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Genetically-encoded combinatorial peptide libraries are convenient tools to identify
peptides to be used as therapeutics, antimicrobials and functional synthetic biology
modules. Here, we report the identification and characterization of a cyclic peptide,
G4CP2, that interferes with the GAL4 protein, a transcription factor responsible for
the activation of galactose catabolism in yeast and widely exploited in molecular
biology. G4CP2 was identified by screening CYCLIC, a Yeast Two-Hybrid-based
combinatorial library of cyclic peptides developed in our laboratory.
G4CP2 interferes with GAL4-mediated activation of galactose metabolic enzymes
both when expressed intracellularly, as a recombinant peptide, and when provided
exogenously, as a chemically-synthesized cyclic peptide. Our results support the
application of G4CP2 in microbial biotechnology and, additionally, demonstrate that
CYCLIC can be used as a tool for the rapid identification of peptides, virtually without
any limitations with respect to the target protein. The possible biotechnological
applications of cyclic peptides are also discussed.
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Introduction

Over the last decades, peptides have been shown to be effective bioactive molecules, with a
wide range of applications such as building blocks for synthetic biology or active compounds for
drugs and antimicrobials (Fosgerau and Hoffmann, 2015; Rafferty et al., 2016; Zorzi et al., 2017;
de la Torre and Albericio, 2020; Magana et al., 2020; Muttenthaler et al., 2021; Rosa et al., 2021;
2022). Peptides gained an increasing interest as they can provide specific binding of the target
proteins (Tavassoli, 2017; Vinogradov et al., 2019; Sohrabi et al., 2020), their production is
compatible with both synthetic and recombinant DNA methodologies (Fuse et al., 2018;
Jaradat, 2018; Zhang et al., 2018; Cook and Pfleger, 2019; Vassaux et al., 2019; Cheng and Hua,
2020; Mejía-Pitta et al., 2021) and, they can be designed de novo in silico (Fletcher et al., 2012;
Thompson et al., 2012; Langan et al., 2019; Chen Z. et al., 2020; Cao et al., 2020; Chen and
Elowitz, 2021; Mulligan et al., 2021; Bhardwaj et al., 2022). Moreover, peptides can be
considered as a class of compounds between small- and macro-molecules (Sohrabi et al.,
2020; Apostolopoulos et al., 2021) as they display some favorable features belonging to both
classes. As small molecules, peptides can be chemically modified to improve their solubility,
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specificity, and affinity toward their target, as well as their resistance to
proteases (Vinogradov et al., 2019). Furthermore, they possess the
ability, typical of macromolecules, to specifically disrupt protein-
protein interactions (PPIs), preventing the formation of functional
protein complexes (Contini et al., 2017; Dapiaggi et al., 2017; Marcelli
et al., 2019; Sohrabi et al., 2020). This is of particular interest when the
target protein lacks classical “druggable pockets”—i.e. catalytic or
allosteric sites—as in the case of transcription factors (TFs)
(Henchey et al., 2010; Ramaswamy et al., 2018; Henley and
Koehler, 2021).

In fact, more than 80 peptide-based therapeutics are currently
available on the market and their sales exceed 50 billion U.S.$, i.e.
about 5% of the global pharmaceutical market (Muttenthaler et al.,
2021). Peptides have also displayed their potential as antimicrobials
for pest control and have been proposed as alternative/integrative
compounds to conventional pesticides for disease-control strategies in
agriculture, granting a lower environmental impact (Järvå et al., 2018;
Schwinges et al., 2019; Colombo et al., 2020; Velivelli et al., 2020;
Huang et al., 2021; Rosa et al., 2022).

DNA-encoded peptide libraries enable the simultaneous screening
of millions or billions of peptides at the same time, in cell-based or
in vitro assays, enabling the rapid identification, through DNA
sequencing, of peptide sequences able to specifically interact and,
possibly, influence the activity of target proteins (Tavassoli, 2017;
Sohrabi et al., 2020; King et al., 2021). In this context, cyclic peptides
(CPs)—i.e. “peptidic structures bearing a ring that spans multiple
amino acid residues” (Vinogradov et al., 2019)—are preferable to their
linear counterparts for many reasons, as they display higher in vivo
stability, improved resistance to exo- and endo-peptidases and
structural rigidity (Bucci et al., 2020), which favour tighter and
more target binding (Tapeinou et al., 2015; Sohrabi et al., 2020;
Muttenthaler et al., 2021; Zhang and Chen, 2022). Moreover,
peptide cyclization might enhance cellular permeability, allowing
efficient interactions with intracellular targets (Bockus et al., 2013;
Kelly et al., 2021; Mendive-Tapia et al., 2021).

Several genetically-encoded cyclic peptide libraries have been
developed using phage display (Desimmie et al., 2012; Wang et al.,
2019; Chen S. et al., 2020; Simonetti and Ivarsson, 2020), mRNA-
display (Yamagishi et al., 2011; Goto and Suga, 2021) or the split-
intein circular ligation of peptides and proteins (SICLOPPS) (Scott
et al., 1999; 2001; Tavassoli and Benkovic, 2007). The latter method
exploits trans-splicing split-intein domains belonging to DNA
polymerase III (DnaE) from Synechocystis sp. PCC6803, and the
possibility of inserting the peptide libraries between the two
permutated intein domains (IC and IN). Upon intein auto-
processing, the peptide is head-to-tail cyclized and released
intracellularly (Scott et al., 2001; Tavassoli and Benkovic, 2007).
SICLOPPS was successfully employed in many cell-based assays,
exploiting prokaryote (Tavassoli et al., 2008; Nordgren and
Tavassoli, 2014) and eukaryote (Kritzer et al., 2009; Mistry and
Tavassoli, 2017) organisms. Modified versions of SICLOPPS have
also been developed to generate lariat peptides. Lariat refers to cyclized
peptides having an ester bond between a side-chain hydroxyl group
and the C-terminus. By substituting an asparagine residue with an
alanine (N36A) in the Ic subunit of the SICLOPPS construct, intein-
mediated cyclization is arrested at an intermediate step, resulting in
cyclic peptides retaining an exposed N-terminus bridging the newborn
lariat to the IC domain (Barreto et al., 2009; Barreto and Geyer, 2014).
Therefore, this SICLOPPS variant can be fused to a module of interest,

like the bacterial LexA transcriptional repressor (Barreto et al., 2009),
making it suitable for Yeast Two-Hybrid (Y2H) assays, which enable
the identification of peptides that interact with a protein target of
interest (Paiano et al., 2019).

In this study, we used the SICLOPPS lariat-generating cyclic
peptide strategy to obtain a combinatorial cyclic peptide library
suitable for the GAL4-based Y2H assay (Fields and Song, 1989).
The advantage of using the Y2H system relies on the fact that the
screening can be performed in vivo with no need to express and purify
the target protein. This technology was used to screen for CPs that can
physically interact with the GAL4-DNA Binding Domain (GAL4-
DBD). Among the several GAL4-DBD-interacting cyclic peptides
(G4CPs) identified, G4CP2 is shown, by means of activity assays in
vivo, to interfere with GAL4 transcriptional activity when supplied
both intra- and extracellularly to a GAL4-harbouring strain, proving
that our technology can be adopted for multiple purposes, including
metabolic engineering (Chen and Elowitz, 2021; Rosa et al., 2021).

Materials and methods

Plasmids, yeast strains and growth conditions

The CYCLIC library was constructed in the pGADT7-KanMX
vector, a derivative of pGADT7 (Clontech), which was modified by
inserting the KanR resistance gene under the control of
TEF1 promoter and terminator (KanMX cassette). Unless stated
otherwise, all cloning procedures were performed using the DNA
synthesis and cloning services at Officinae Bio (Venice, Italy).
CYCLIC-harboring plasmids were transformed into the AH109
(MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ,
LYS2::GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2,
URA3::MEL1UAS-MEL1TATA-lacZ) yeast strain (Clontech). GAL4-
DBD was expressed using the pGBKT7-GW plasmid (kindly
provided by Prof. Brendan Davies) transformed into the Y187
(MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4Δ,
met–, gal80Δ, URA3::GAL1UAS-GAL1TATA-lacZ) yeast strain
(Clontech). A construct for producing a linear version of
G4CP2 was generated by homologous recombination, co-
transforming NruI-linearized pGADT7-KanMX-SspIntein plasmid
with a PCR-reconstituted fragment in yeast, using 8xNNK flanking
Fw, 8xNNK flanking_Rev and G4CP2-stop oligonucleotides
(Supplementary Table S1). In this construct, we introduced a stop
codon between the G4CP2 sequence and the InteinN element.

GAL4 reporter activity assays and phenotypic assays were
carried out in the S288C-derivative strain BY4741 (MATa,
his3Δ1, leu2Δ0, met15Δ0, ura3Δ0), transformed with the
SLVD02 plasmid (Escalante-Chong et al., 2015)—HO-GAL1p-
YFP-hphNT1-HO integration cassette—upon NotI linearization.
GST-Intein ± G4CP chimeras were expressed by substituting the
GAL4 Activation Domain (GAL4-AD) with a GST-tag coding
sequence in the pGADT7-KanMX-SspIntein vector. BY4741
Δgal4, Δgal1, Δgal80 mutant strains were purchased from
SRD—Scientific Research and Development GmbH (Oberursel,
Germany). Yeast cells were cultured at 30°C both on solid and
liquid media, unless otherwise stated in the text, untransformed
strains were cultured on 2xYPDA and, when transformed with
plasmids and/or integration cassettes, on SD media depleted of
nutrient(s) required for auxotrophic selection and/or
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supplemented with antibiotic(s). 2% (w/v) glucose was used in
media unless differently specified.

Library construction and quality control

The SspIntein gene (Barreto and Geyer, 2014), was generated by
annealing 8 overlapping oligonucleotides (Supplementary Table S1) and
Klenow-mediated fill-in at 25°C for 8 h. The reconstituted gene was then
amplified using flanking primers (Supplementary Table S1), digested with
EcoRI and XhoI restriction enzymes and cloned into the pGADT7-
KanMX vector, previously linearized with EcoRI and SalI. 50 µg of
pGADT7-KanMX-SspIntein were linearized with NruI and de-
phosphorylated. The oligonucleotide for library recombination (library
fragment) in pGADT7-KanMX-SspIntein (Supplementary Table S1) was
obtained by PCR, generating a 141 bp amplicon (Supplementary Figure
S1). Library transformation was performed using the protocol described
by Gietz and Schielts (2007), with minor modifications. The AH109 yeast
strain was cultured overnight in 2xYPDA, diluted to 0.5 OD600 in a total
2xYPDA volume of 600 mL and grown for ~5 h (~2.0 OD600). The
culture was harvested, extensively washed with water, pooled in a single
50 mL centrifuge conical tube, and resuspended with the transformation
mix: 28.8 mL 50% (w/v) PEG3350, 4.32 mL 1M lithium acetate, 6 mL
single stranded DNA carrier (2 mg/mL), 48 µg of linearized plasmid,
5.4 mL of library fragment and 2.2 mL of DMSO. After vigorous
vortexing, the yeast cell suspension was divided into several 2 mL
microcentrifuge tubes and incubated at 42°C for 60 min. Cells were
harvested and incubated in 2xYPDA at 30°C for 3 h. After collection,
cells were plated on 150 Petri dishes (150 mm diameter) poured with
SD–L (G418 200 μg/mL). Library titer was estimated plating serial
dilutions of the pooled transformations. Additionally, small scale
transformations, to estimate the number of transformed yeast cells
without the CP-encoding sequence contained in the library, were also
performed by comparing two small scale transformations with or without
the library fragment (estimated number of library members without the
CP insertion is 1 out of 609 library members). After 5 days of growth at
30°C, cells were harvested fromplates, and the pellet was re-suspended at a
1:1 ratio with SD-L supplemented with 50% (v/v) glycerol and stored
at −80°C, in 500 µL aliquots. The library titer was estimated after thawing
a stored aliquot (3.6 x 106 CFU/μL).

Mating-based Y2H screening for the
identification of GAL4-DBD-interacting
(G4CPs) peptides

Y187 yeast cells transformed with pGBKT7-GW vector were
mated with CYCLIC-expressing cells (AH109) following guidelines
provided by Takara Bio USA (PT4084-1). Cells were plated on SD -W-
L-H-A + 5 mM 3-AT (3-amino-1,2,4-triazole) + 200 μg/mL G418
(Geneticin) and incubated at 30°C for 7 days. CP-encoding sequences
were identified using standard PCR procedures and amplicons were
sequenced using the PlateSeq Kit PCR service (Eurofins Genomics).
Only peptide-encoding sequences, correctly recombined in the
SspIntein gene, were annotated. A consensus sequence search was
performed with the algorithm developed by Dhanda et al. (2018),
using “cluster-break” method and setting 50% identity threshold
(Supplementary Table S2) and graphically represented using
WebLogo3 (Crooks et al., 2004; Supplementary Figure S2).

G4CPs interaction strength

Plasmids encoding for G4CPs were isolated using the Macherey-
Nagel NucleoSpin Plasmid mini-prep kit—following the
manufacturer’s protocol after bead beating in Buffer A1—and used
to transform E. coli DH10B cells. Plasmids recovered from bacteria
were used to transform AH109 yeast strains following the lithium
acetate protocol (Clontech user manual PT1172-1). Subsequently,
transformants were mated with Y187 strain, harboring the
pGBKT7-GW vector and plated on SD–W –L (G418 200 μg/mL).
To assay the interaction strength between the identified G4CPs and
the GAL4-DBD, cells obtained from the different matings were
cultured in liquid medium, OD600 normalized to 0.5, serially
diluted and spotted on SD–W –L (control) and SD–W –L–H –A
(G418 200 μg/mL) with/without 3-AT (Figures 1A-C).

Protein extraction, SDS-PAGE and western
blotting

Total soluble proteins were extracted from overnight liquid yeast
cultures either by NaOH treatment (Kushnirov, 2000) or bead-beating
(Dunn and Wobbe, 2001) methods. The quantity of proteins loaded
into SDS-PAGEs was standardized by measuring the OD600 of liquid
cultures. For SDS-PAGE, mPAGE™ Bis-Tris Precast Gels (Merck Life
Sciences) were used. After electrophoresis, proteins were transferred
onto a PVDF membrane using the semi-dry Bio-Rad Transblotter
system. After blocking in TBS-T buffer supplemented with 5% (w/v)
skimmed milk (Sigma-Aldrich), the membranes were incubated with
primary antibodies according to suppliers’ instructions. The anti-GFP
and anti-GST antibodies were purchased from Invitrogen (Cat# A-
11122) and GE Healthcare (GE27-4577-01), respectively; the anti-
GAL4-AD antibody was purchased from Merck Life Science (G9293-
200UG). Chemi-luminescence was detected using HRP-conjugated
secondary antibodies and ECL substrate, and a Bio-Rad ChemiDoc
Imaging System was used to visualize and record chemiluminescent
signals.

Pull-down interaction assay

GST-G4CP2 and GST-SspIntein-carrying yeast strains (AH109)
were grown at 30°C overnight. Cells were then lysed in 500 µl Pull-
down (PD) buffer [60 mM HEPES-KOH pH 8.0, 150 mM NaCl,
60 mM KOAc, 10 mM MgOAc, 0.3% NP40 (v/v)] and proteinase
inhibitor cocktail (cOmplete™, COEDTAF-RO, Roche),
supplemented with 4 U DNase I (Roche) and lyticase for 30 min at
28°C. After bead beating, the lysate was cleared by centrifugation
(16,000 g, 15 min) and incubated for 2 h at 4°C with 60 µl of
Glutathione Sepharose affinity chromatography resin (Cytiva
17–0756-01). Glutathione sepharose resin was then recovered by a
centrifugation step (1,000 g, 5 min) and washed with PD buffer. BL21
(DE3) pLysS E. coli cells expressing 6xHis-GAL4-DBD (in the pET14b
vector) were lysed in 500 µl PD buffer supplemented with 4 U DNase I
(Roche) and lysozyme. The cell lysate was cleared (16,000 g, 15 min)
and incubated for 90 min (4°C on a rotating wheel) with the GST-
G4CP2- and GST-SspIntein-bound glutathione sepharose resin. To
stabilize the interaction between GST-G4CP2 and 6xHis-GAL4-DBD,
0.75% (v/v) of formaldehyde (FA) was added to the samples. After
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30 min incubation (4°C on a steering wheel), the FA-mediated
crosslinking was quenched by the addition of 125 mM glycine and
the sepharose resin was washed 3 times with PD buffer for 10 min

each. The sepharose resin was then eluted with 100 µl 4xDTT-LDS
sample buffer (Merck-Millipore) and incubated at 70°C for 15 min, to
revert the FA crosslinking.

FIGURE 1
CYCLIC library validation. (A)Mating-based Yeast Two-Hybrid (Y2H) screening. CYCLIC was transformed into the AH109 (MATa) yeast strain, which was
then co-cultivated with the compatible mating type Y187 (MATα) yeast strain; the latter was transformed with a GAL4-DNA Binding Domain (GAL4-DBD)-
expressing plasmid, to identify bait-interacting peptides through Y2H assay, in the resulting diploid yeast cells. (B) Eight yeast clones, expressing G4CP-
encoding constructs, were selected and their intein-mediated cyclization was assessed through western blot (WB) analysis, using a GAL4-AD primary
antibody. All peptide sequences underwent cyclization, as shown by the presence of two bands at ~38 kDa (upper red arrow) and ~23 kDa (lower red arrow),
respectively, corresponding to the full-length un-spliced protein (GAL4-AD-InteinC-8xNNK-InteinN) and to the spliced protein (GAL4-AD-InteinC-CP). As
controls, the following samples were included: i) yeast cells transformedwith the pGADT7-KanMX (GAL4-AD), which displays a signal with a slight shift inmass
(~21 kDa) (lower black arrow) respect to the spliced inteins (~23 kDa), corresponding to the GAL4-AD alone; ii) yeast cells transformed with the pGADT7-
KanMX-SspIntein vector (Ctrl), which performs intein splicing, even in the absence of 8xNNK sequence; iii) untransformed yeast cells (AH109), which
demonstrates that the signals at higher molecular weight (>42 kDa) (upper black arrow)—appearing in all the analysed samples—are not related to GAL4-AD-
Intein chimeras. It must be noted that the 8xNNK sequence is flanked by a Serine (Ser1) and a Cysteine (Cys10), belonging to InteinC and InteinN portions,
respectively, which are required for intein-mediated splicing and peptide sequence cyclization. The protein bands visible between the linear and cyclic
peptides represent cyclization intermediates. Experiment was carried out using AH109 yeast strain. CBB, Coomassie Brilliant Blue staining of the
corresponding SDS-PAGE used as loading control. (C) The same eight selected yeast clones of panel B were assayed for their interaction strength with the
GAL4-DBD, again in a Y2H assay. Optical densities of yeast cell cultures were normalized, serially diluted and spotted on different media. As can be observed
on selective plates of increasing stringency (from -W-L-H-A to -W-L-H-A +2.5 mM 3-AT), the strains expressing different G4CPs display different growth
levels. It is important to note that yeast strain expressing the control plasmid does not grow on selective media, highlighting the absence of interaction
between the CYCLIC scaffold and GAL4-DB.
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Lithium toxicity assay

The lithium toxicity assay to monitor GAL4 activity was
performed, as described in Masuda et al. (2008) in S. cerevisiae
BY4741 pGAL1::YFP strain. Overnight yeast liquid cultures were
grown in SD -L (2% (w/v) raffinose) supplemented with
hygromycin (200 μg/ml) and G-418 (200 μg/ml), optical density
standardized to 0.5 OD600 and serial dilutions were spotted on
plates. Composition of SD -L plates for the lithium toxicity assay
was 2% (v/v) glycerol, 0% or 2% (w/v) galactose and 0 or 40 mM LiCl.
Yeast growth was monitored over 3-4 days.

Peptide synthesis

The cyclic peptide G4CP2 (βA-RYFFDMWY) was chemically
synthesized in-house, to tune the experimental conditions, and
subsequently purchased from CASLO ApS (Denmark). G4CP2 was
synthesized by microwave-assisted automated Fmoc/tBu-based solid
phase peptide synthesis (MW-SPPS) (Pellegrino et al., 2012) using
Liberty Blue synthesizer (CEM Corporation). Chlorotrityl resin was
used as solid support with a loading of 0.5 mmol/g and the synthesis was
carried out on a 0.1 mmol scale. All amino acids were N-terminally
Fmoc (fluorenylmethoxycarbonyl)-protected, while the side chains of
trifunctional amino acids were protected with orthogonal, acid labile
groups. The following side chain protecting groups were used: 2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for Arg, tert-Butyl
(tBu) for Asp and Tyr and tertbutyloxycarbonyl (Boc) for
Trp. Coupling was performed using 5 equivalents (eq) of the
protected amino acid, previously dissolved in dimethylformamide
(DMF) to obtain a 0.2 M solution. As coupling reagents 5 eq of
N,N′-Diisopropylcarbodiimide (DIC, 0.5 M in DMF) and 5 eq of
Oxyma Pure (1 M in DMF with the addition of
0.1 MN,N-Diisopropylethylamine, DIPEA, to decrease the acidity of
the solution) were used. To deprotect the Fmoc group, a solution of
piperidine in DMF (20% (v/v) was applied. The coupling reaction was
accomplished at 25°C for 120 s, followed by 480 s at 50°C and 35W. To
couple arginine residues, a double coupling procedure was carried out.
The Fmoc group was cleaved using a standard de-protection protocol at
75°C, 155W for 15 s, followed by 60 s at 90°C, 50W. The resin was treated
with a solution of dichloromethane:trifluoroethanol:acetic acid 8:1:1 for
2 h at room temperature (RT). The solution was then filtered and
transferred to a flask. The solvent was evaporated under reduced
pressure, and the peptide was precipitated in water and freeze-dried.
After freeze-drying, the product was subjected to the cyclization step (Feni
et al., 2020; Feni and Neundorf, 2022). 1 eq of the full protected linear
peptide was dissolved in DMF (0.2 mM); consequently, benzotriazol-1-
yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP, 6 eq)
and 1-Hydroxybenzotriazole (HOBt, 6 eq) were added. DIPEA was
added till the solution reached pH 8. The reaction was left with
stirring at RT. After 6 h, PyBOP was added again, and the reaction
was left stirring overnight. The day after, the solvent was evaporated by
reduced pressure, the crude peptide was diluted with ethyl acetate and
extracted with brine and saturated NaHCO3. The organic phase was then
dried at reduced pressure and subjected to full cleavage. The crude peptide
was treated with TFA/phenol/water/thioanisole/3,6-dioxa-1,8-
octanedithiol (82.5:5:5:5:2.5, 3 ml in total). The reaction was
continuously stirred at RT for 3 h. Afterwards, the mixture was put in
a vial containing 30 ml of cold diethyl ether (Et2O) in order to precipitate

the peptide. The mixture was centrifuged and washed five times with cold
Et2O. The crude peptide was freeze-dried and dissolved in H2O:
acetonitrile (ACN) 65:35 + 0.1% trifluoroacetic acid (TFA) and
purified on semipreparative reversed-phase high performance liquid
chromatography, RP-HPLC (Jasco PU-2086, Adamas C18-Classic
10 µ, 250 × 21.2 mm ID). Acetonitrile/water with 0.1% TFA were used
as eluents with a gradient of 35%–80% ACN in 40 min. The peptide was
freeze-dried fromwater obtaining a white solid (20% yield). ESI-MS (m/z)
C65H79N13O14S1: calculated, 1280.5; found 1280.4.

CP11 (βA-ELRYSSIP) was purchased from CASLO ApS
(Denmark).

Fluorescence measurements

The fluorescence signal of BY4741 pGAL1::YFP reporter strain was
measured using a Varioskan LUX multimode microplate reader
(ThermoFisher Scientific). Overnight cultures were pelleted, washed
twice in water and OD600 normalized for the different cultures. An
equal volume of normalized cultures was pipetted in each well of a 96-well
plate containing different galactose/glucose (Gal/Glu) ratios. When
treating the cells with chemically synthesized G4CP2, a 10 mM stock
solution (100% DMSO) was diluted to a working concentration of
100 µM in each well designated for treatment. Fluorescence and
OD600 measurements were performed by incubating plates at 28°C,
shaking 2 min at 180 rpm, before each measurement.

Each experiment was at least repeated twice, and statistics analyses
were performed using GraphPad Prism 8.

RNA extraction, cDNA synthesis and
quantitative real-time PCR

BY4741 pGAL1::YFP yeast strain expressing GST-Intein (Control)
or GST-G4CP2 were grown o/n in SD -L 2% (w/v) raffinose,
supplemented with G418 (200 μg/μL) and Hygromycin (200 μg/μL).
Cells were harvested and washed in liquid YSDmedium, inoculated in
SD -L 1% (w/v) glucose or galactose (supplemented with G418 200 μg/
μL and Hygromycin 200 μg/μL) and cultured for 1 h at 30°C. Cell
pellets were resuspended in 800 µL of acidic phenol and 800 µL of
extraction buffer [100 mM Tris-HCl pH 7.5, 100 mM LiCl, 10 mM
EDTA, 1% (w/v) SDS], incubated for 45 min at 65°C and vortexed
every 10 min. After cooling, microtubes were centrifuged for 2 min at
15,000 rcf at 4°C, and the upper aqueous phase was washed twice with
an equal volume of chloroform. After LiCl precipitation (4 M final
concentration), the RNA pellet was washed twice with EtOH 75%,
dried and resuspended in nuclease-free water. RNA was quantified
using NanoDrop One (ThermoFisher Scientific). 1 µg of total RNA
has been retro-transcribed using iScript™ gDNA Clear cDNA
Synthesis Kit (Bio-Rad Laboratories S.r.l.), following manufacturer
guidelines. Real time (RT)-qPCR was performed using iTaq universal
SYBR Green Supermix (Bio-Rad Laboratories S.r.l.) and primers for
GAL1,GAL2, andACT1, the latter as normaliser (Han and Emr, 2011).
Relative expression of target genes was quantified using CFX Connect
Real-Time PCR Detection System (Bio-Rad Laboratories S.r.l.). For
each analyzed target gene, the RT-qPCR was repeated twice, where
each repetition included four independent biological replicates for
each yeast strain and condition analyzed. Statistical analysis was
performed using GraphPad Prism 8.
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In vitro passive membrane permeability of
G4CP2

The passive permeability of G4CP2, along with a further set of
27 compounds, was assessed using the parallel artificial membrane
permeation test (PAMPA-BBB) (Di et al., 2003) following an
established protocol (Estrada-Valencia et al., 2019; Campora et al.,
2021). Accordingly, a semiautomated pipetting device (BenchSmart 96,
Mettler Toledo) and a microplate spectrophotometer (SpectraMax Plus
384 microplate reader, Molecular Devices) were used for pipetting and
UV reading, respectively. The porcine brain lipid (PBL, catalogue n.
141101C) was purchased from Avanti Polar Lipids, the Millex filter units
(PVDF membrane, 0.45 μM pore size) were acquired from Millipore,
while commercial compounds and reagents were obtained from
Sigma-Aldrich. A 96-well acceptor microplate (PTFE, Millipore)
was prepared by filled each well with 300 μL of PBS/DMSO (95:5,
pH = 7.4), while the donor microplate artificial membrane (PVDF
membrane, pore size 0.45 m, Millipore) was carefully coated with
5 μL of PBL dissolved in dodecane (20 mg/L). Each compound was
dissolved in DMSO, diluted with PBS/DMSO (95:5, pH = 7.4) to a
final concentration of 40–100 μM in the donor well, filtered with a
Millex filter, and applied to the donor microplate wells (200 μL).
Next, the donor plate was carefully placed on top of the acceptor
plate, thereby bringing the artificial membrane in contact with the
buffer solution underneath. The donor well was covered with a lid,
and the whole system was left undisturbed overnight (18 h) at 25°C
in a container sealed with damp paper towels to prevent
evaporation. After incubation, the donor microplate was
carefully removed, and UV-vis spectroscopy was used to
determine the amounts of the tested compounds in the acceptor
and donor microplate wells, respectively. Each sample was
evaluated at five wavelengths in four wells during three separate
runs; accordingly, all data are presented as mean values with
relevant standard deviation. The permeability values (Pe,exp, cm/
s) were calculated according to the following expression: Pe,exp =
{−VdVa/[(Vd + Va)At]ln–1—da/deq}, in which Vd and Va represent
the volumes of the donor and the acceptor wells, respectively, A is
the surface of the artificial membrane, t is the permeation time,
whilst da and deq are the absorbance measured in the acceptor well
and the theoretical equilibrium absorbance value, respectively.
After the PAMPA-BBB test for all compounds was completed,
the integrity of the lipid membrane was evaluated based on the
transport of Lucifer Yellow (Sigma-Aldrich)—a fluorescent
molecule with very limited membrane permeability rejected by a
uniform and integral lipid membrane performed according to the
Millipore protocol lit. n. PC1545EN00 (https://www.sigmaaldrich.
com/technical-documents/protocols/biology/membrane-integrity-test-
for-lipid-pampa-artificial-membranes.html).

Results

Development of a combinatorial library of
cyclic peptides (CYCLIC) suitable for Yeast
Two-Hybrid assays

To develop a Y2H-based screening strategy useful for the
identification of cyclic peptides that physically interact with selected
target proteins, a modified version of the dnaE split intein-ecoding gene

(SspIntein) from Synechocystis spp. PCC6803 (Barreto and Geyer, 2014)
was cloned downstream from the GAL4-Activation Domain (GAL4-
AD), into the pGADT7-KanMX vector (Supplementary Figure S1). The
combinatorial peptide-encoding sequences, comprising eight
consecutive NNK degenerate codons (8xNNK), were inserted
between the InteinC (C-terminal) and InteinN (N-terminal) domains,
through in yeast homologous recombination (Supplementary Figure
S1). After transformation, 5 x 106 independent clones were obtained and
harvested. The resulting library, named CYCLIC (combinatorial library
of cyclic peptides), enables the cyclization of peptides by InteinN
excision and lactone bond formation between the hydroxyl group of
a serine side chain (named Ser1) and the C-terminus of the amino acid
encoded by the 8th NNK codon (Barreto and Geyer, 2014).

The effectiveness of our library as a platform for the identification of
target protein-interacting cyclic peptides was tested, using the GAL4-
DNABinding Domain (GAL4-DBD) as a bait in the Y2H screen. To this
purpose, the yeast strain AH109 (MATa), harboring the CYCLIC library,
was co-cultivated with the strain Y187 (MATα), expressing the GAL4-
DBD bait protein, to favor the formation of diploid cells essential for the
screening (Figure 1A). By sequencing the colonies grown on selective
media, 99 cyclic peptides physically interacting with the GAL4-DBD
were identified and named G4CPs (GAL4-DBD-interacting cyclic
peptides) (Supplementary Table S2). A randomly selected subset of
peptides was assayed for successful intein-mediated splicing and
cyclization by immunoblot using an anti-GAL4-AD antibody
(Figure 1B). Two protein bands, migrating at 38 and 23 kDa,
represent the uncyclized and cyclic forms of the peptide (Barreto
et al., 2009), respectively, that coexist together with cyclization
intermediates in yeast cells. Furthermore, the strength of the
interaction with the GAL4-DBD was assayed by plating diploid cells
(expressing the subset of G4CPs) on selective medium supplemented
with 2.5 mM 3-AT (Figure 1C). Three peptides, named G4CP2, 36 and
64, were selected for further analyses as they showed different levels of
interaction strength with the bait (Figure 1C). The G4CPs identified
(Figure 1B) were expressed in a haploid AH109 strain in the absence of
the GAL4-DBD. The yeast colonies were unable to grow on selective
media, thus excluding that they could trigger the transcription of the
report genes in the absence of GAL4-BD (Supplementary Figure S3).

GST-G4CP2 reduces the ability of the
endogenous yeast GAL4 transcription factor
to activate transcription

The addition of lithium to the yeast growth medium triggers yeast
cell death when galactose is the main carbon source, because of the
inhibition of phosphoglucomutase, a key enzyme in galactose
metabolism (Figure 2A) (Masuda et al., 2008). Based on this,
reduced activity of GAL4, under selective conditions (presence of
galactose and lithium), should lead to increased yeast cell growth. A
cytotoxicity assay was set up to evaluate the ability of selected G4CPs
to interfere with GAL4 transcriptional activity. The prey vectors,
expressing G4CP2, 64 and 36 were engineered by replacing the
GAL4-AD with a GST tag (GST-G4CP2, GST-G4CP64 and GST-
G4CP36) (Supplementary Figure S4) and introduced into the
BY4741 yeast strain. This strain can grow on galactose-containing
medium, since it carries the entire set of genes encoding the enzymes
required for galactose metabolism, including the GAL4 transcription
factor. BY4741 transformants were grown on YSD medium
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supplemented with either 0% or 2% galactose and in the absence or
presence of 40 mM LiCl (Figure 2B). Yeast colonies, expressing either
GST-G4CP64 or GST-G4CP36 and plated on medium with galactose
and lithium, showed an evident delay in growth, whilst yeast colonies
carrying the GST-G4CP2 construct grew vigorously on the same
medium (Figure 2B).

This supports the notion that the binding of G4CP2 to
GAL4 might interfere with GAL4 transcriptional activity and,
therefore, reduces the accumulation of galactose-1-phosphate and
other metabolic intermediates that are cytotoxic for yeast cells.

To further support this evidence, we introduced the pGAL1:YFP
reporter vector into the BY4741 strain (Figure 2C), where YFP
expression is controlled by the binding of GAL4 to the GAL1
promoter (Escalante-Chong et al., 2015; Ricci-Tam et al., 2021).
The BY4741 yeast strain responded quickly to the addition of 1%
galactose to the growth medium and to different galactose/glucose
(Gal/Glu) ratios (from 0.10 to 2.00), as shown by the large
accumulation of YFP protein, monitored by immunoblot using a
GFP-specific antibody (Figure 2D). The same strain was also

transformed with either GST-G4CP2 or an empty plasmid
(pGADT7-KanMX-GST-SspIntein) and the accumulation of YFP
was monitored by immunoblot analysis. Interestingly, while the
control and GST-G4CP2 expressing strains did not show any YFP
accumulation in presence of 1% glucose, the activation of the reporter
gene was strongly attenuated in the presence of GST-G4CP2 under
inducing conditions (1% galactose), confirming the interference of
GST-G4CP2 with GAL4 transcriptional activity.

GST-G4CP2 should also be able to affect the expression of
GAL4 target genes. To verify this assumption, we performed real
time (RT)-qPCR analysis, comparing the expression of the GAL1
(Lohr and Hopper, 1985) and GAL2 (Huibregtse et al., 1993) genes
between control (pGADT7-KanMX-GST-SspIntein) and GST-
G4CP2-expressing strains (in the BY4741-pGAL1::YFP genetic
background). As highlighted in Supplementary Figure S5,
significant lower GAL1 and GAL2 expression levels were detected
for the GST-G4CP2-expressing strain, compared to the control, while
no differences were observed using glucose as carbon and energy
source.

FIGURE 2
GST-G4CP2 reduces GAL4 transcriptional activity. (A) Galactose metabolism. Galactose entry into yeast cells activates the GAL4 transcription factor
which, in turn, induces the transcription of galactose metabolic genes. In this context, lithium can block the conversion of galactose 1-phosphate (gal 1-P) to
glucose 1-phosphate (glu 1-P), leading to cell toxicity and cell death in yeast. Inhibition of GAL4 activity in these conditions will allow higher growth rate by
bypassing lithium toxicity. UAS, Upstream Activator Sequence. (B) Lithium toxicity assay. BY4741 yeast cells expressing, or not, different GAL4-interacting
cyclic peptides (G4CPs) were grown on media supplemented with either 0% or 2% galactose, in the absence or presence of lithium. Relative growth of serial
dilutions of each strain wasmonitored over a few days. The red arrowhead indicates the increased growth of GST-G4CP2-expressing strain on 2% galactose +
lithium-containing medium. (C) BY4741 pGAL1:YFP reporter strain allows the monitoring of GAL4 activity in vivo and enables to assess the effects of GST-
G4CP2 inhibitory activity. (D) Reporter response to different sugars and sugar ratio in the BY4741 strain, monitored by immunoblot analysis using a GFP
specific primary antibody. (E) Immunoblot analysis using a GFP specific primary antibody performed on total proteins extracted from BY4741 pGAL1:YFP yeast
cells expressing GST-G4CP2 or control plasmids, grown on either glucose or galactose supplemented media. C.B.B., Coomassie Brilliant Blue stained SDS-
PAGE, used as loading control.
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To confirm the interaction between GST-G4CP2 and GAL4-DBD,
a pull-down interaction assay was also performed. The physical
protein-protein interaction is shown in Supplementary Figure S6.

GST-G4CP2 reduces GAL4 activity over a
wide range of gal/glu ratios

To further characterize the effects of GST-G4CP2 on the target
protein, we measured the activity of GAL4 in BY4741 yeast cells,
carrying the pGAL1::YFP reporter gene, with or without GST-G4CP2,

as an average of YFP fluorescence signal intensity over yeast cell count
(YFP/OD600). To this purpose, we used 96-well plates containing
media with different galactose/glucose ratios (Figure 3A;
Supplementary Table S4), as galactose sensing in yeast is influenced
by the galactose/glucose ratio in the medium, rather than on galactose
concentration alone (Escalante-Chong et al., 2015). As expected, the
YFP fluorescence signal of the control strain increased in response to
increasing relative galactose concentrations, while almost no YFP
signal was detected from the strain expressing GST-G4CP2, further
confirming the interference of GST-G4CP2 on GAL4 activity over a
wide range of Gal/Glu ratios. As highlighted in Supplementary Figure

FIGURE 3
GST-G4CP2-mediated inhibition of GAL4 occurs over a wide range of sugar concentrations and GST-G4CP2 cyclization is required for activity. (A)High-
throughput YFP fluorescence signal measurement of BY4741 pGAL1::YFP yeast cells expressing, or not, GST-G4CP2 and grown under different galactose/
glucose ratios in 96-well plates over a timeframe of 15.5 h. Fluorescence read-out is given as an heatmap and expressed as YFP signal/OD600 (for raw data see
Supplementary Table S4). (B) Mutation of Cysteine 10 to Alanine (C10A) in the peptide scaffold prevents peptide cyclization, as previously reported by
Barreto et al. (2009). Lithium toxicity assay performed in yeast cells expressing either GST-G4CP2 or the mutant version GST-G4CP2-C10A, with their
respective controls (empty vectors), highlight increased tolerance of the GST-G4CP2-expressing strain to lithium with respect to the GST-G4CP2-C10A-
expressing strain. (C) Lithium toxicity assay in gal mutant backgrounds (Δgal1, Δgal4 and Δgal80) expressing, or not, GST-G4CP2, to assess the impact and
specificity of GST-G4CP2 on GAL4 activity upon perturbation of galactose metabolism. Red arrows indicate genetic background where GST-G4CP2 induced
higher lithium tolerance.
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FIGURE 4
Unconstrained G4CP2 retains its GAL4 inhibitory activity. (A) On the left, a schematic representation showing how GST-SICLOPPS works. After intein
splicing, the cyclic peptide (CP) is excised from the reconstituted intein (InteinC + InteinN) and released intracellularly without any additional scaffold. Cells
expressing control (GST-SICLOPPS) or G4CP2 (GST-SICLOPPS-G4CP2) were grown in 96-well plates under two different galactose/glucose ratios, non-
inducing conditions (1:1) and inducing conditions (10:1), shown in panel (B and C), respectively. Fluorescence signals were recorded over a timeframe of
930 min, and reported in the graphs as YFP signal intensity/OD600. (D) Chemically synthesized G4CP2 (shown on the left) and CP11 (not shown) were applied
to BY4741 pGAL1::YFP yeast strain at 100 µM. Cells were treated with G4CP2, CP11 or mock (Control) and grown in 96-well plates and replicating the
conditions described for the experiment in the panel A. Fluorescence read-out is expressed as YFP signal intensity/OD600 (single graphs for YFP andOD600 are
reported in single YFP and OD graphs are Supplementary Figure S11). Statistical significance was determined using Two-way ANOVA: *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.001. Raw data (n = 16) are shown in Supplementary Table S5.
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S4, GST-G4CP2 exists in both un-cyclized (unspliced intein) and
cyclized (spliced intein) forms in yeast cells. To verify that only the
cyclic version of GST-G4CP2 interferes with GAL4 activity, a split-
intein variant, where cysteine in position 10 is replaced with an alanine
(C10A) to prevent cyclization, was produced (Barreto et al., 2009)
(Figure 3B). The lithium toxicity assay was subsequently repeated,
revealing that, while the GST-G4CP2-expressing strain retains an
increased capacity for growth on selective media (2% galactose and
40 mM lithium chloride), the GST-G4CP2-C10A mutant version is
unable to induce any positive effect on yeast growth, with the latter
being comparable to the control. This result demonstrates the
relevance of G4CP2 cyclization to hinder GAL4 transcriptional
activity. To strengthen the assumption that only the cyclic version
of G4CP2 is responsible for the observed phenotypes, we generated a
G4CP2 variant (linear G4CP2), where a stop codon is inserted
between the G4CP2 sequence and the InteinN element
(Supplementary Figure S7A). This modification prevents InteinN
expression and the consequent peptide cyclization, leaving a linear
G4CP2 sequence attached to the GAL4AD-InteinC fusion protein
(Barreto et al., 2009). Western blot analysis, confirmed the absence of
InteinN expression and circularization of the peptide (Supplementary
Figure S7B). Consistently, the yeast strains expressing the linear
G4CP2 failed to grow on media lacking tryptophan, leucine,
adenine and/or histidine since it was unable to interact with
GAL4-DBD and activate the reporter genes ADE2 and HIS3
(Supplementary Figure S7C).

GST-G4CP2 is specific for the
GAL4 transcription factor

GAL1 and GAL80 are positive and negative regulators of the
GAL4 TF, respectively (Supplementary Figure S8), and their roles in
the regulation of galactose metabolism in yeast have been extensively
studied (Harrison et al., 2022). To further characterize the effects of
GST-G4CP2 on the endogenous galactose metabolic pathway, control
and GST-G4CP2-expressing plasmids were introduced into different
gal mutants (BY4741 genetic background), such as Δgal4, Δgal1 and
Δgal80, and their growth on lithium-containing medium was
evaluated (Figure 3C). When grown on medium with 2% galactose
and lithium, increased growth of GST-G4CP2-expressing BY4741 (wt)
and Δgal80 strains, where GAL4 is normally functioning or over-
activated, respectively, was observed, while no differences in growth
were detectable between Δgal4 and Δgal1 strains, since GAL4 is absent
or strongly repressed in these genetic backgrounds, supporting the
specificity of GST-G4CP2 for the GAL4 transcription factor.

Unconstrained G4CP2 maintains its ability to
inhibit the GAL4 TF

While GST-G4CP2 can interfere with GAL4 activity when
expressed intracellularly and fused to a scaffold such as GST-
SspIntein, the GAL4-interfering activity of free G4CP2 when it is
provided alone without any scaffold fused to it remains to be
investigated. To verify whether the unconstrained G4CP2 can
interfere with the GAL4 TF, we used two different strategies. In the
first case, we mutated the intein to the one used in the SICLOPPS
system (A36N), which releases a scaffold-free cyclic peptide

intracellularly after self-splicing. Alternatively, the effect of
chemically-synthesized, exogenously-added cyclic peptide was
evaluated in yeast cell culture. Unfortunately, the ester bond
present in the lactone structure of G4CP2 is known to be subject
to hydrolysis, possibly resulting in the linear carboxylate derivative. To
avoid G4CP2 linearization, the G4CP2 peptide (βA-RYFFDMWY)
containing a βAlanine (βA) instead of Ser1 (see Figures 1B, 4D) was
produced. This bioisosteric replacement allowed to introduce the
lactam bond that is more stable toward hydrolysis than the lactone
one, without altering the number of atoms of the cyclic peptide
backbone.

To perform βA-RYFFDMWY synthesis, the chlorotrityl resin was
chosen as a solid support as it allows the full protected peptides to be
cleaved from the resin. Head-to-tail cyclization was then performed
in-solution in pseudo-diluted conditions (0.2 mM in DMF), using
PyBOP and HOBt as coupling reagents and DIPEA as the base. After
cyclization, the side chain protecting groups were removed and the
crude peptide was purified on RP-HPLC affording the pure
G4CP2 cyclic peptide.

SICLOPPS-based control (pGADT7-KanMX-GST-SICLOPPS)
and G4CP2 (pGADT7-KanMX-GST-SICLOPPS-G4CP2) constructs
were introduced in the BY4741 pGAL1::YFP strain, and the activity of
the biosensor in the two strains, grown in 96-well plates under
1.00 and 10.00 Gal/Glu ratios, was recorded again as YFP/OD600

signal over a time-frame of 15.5 h (Figure 4A). As for the lariat-
generating construct (Figure 3A), expression of free G4CP2 induced a
significant decrease in reporter signal, indicating that it retained the
ability to inhibit GAL4 downstream activity (Figures 4B,C;
Supplementary Table S5, Supplementary Figure S9).

To test the effects of exogenous administration of chemically
synthetized G4CP2 on pGAL1::YFP biosensor, a random-selected
control peptide (CP11) was used. Absence of toxicity for yeast cells
was demonstrated for both CPs (Supplementary Figure S10).
G4CP2 and CP11 were used at 100 µM to treat BY4741 pGAL1::
YFP yeast cells grown in 96-well plates under 1.00 and 10.00 Gal/
Glu ratios. YFP/OD600 values were again recorded for 15.5 h
(Figure 4D).

As shown in Figures 4E, F (see also Supplementary Table S5),
reporter activation occurs at both 1.00 and 10.00 Ga l/Glu ratios, while
being stronger, consistently, when the concentration of glucose was
lowered by ten times (Figure 4F). Interestingly, non-treated and
CP11 treated cells showed a continuous increase in YFP
fluorescence signal, while this effect was strongly attenuated in
G4CP2-treated cells (Figures 4E, F). Clearly, this difference cannot
be attributed to different growth rates, rather than to different
activation of the YFP reporter, as shown by the single YFP and
OD graphs (Supplementary Figure S11), demonstrating that the
unconstrained G4CP2 can interfere with GAL4 activity.

Our bioisosteric replacement approach is commonly used in
medicinal chemistry to obtain clinically effective compounds
(Patani and LaVoie, 1996), although differences between lactone
and lactam bonds are reported in literature (Kerns et al., 2004).
Specifically, the chemically-synthetized lactam version of G4CP2 is
able to mimic the biological activity of the genetically expressed
lactone counterpart (GST-G4CP2), indicating that no major
alterations on G4CP2 activity are introduced upon lactone/lactam
bond replacement.

The successful exogenous application of G4CP2 suggests that the
cyclic peptide is able to move through the yeast cell wall and plasma
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membrane. To study G4CP2 cell permeation, the in vitro PAMPA-
BBB assay was carried out to determine the value of the passive
membrane permeability Pe,exp for G4CP2 and three further cyclic
peptides, namely CSA, CSD, and EnB. According to the adopted
passive permeability classification scheme (Di et al., 2003; Campora
et al., 2021), the Pe,exp value obtained for G4CP2 (3.3 ± 0.4 ×10−6 cm/s)
allowed this cyclic peptide to be classified as a moderate-to-good
membrane-permeable compound, in particular when compared to
CSA (Pe,exp = 2.1 ± 0.4 ×10−6 cm/s), CSD (Pe,exp = 0.93 ± 0.5 ×10−6 cm/
s), and to EnB (Pe,exp = 8.3 ± 0.7 ×10−6 cm/s), for which methylation of
all N atoms involved in the peptide bonds is known to positively
modulate membrane permeability (Dougherty et al., 2019). PAMPA-
BBB assay validation was finally performed by determining the
experimental permeabilities for 24 control compounds of known
passive permeability values (Pe,lit), yielding very good overall data
agreement (Supplementary Table S3). The overall satisfactory
membrane permeability of G4CP2 is further highlighted by the fact
that PAMPA-BBB uses a blood-brain barrier, which is more difficult
to cross than other barriers used in PAMPA assays.

Discussion

In this work, we adapted an 8xNNK combinatorial library of cyclic
peptides to the GAL4-based Yeast Two-Hybrid assay, enabling the
identification of cyclic peptides that can interact with a target protein
(bait). Here, we show that CYCLIC can be used to identify CPs
(Supplementary Table S2) with binding affinity and inhibitory activity
toward the full-length GAL4 TF, as shown for G4CP2. This peptide
represents a useful active molecule to be used in any biotechnological
approach that relies on the yeast GAL4 TF, as it exerts its inhibitory
activity when both heterologously expressed or exogenously applied.

Beyond CYCLIC, the implementation of split-inteins in A TF-
dependent selection system was already reported in literature. Head-
to-tail cyclic peptides obtained via intein splicing have been identified
for their ability to avoid cell death in human (Kinsella et al., 2002) and
yeast (Kritzer et al., 2009) cells by interfering with biological processes
upstream or downstream, respectively. However, in these studies, the
authors did not identify the precise molecular targets of the identified
CPs, thus the molecular mechanisms at the basis of their activities
remain elusive. Recently, King and co-workers (2021b) developed a
library of modified peptides, RiPPs (ribosomally synthesized and post-
translationally modified peptide). The library relies on two fusion
proteins containing the RiPP and the bait. Their interaction brings
together two-halves of a split intein releasing a σ factor that recruits the
RNA polymerase to promote transcription of a marker gene (King
et al., 2021). This tool led to the identification of a SARS-CoV-2 Spike
receptor binding domain (RBD) interacting peptide (AMK-1057).
Interestingly, the interaction was not mapped on a known
therapeutic binding region of the RBD protein, indicating that this
library can be used for proteins that lack obvious “druggable” pockets
and, as the assay is performed by screening the library on the entire
protein surface, raising the possibility of developing’s peptides suitable
for diagnostics and PROTACs (PROteolysis Targeting Chimeras).

The concept of screening a peptide library against the whole
protein surface was anticipated by Barreto and collaborators (2009)
that developed a LexA-based yeast two-hybrid assay for the
identification of bait-binding “lariat” peptides. This strategy proved
to be useful for the identification of inhibitors of LexA auto-proteolysis

(Barreto et al., 2009) and of the kinase ABL1 (Bharathikumar et al.,
2013), involved in bacterial SOS response and chronic myelogenous
leukaemia. In this context, CYCLIC is implemented in a GAL4-based
system, bringing together the advantages related to one of the more
widely adopted systems to study PPIs in molecular biology (Paiano
et al., 2019) and the possibility to “blindly” assay the entire target
molecular surface, particularly useful when “druggable” pockets or
relevant PPIs are unknown, or inhibition/interference is not the
desired research goal.

Additionally, CYCLIC is the first constructed and screened “lariat”
peptide library having the structure Ser1-(X)n-Cys10 (X = any amino
acid), discussed by Barreto and Geyer (2014), but never tested
experimentally. All the other Y2H-compatible “lariat” peptide
libraries reported in the literature (Barreto et al., 2009;
Bharathikumar et al., 2013) displayed a peptide structure (Ser1-
(X)nEY-Cys10) having a constitutive interaction bias derived by the
presence of C-terminal E and Y residues in all the peptide sequences.

Saccharomyces cerevisiae GAL4 has been, indeed, a pioneer
protein for synthetic biology applications, being at the basis of the
well-known GAL4-based Yeast Two-Hybrid strategy. Moreover,
the GAL4-upstream activating sequence (UAS) is a tool routinely
used for targeting gene expression that has shed light molecular
networks modulating tissue and organ differentiation in
Drosophila, mouse, zebrafish, Arabidopsis thaliana and many
other model organisms (Jiang et al., 2015; Slomovic et al.,
2015; Ryo et al., 2017; Andres et al., 2019; Iacopino et al.,
2019; Zhao et al., 2021).

Moreover, the list of G4CPs provided in this work, represents the
“background noise” of our CYCLIC GAL4-based YH2 strategy, i.e.
such a set of interacting peptides can be subtracted from the list of
cyclic peptides identified by using any bait of choice fused to GAL4-
DBD, reducing the downstream work of CP-bait interaction
validation.

Noteworthy, by screening CYCLIC toward GAL4-DBD we were
able to identify a cyclic peptide displaying inhibitory activity toward
GAL4, even though we relied on a GAL4-based Y2H method, where
GAL4-DBD is an essential module for the assay. As a matter of fact, a
complete inhibition of GAL4BD would have compromised yeast
growth on interaction-selective media and the consequent recovery
of positive colonies. The fact that we were able to identify a bioactive
peptide using GAL4-DBD as bait suggests that inhibitors can be found
by screening CYCLIC with other targets.

Notably, no altered growth phenotype was observed in GST-
G4CP2-expressing yeast cells, when grown on medium
supplemented with galactose and in the absence of lithium,
compared to their controls. In fact, even the Δgal4 strain was still
able to grow under these conditions (Figure 3C), suggesting
unexplored players in the galactose metabolic pathway, in
agreement with Masuda et al. (2008).

It should be highlighted that the peptide-bait protein
interaction does not necessarily imply interference with target
protein activity. As shown for G4CP2, the development of
proper stand-alone tests to directly monitor bait protein activity
after treatment with candidate cyclic peptides, such as
luminescence/fluorescence-based reporter assays or enzymatic
assays, is also needed for the discovery of active compounds. In
this context, as shown in Figure 4, SICLOPPS is a good
complementary assay to be used in combination with CYCLIC,
providing a fast interaction-to-activity route for the identification
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of lead compounds in drug discovery studies, when in vivo
functional/reporter assays are available.

Additionally, as shown in Supplementary Table S2, some
GAL4 interacting peptides were identified several times during
screening (sequence abundance). Consensus sequences could be
recognized among all peptides identified using CYCLIC against
the GAL4DBD as bait (Supplementary Figure S2 and
Supplementary Table S2). However, abundance can only
suggest good binding strength without implying any kind of
activity towards the target protein. Furthermore, consensus
sequences can be tricky to be interpreted since the molecular
weight (size) of the target protein and library complexity must
also be considered. The larger the molecular surface to be assayed,
the higher the number of sequence motifs are identified (due to
multiple binding sites). In addition, in libraries like CYCLIC
(Barreto et al., 2009; Kritzer et al., 2009), not all possible
amino acid combinations can be effectively screened. CYCLIC
is constituted by 5 x 106 yeast transformants, while peptides are
codified by 32 possible NNK codons occupying 8 consecutive
positions, thus 328 = 1.1 x 1012 possible codon combinations are
possible. Clearly, a low portion of the theoretical complexity can
be effectively entrapped in the library. Therefore, the obtainment
of robust consensus sequences is not guaranteed, especially when
large protein surfaces are assayed. Probably, this analysis can
provide useful information when performed on a sub-set of
sequences having something in common, like the inhibition of
enzymatic activity.

It is worth noting that peptides having been selected in Figures
1B, C, as stated above, were chosen randomly among G4CPs,
without considering any consensus sequence analysis
(Supplementary Figure S2, Supplementary Table S2) or their
relative abundance in the screening (Supplementary Table S2),
since these parameters do not provide information on their
biological activities. In fact, we estimated that peptides capable
of interfering with GAL4-DBD activity would be less represented
with respect to those which are simply bait-interacting peptides
(i.e., interaction without negative effect on GAL4-DBD), as their
selection is unfavored by the choice to target an essential yeast two-
hybrid module. Coherently, it is not surprising that none of the
identified consensus sequences correctly describe G4CP2 amino
acid composition, and that G4CP2 was identified just once in the
screening.

Cyclic peptides have already been proven to be good
candidates in drug discovery. In fact, peptides can be small,
cyclization can improve their conformational stability, they are
resistant to degradation and they can exhibit higher specificity for
their target protein with respect to their linear counterparts.
These features, together with their facile production using
micro-organisms through fermentation, other than by chemical
synthesis, makes them optimal candidates for the development of
peptide-based drugs (Parachin et al., 2012; Bockus et al., 2013;
Tapeinou et al., 2015; Yoshimi et al., 2018; Bucci et al., 2020;
Cheng and Hua, 2020; Sohrabi et al., 2020; Kelly et al., 2021;
Mejía-Pitta et al., 2021; Mendive-Tapia et al., 2021; Muttenthaler
et al., 2021; Zhang and Chen, 2022). As shown in Figure 4, the
unconstrained G4CP2 mirrored the molecular phenotype
observed through expression of the GST-SspIntein fusion
variant, confirming that this CP has inhibitory activity against
GAL4 even when separated from the GST-SspIntein molecular

scaffold. As indicated by the in vitro PAMPA-BBB assay,
G4CP2 retains a moderate-to-good passive permeability, a very
desirable feature for a cyclic peptide (Dougherty et al., 2019),
especially when targeting intracellular proteins or PPIs. Peptide
activity can be improved by increasing its permeability to the
membrane and/or favoring nuclear localization, through
conjugation with cell-penetrating peptides (CPPs) and nuclear
signal peptides (SPs), respectively (Guidotti et al., 2017), or by
improving its stability and resistance to degradation by micro-
encapsulation (Jain, 2020), or by determining the optimal
concentration for dose-response. Moreover, the heterologous
expression of CPs in living organisms was already proposed as
an alternative approach to avoid chemical synthesis and delivery
optimization of synthetic peptides, as they can be produced in
response to external stimuli and disease markers (Mistry and
Tavassoli, 2017).

Our technology may also have direct applications in the field
of microbial biotechnology and synthetic biology. In fact, it has
been shown that inhibition of GAL4 orthologs in other yeast
species, may increase fermentation capacity and yield (Jiang
et al., 2015). Cyclic peptides can also be used in synthetic
biology, as modules to create novel synthetic protein-protein
interaction networks (Rosa et al., 2021) and for drugging proteins
which usually are difficult to target, like transcription factors
(Bushweller, 2019; Henley and Koehler, 2021), as in the case of
G4CP2. Indeed, our screening procedure is based on mating the
library-harboring strain with the bait-expressing strain. In this
way, any target protein, from transcription factors to metabolic
enzymes, from any organism, can be used as baits and tested in
vivo over a few weeks, without the need of costly and time-
consuming expression and purification steps for the recombinant
bait proteins, typically required for in vitro assays. Nevertheless,
it is worth mentioning that the selected bait protein (or a portion
of it) may not be completely orthogonal to the screening host
organism (yeast), due to its inherent ability to activate
transcription, poor solubility and the presence of trans-
membrane α-helices, thus preliminary in vivo auto-activation
tests and in silico predictions of bait protein domains are
mandatory. Finally, our in vivo screening procedure may allow
the a priori elimination of peptides that are potentially toxic to
eukaryotic cells, making it suitable for a plethora of applications
in both basic and applied research fields.
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