8 and we

observe that our methodology has a sensitivity of ~96%

and an accuracy of ~75%, when the cut-off is |ΔASA|
≥ 1 Å2 . From the homology modelling, we predicted

residues that were not a part of the interface in the

MazEF9 crystal structure. However, the total read count of

those residues were less than the cut-off used. Therefore, we

did not have any true negative mutants, and thus we did not

analyse the specificity parameter.

Incorporating residues which were false positives in case of

AlphaFold2, and were determined to be true negatives for

homology modelling would have helped to determine the

robustness of our methodology. However, most of these

residues were initially not present in the libraries, and for

some of the residues, there very few sequencing reads,

therefore these residues were filtered from subsequent

analysis. Larger unbiased libraries with higher read coverage

would further enhance the sensitivity, specificity and accuracy of

prediction of interfacial residues.

Upon comparison of the interface residues predicted from

AlphaFold2 with the MazEF9 crystal structure, we observe a

partial overlap of 29 and 33 residues of MazE9 and

MazF9 respectively (Supplementary Figure S7). Further,

AlphaFold2 could not predict 11 and 15 interacting residues

of MazE9 and MazF9 respectively as observed from the crystal

structure of the complex (Supplementary Figure S7). The

AlphaFold2 model also resulted in 25 and 14 false positive

residues for MazE9 and MazF9 respectively (Supplementary

Figure S7). We also calculated the sensitivity, specificity and

accuracy of the MazEF9 model generated by AlphaFold2 as

described in Equation 6-8). We observed that MazEF9 model

predicted by AlphaFold2 has a sensitivity of ~71%, specificity of

~62% and an accuracy of ~66%, %, when the cut-off is

|ΔASA| ≥ 1 Å2.

We also evaluated the performance of our methodology and

AlphaFold2 by using higher cut-offs of |ΔASA| ≥ 5 Å2 and

≥ 10 Å2. The increase in cut-offs did not show significant

improvement in sensitivity, specificity and accuracy of the

results (Table 1). Overall, the results show that cysteine scan

DMS experimental data can add considerable value to structure

prediction efforts.

FIGURE 5
Comparison between interface residues predicted from deep
sequencing data, homology models and AlphaFold2 models for
the MazEF systems. Venn diagram showing the overlap between
the residues predicted to be a part of the interface from the
deep sequencing data (blue circle), homology (red circle) and
AlphaFold2 (green circle) models of (A) MazE3, (B) MazF3, (C)
MazE6, (D) MazF6, (E) MazE9 and (F) MazF9.
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Validation of inferences from deep
mutational scanningwith YSD of individual
mutants

To further validate our deep sequencing results, single mutants

were generated, and their binding was measured on the yeast cell

surface (Supplementary Figure S8). Relative to MazE3-C98A which

showed no decrease in binding before and after labeling, we found

that A74C, I80C and L91C mutants showed a decrease in the

binding signal upon introducing the cysteine mutation and a further

decrease upon labeling (Supplementary Figure S8A). Mutants D77C

and G89C showed a marginal decrease in binding upon mutation,

and a significant decrease in binding after labeling (Supplementary

Figure S8A).

FIGURE 6
Comparison between interface residues identified from the crystal structure and inferred from deep sequencing data for theMazEF9 system. (A)
The left panel shows the interface residues determined from theMazEF9 crystal structure. The toxin MazF6 and antitoxin MazE6 are coloured in blue
and green respectively. The surface representation of the same is shown in the right panel. The interacting residues are shown in red for MazF9 toxin
and in grey for MazE9 antitoxin. Only one monomer of the antitoxin is shown for clarity. (B) PDBsum identified interacting residues in
MazEF9 structure depicted in Figure (A). Toxin chains (A,B) are each joined by coloured lines to the antitoxin chain (P). Each colour represents a
different type of interaction (Salt bridge-Red; Hydrogen bonds-Blue; Non-bonded contacts-Orange (C) The left panel shows the experimentally
inferred residues from DMS libraries which are highlighted in magenta for MazF9 toxin and yellow for MazE9 antitoxin on the MazEF9 crystal
structure. The surface representation of the same is shown in the right panel. (D–E) Venn diagram showing the overlap between the interacting
residues deciphered from the MazEF9 crystal structure (in red and grey circles) and experimentally verified mutants (in magenta and yellow circles)
for (D)MazF9 (blue) and (E)MazE9 (green). Only residues which were reliably represented in the DMS library after passing the read criteria, are shown
in the Venn diagram. ‘NA’ indicates no interacting residues. The seven residues (two from MazE9 library and five from MazF9 library) which were
identified from DMS and were not a part of the interface as observed from the crystal structure, are actually in close proximity to the interacting
residues. Therefore, mutations to those residues, may have resulted in an apparent decrease in binding. We also could not identify one residue from
MazF9 from our cysteine scanning methodology which is actually a part of the MazEF9 interface.
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For MazF6, as compared to WT MazF6 which showed no

decrease in binding before and after labeling, we found that the

cysteine mutants, namely, Q31C, D33C, V47C, V82C, L84C and

L89C showed a significant decrease in binding upon mutation

(Supplementary Figure S8B). Mutants L84C, L89C along with

P58C and G59C, showed a reduction in binding upon mutation,

but no further reduction was observed upon labeling

(Supplementary Figure S8B). Mutants Y35C and T83C did not

show much decrease in binding upon mutation but showed

significantly reduced binding upon labeling (Supplementary

Figure S8B). The cysteine mutant L40C showed increased

binding upon labeling for reasons that are unclear. The mutant

A53C did not show any change upon mutation and labeling of the

cysteine residue in the mutant (Supplementary Figure S8B).

ForMazE9, cysteinemutantsW51C andD59C showed a drastic

decrease in binding upon mutation as compared to WT MazE9

(Supplementary Figure S8C). The MazE9 mutants, namely, E53C,

S55C and P75C did not show any change upon mutation and

labeling of the cysteine residue. In the case ofMazF9, as compared to

the WT MazF9, the cysteine mutants R24C, R84C and A87C

showed reduction in binding upon mutation but no further

reduction upon labeling was observed (Supplementary Figure

S8D). The mutant A34C did not show much decrease in binding

upon mutation but showed significantly reduced binding upon

labeling (Supplementary Figure S8D). Based on the solved crystal

structure of the MazF9 toxin, mutation at a non-interacting site,

namely the V58C mutant, also showed reduction in binding upon

mutation but no further reduction upon labeling was observed

(Supplementary Figure S8D). This could be because of the

aggregation tendency of the cysteine mutants on the 53–61 loop

(Supplementary Figure S8F).

Overall, the individually analysed mutants showed binding

profiles similar to that inferred from the deep sequencing of the

pooled libraries (Supplementary Figure S8E).

Local secondary structural features can be
predicted from mutational effects in MazE
cysteine variants

Mutational scores in the MazE antitoxins across the length

of the C-terminal residues under study display an oscillating

pattern (Figure 7). To remove the non-uniform region specific

contribution to binding, we subtracted from the MFIMutant
depletion

values, the corresponding values averaged over seven residue

windows (Figure 7) as described earlier (Newberry et al., 2020;

Chandra et al., 2021). When fitted to a single sinusoidal curve,

the corrected cysteine mutational scores (MFIMutant
depletion −

MFIavgMutant
depletion) for residues 72–106, 48–82, 42–74 for

MazE3, MazE6 and MazE9 respectively shows a poor fit

(Figures 7A–C).

For MazE3, the pattern suggested a possible phase change in

the wave-like pattern in the mutational effects at residue

positions 84–85 and 91–92 (Figure 7A). We therefore fitted

residue stretches 72–85, 86–92 and 93–99 to separate

sinusoidal waveforms (Figure 7D). The three stretches fitted

to individual sinusoidal waves with periodicities of 4.0 ± 0.2,

4.2 ± 0.5 and 4.0 ± 0.5 respectively and with R values of 0.78,

0.77 and 0.74 respectively (Figure 7D). We can therefore infer

that the MazE3 residues 72–92 likely form a continuous helix

with a distortion around 85–86 and the residues 93–99 form an

irregular helical structure (Figure 7D). The stretch from

100–106 forms an irregular structure and did not fit to a

sinusoidal curve (periodicity of 7.4 ± 2.1).

In case of MazE6, the pattern suggested a possible phase

change in the wave-like pattern in the mutational effects at

residue positions 55–56 (Figure 7B). We therefore fitted

residue stretches 48–55 and 56–82 to separate sinusoidal

waveforms (Figure 7E). The stretches fitted to individual

sinusoidal waves with periodicities of 3.8 ± 0.1and 3.6 ±

0.1 respectively and with R values of 0.73, and

0.68 respectively (Figure 7E). We can therefore infer with high

confidence that the MazE6 residues 48–55 and 56–82 form a

canonical α-helical structure, as the periodicities are close to

3.6 amino acid residues (Figure 7E), which is consistent with a

previous study performed using aspartate scanning mutagenesis

(Chandra et al., 2021).

For MazE9, residue 50 showed a high depletion value and

was excluded from the fit (Figure 7C). We therefore fitted residue

stretches 42–58 (excluding residue 50), 59–67 and 68–74 to

separate sinusoidal waveforms (Figure 7F). The first three

stretches fitted to individual sinusoidal waves with

periodicities of 4.0 ± 0.9, 3.5 ± 0.2 and 2.9 ± 0.2 with R

values of 0.83, 0.80 and 0.67 respectively (Figure 7F). The

TABLE 1 Comparison of performance between Cysteine DMS and AlphaFold2 with MazEF9 crystal structure (PDB ID: 6KYT).

|ΔASA| ≥ 1 Å2 |ΔASA| ≥ 5 Å2 |ΔASA| ≥ 10 Å2

Cys DMS AlphaFold2 Cys DMS AlphaFold2 Cys DMS AlphaFold2

Sensitivity 96 70 96 71 95 56

Specificity NA 62 NA 64 NA 70

Accuracy 75 66 63 66 60 65
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third stretch did not fit to a sinusoidal curve (periodicity of 8.3 ±

0.4). We can therefore infer with high confidence that the

MazE9 residues 42–58 forms a single helix (Figure 7F). This is

consistent with the available MazEF9 crystal structure where

residues 43–58 adopts an alpha helical structure and 59–67 forms

a non-canonical helix (Figure 7F, inset). The residues

68–72 adopt an irregular structure consistent with the

inferences from the cysteine scanning data. Further, from the

troughs and valleys of the helices, we can predict the interacting

(45,49–52, 54, 60, 63–64, 66) and non-interacting (55–58)

FIGURE 7
Predicting local structural features attained by disordered MazE antitoxins upon toxin binding. (A–C) Corrected mutational scores
(MFIMutant

depletion −MFIavg
Mutant
depletion)of cysteine mutants (red circles) as a function of residue position plotted as a spline curve (black), reveals an oscillating

pattern in MazE antitoxin mutational effects. When a single sinusoidal curve (magenta) is fit to the corrected mutational scores of residues 72–106,
48–82, 42–74 for MazE3, MazE6 and MazE9 respectively, the fit is poor. TheMFIavg

Mutant
depletion is the MFIMutant

depletion of cysteine mutants averaged over
seven residuewindows. (D–F) The correctedmutational scores fit to separate sinusoidal curves. (D) (MFIMutant

depletion −MFIavg
Mutant
depletion) for residue stretches

72–85, 86–92 and 93–99 of MazE3 fit to three separate sinusoidal curves. The fits for the 72–85, 86–92 and 93–99 residue stretches are shown in
blue, green and dark yellow lines respectively. Residue stretch 100–106 does not fit to a sinusoidal curve. (E) For MazE6, the (MFIMutant

depletion −
MFIavg

Mutant
depletion) for residue stretches 48–55 and 56–82 are fit to two separate sinusoidal waves. The fits for 48–55 and 56–82 residue stretches are

shown in blue and green lines respectively. (F) (MFIMutant
depletion −MFIavg

Mutant
depletion) for residue stretches 42–58 (excluding residue 50) and 59–67 of MazE9 fit

to two separate sinusoidal waves. The fits for 42–58 and 59–67 residue stretches are shown in green and blue lines respectively. The fourth stretch of
residues 68–74 does not fit well to sinusoidal wave. Residue 50 was an outlier and excluded from the fit. In the inset, the MazE9 antitoxin (residues
42–72) from the MazEF9 crystal structure (PDB ID: 6KYT) is shown, with the residue stretches coloured identically to the colours of the fit. Residues
50 and 68–74 are coloured red. The helical regions inferred from themutational data for MazE9 agree well with those from the crystal structure. The
troughs and valleys in the plots correspond to the interacting and non-interacting residues respectively. Both the inferred secondary structure and
sites for interaction inferred from the DMS data agree well with the crystal structure. In contrast, PSIPRED (Jones, 1999) predicts helical stretches
from residues 39–50, 57–83 and 91–100 in MazE3, residues 9–22, 26–56 and 61–77 in MazE6 and residues 9–21, 27–39, 43–56 and 65–66 in
MazE9 respectively.
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residues respectively. The residues identified from the above

classification are highly consistent with the observed

MazEF9 crystal structure.

Bound conformations of intrinsically disordered protein

(IDP) segments are commonly found to form extended helical

structures with one face of the helix interacting with the

protein partner. Such structural organization in extended

helices in IDPs allows facile elucidation of structural

features from mutational scanning, using the approach

outlined here.

Most of the purified cysteine mutants
were thermally stable and dimeric in
solution

It has been shown that the destabilized mutants of protein

have lower binding with its ligand on the yeast cell surface

(Ahmed et al., 2022a). To confirm that the reduction in

binding is due to mutation and masking of interacting

residues and not due to the destabilization of mutants, Ni-

NTA affinity purification chromatography was used for the

purification of a few of the individual cysteine mutants of the

MazF6 toxin identified from deep sequencing and validated

individually. The proteins were eluted using a gradient of

imidazole (100–900 mM) and the eluted fractions were then

concentrated and confirmed for the presence of the

corresponding proteins by analysing them on 15% Tricine

SDS PAGE. All the 6x-His-tagged purified proteins (10 µM)

were subjected to thermal denaturation on the nano-DSF

platform as described previously (Supplementary Figure

S9A) (Chattopadhyay and Varadarajan, 2019). All the

studied toxins showed clean thermal transitions and Tm

values of 64°C, 71°C, 66°C, 86°C, 83°C, 82°C, 66°C, 81 and

79°C for MazF6 WT, D33C, Y35C, V47C, A53C, V82C,

T83C, L84C and L89C respectively (Supplementary Figure

S9B). The apparent thermal stabilities of the

MazF6 cysteine mutants were higher than the

MazF6 WT in all replicate measurements. The stability data

confirms that the reduction in binding on the yeast cell surface

is due to the loss of interaction with its cognate partner,

however, we do not understand the underlying reason for

the observed higher Tm values for several of the cysteine

mutants.

We also confirmed that these mutants also maintained

their native dimeric state using SEC-MALS under non-

reducing conditions. The MazF6 WT and the cysteine

mutants Q31C, V47C, A53C, T83C and L89C were eluted

as dimers (Supplementary Figure S9C, Supplementary Table

S10). From the studies using purified cysteine mutants, we

observed that there is a significant enhancement in the

apparent thermal stabilities of the mutants, but no

mutational effect on the protein oligomeric state, indicating

that the loss of binding signal observed in the YSD studies was

purely based on the fact that the residues were a part of the

interface.

Phenotypes associated with cysteine
mutants in Mycobacterium smegmatis

The effect of a few of the cysteine mutants at positions that

were predicted to be a part of the interface from the YSD

experiment of the MazF3, MazE3, MazE9 and MazF9 systems

were studied in vivo in Mycobacterium smegmatis

(Supplementary Figure S10). All the cysteine mutants of the

toxins MazF3 and MazF9 showed an inactive phenotype

(Supplementary Figure S10A,B). This suggests that there is an

overlap between the antitoxin binding site and the active site of

the toxin. The other probable reason could be that the cysteine

mutants of the toxin are folding defective in vivo, thus resulting in

no defect in Mycobacterium growth. This is unlikely given the

results with purified cysteine mutants of the toxins described in

the previous sections. When the cysteine mutants of the

antitoxins MazE3 and MazE9 were co-expressed with their

cognate toxin we observe that only one of the mutants from

each MazE3 (D77C) and MazE9 (Y47C) failed to neutralise the

toxicity effect of the WT cognate MazF3 and MazF9 toxins

(Supplementary Figure S10C,D), indicating these residues are

critical in the binding of the toxin. It is hard to precisely compare

in vivo effect of the cysteine mutants with the in vitro YSD

experiments because cysteine mutants could not be labeled

in vivo.

Discussion

Bacterial toxins regulate growth in response to

environmental stress including antibiotic treatment (Hauryliuk

et al., 2015). In E. coli, there is a single MazF toxin member that

cleaves free mRNA to inhibit translation (Zhang et al., 2003). The

MazF family is expanded to nine members in M. tuberculosis,

concurrent with the expansion of different target RNAs including

tRNAs and rRNAs (Schifano et al., 2013, 2014, 2016). This

expansion suggests that M. tuberculosis MazFs may contain

different structural elements that recognize diverse RNA

substrates.

In this report, we describe preliminary results of a new

approach for rapid and reliable mapping of interfacial

residues, applied to toxin-antitoxin complexes using a cysteine

mutant library displayed on the yeast cell surface. The interacting

residues of MazE antitoxins and MazF toxins with cognate

partners were first inferred by homology modelling, as well as

by overlaying the modelled structure with the template structure.

Next, the residues in the modelled structures closest to the

interacting residues in the template were designated as
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putative interacting residues. We subsequently used cysteine

scanning methodology coupled to chemical labeling to

experimentally identify the interacting residues.

We observed that several putative interacting residues

predicted from homology modelling did not show any

difference in binding to cognate antitoxin upon labeling for

both MazE and MazF proteins. We also observed that several

of the putative interacting residues identified from overlaying the

model and template showed reduction in binding upon mutation

and labeling of the cysteine residue. To reduce the time and effort

involved in screening multiple libraries, we pooled multiple

libraries as described previously (Ahmed et al., 2022b).

Further, we also compared our deep sequencing results with

the crystal structure solved for the MazEF9 system. We found

that our system is highly sensitive and moderately accurate.

Further, deep sequencing data agreed well with the

individually analysed mutant data wherein the mutants were

isolated using flow cytometry. Since this was the initial

application of the methodology to TA systems, we predicted

residues from the homology modelling only for the toxins, as the

toxin fold is relatively well conserved. For the antitoxins, we did

not predict residues from the homology models, rather we

mutated the last 35 C-terminal residues based on structural

data from other type II TA complexes in which residues from

the C-terminal half of the antitoxin are typically involved in toxin

binding. Now that the methodology is standardized and

validated, in future studies, one would mutate all predicted

surface residues for the folded toxin component and all

residues for the antitoxin component.

We also inferred local secondary structural features from

mutational effects in cysteine variants of MazE antitoxins. In

the case of MazE9, using the fitted periodicity of the toxin

binding activity of mutants, we predicted an α-helical
42–58 residue stretch, followed by a distorted α-helical
59–67 residue stretch, and a disordered toxin-interacting

68–72 residue stretch. The results obtained are highly consistent

with the observed structural secondary features and interfacial

residues of MazE9 antitoxin in the MazEF9 crystal structure. The

available complex structures of MazEF homologs indicate that all

the antitoxin structures are unique and differ significantly from the

structural and interfacial features in terms of helical content of the

C-terminal domain as well as region specific contribution of N-

and C-terminus to cognate toxin binding. Therefore, scanning

mutagenesis methods can be employed in deciphering toxin-

antitoxin interaction modules and predicting local secondary

structures of the antitoxin upon complex formation.

In the past few decades, with the advent of Critical

Assessment of protein Structure Prediction (CASP), there

have been significant advancements in the field of protein

structure determination from sequence information (Moult

et al., 1995). Both the global distance test score, a measure of

accuracy in the prediction of the protein structure and the

average precision in structure prediction have increased from

~35% in 2006 to ~90% in 2020 and from 21% in CASP10 to 70%

in CASP13 respectively (Schaarschmidt et al., 2018; Shrestha

et al., 2019). Advancement in the methods to predict 3D contacts

between pairs of residues in a protein termed as contact

prediction, is one of the main driving forces for the improved

precision and accuracy of the structure predicting tools. In both

CASP13 and CASP14 held in 2018 and 2020 respectively, Deep

Mind’s AlphaFold and AlphaFold2 have been ranked the highest

amongst the protein structure prediction tools (Senior et al.,

2020; Jumper et al., 2021). The predictions were claimed to be

highly accurate and close to the experimentally determined

structures with 95% of the predicted structures having a

backbone RMSD of <1Å with the solved experimental

structures (Jumper et al., 2021; Tunyasuvunakool et al., 2021).

Recently, programs such as SWISS-MODEL (Waterhouse et al.,

2018) and RoseTTA fold (Baek et al., 2021) have been developed

to predict the structures of proteins as well as complexes. SWISS-

MODEL employs homology modelling to build models defined

by the target-template alignment followed by quality estimation

of the model (Waterhouse et al., 2018). RoseTTA fold uses a

three-track neural network with multiple connections between

the tracks to inspect the relationship within and between the

patterns in protein sequences, distances and coordinates

simultaneously (Baek et al., 2021). We also used

AlphaFold2 to generate models of the TA complexes used in

this study and find the inferences made from the present cysteine

scanning approach are much more sensitive and accurate than

predictions from AlphaFold2 for the MazEF9 complex (Chen

et al., 2020). For the MazEF models, by visual inspection the

models did not appear to be properly folded. In the multiple

sequence alignments (MSA) generated by AlphaFold2 there are

several gaps in the alignments. It is likely that the poor

performance of AlphaFold2 in the present case, is because of

the limited number of sequence homologs for the three MazEF

systems studied here.

In conclusion, we described and validated high-

throughput methodology to rapidly identify interacting

residues in a protein:protein complex with high efficiency,

which can be used for model discrimination and structure

prediction in other systems.
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