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Introduction: More than 50 mutations in the MAPT gene result in heterogeneous
forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However,
early pathogenic events that lead to disease and the degree to which they are
common acrossMAPTmutations remain poorly understood. The goal of this study is
to determine whether there is a common molecular signature of FTLD-Tau.

Methods: We analyzed genes differentially expressed in induced pluripotent stem
cell–derived neurons (iPSC-neurons) that represent the three major categories of
MAPTmutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W)
compared with isogenic controls. The genes that were commonly differentially
expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in
trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these
pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was
significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse
model of tau accumulation. We observed a significant reduction in calcium levels in
MAPT mutant neurons compared with isogenic controls, pointing to a functional
consequence of this disrupted gene expression. Finally, a subset of genes commonly
differentially expressed acrossMAPTmutationswere also dysregulated in brains from
MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer
disease and progressive supranuclear palsy, suggesting that molecular signatures
relevant to genetic and sporadic forms of tauopathy are captured in a dish. The
results from this study demonstrate that iPSC-neurons capture molecular processes
that occur in human brains and can be used to pinpoint common molecular
pathways involving synaptic and lysosomal function and neuronal development,
which may be regulated by disruptions in calcium homeostasis.
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Background

Frontotemporal lobal degeneration with tau inclusions (FTLD-
tau) encompasses a heterogenous group of disorders characterized by
frontal and temporal lobar atrophy, neuronal loss and gliosis, and the
accumulation of neurofibrillary tangles (NFTs) (Bodea et al., 2016). In
a subset of cases, FTLD-Tau is caused by rare, dominantly inherited
mutations in the microtubule associated protein tau (MAPT) gene
(Pottier et al., 2016). Common genetic variation in the MAPT gene
also contributes to sporadic forms of FTLD-Tau, including progressive
supranuclear palsy (PSP) and corticobasal degeneration (Ferrari et al.,
2014; Kouri et al., 2015; Steele et al., 2018).

MAPT is alternatively spliced and developmentally regulated in
the central nervous system, resulting in six canonical tau isoforms,
which differ based on the absence (0N) or presence of one or two
N-terminal inclusions (1N, 2N, respectively) and three or four repeats
in the microtubule binding region (3R or 4R, respectively) (Neve et al.,
1986; Lee et al., 2001). In adult brains, there is an equal balance of 3R
and 4R tau isoforms. More than 50 mutations in the MAPT gene are
reported to cause FTLD-Tau (https://www.alzforum.org/mutations/
mapt). These mutations fall into three major categories. First, located
in the intronic region near the stem-loop domain, a subset of
mutations alter MAPT splicing via inclusion of exon 10 (e.g.,
3R<4R tau) or exclusion of exon 10 (e.g., 3R>4R tau). Second,
missense mutations may occur within exon 10, such that the
mutation is only present in a subset of MAPT isoforms (i.e. 4R
tau). Finally, missense mutations may occur outside of the
microtubule binding region, which leads to the production of
mutant protein among all tau isoforms. We asked whether the
heterogeneity in MAPT mutations drive common molecular
mechanisms. To begin to address this question, we studied MAPT
mutations that fall into these three major categories: MAPT IVS10 +
16, p.P301L and p.R406W, respectively.

Human cellular models of the brain derived from induced
pluripotent stem cells (iPSC) have become an important tool for
studying molecular and cellular markers that may initiate disease
(Livesey, 2014; Iovino et al., 2015; Silva et al., 2016; Guo et al., 2017;
Wray, 2017; Gonzalez et al., 2018; Jiang et al., 2018; Karch et al., 2018;
Nakamura et al., 2019; Bowles et al., 2021; Lagomarsino et al., 2021).
Here, we coupled human iPSC models with CRISPR/Cas9 genome
editing technology to create a system that allows us to distinguish the
molecular signatures associated withMAPTmutations and to begin to
resolve the molecular phenotypes of tauopathy. Together, our findings
uncover key changes in trans-synaptic signaling, lysosomal function,
and calcium signaling shared across MAPT mutations.

Materials and methods

Patient consent

Skin punches were performed following written informed consent
from the donor. The informed consent was approved by the
Washington University School of Medicine and University of
California San Francisco Institutional Review Board and Ethics
Committee (IRB 201104178, 201306108 and 10-03946). The
consent allows for use of tissue by all parties, commercial and
academic, for the purposes of research but not for use in human
therapy.

The Washington University and University of California San
Francisco Institutional Review Boards reviewed the Neuropathology
Cores (from whom the brains were obtained) operating protocols as
well as this specific study and determined it was exempt from
approval. Our participants provide this consent by signing the
hospital’s autopsy form. If the participant does not provide future
consent before death the DPOA or next of kin provide it after death.
All data were analyzed anonymously.

iPSC lines

Human iPSC used in this study (Supplementary Table S1;
Supplementary Figure S1) have been previously described (Karch
et al., 2019). Briefly, iPSC lines were generated using non-
integrating Sendai virus carrying OCT3/4, SOX2, KLF4, and cMYC
(Life Technologies) (Takahashi and Yamanaka, 2006; Ban et al., 2011).
iPSC lines were characterized for the following parameters using
standard methods (Takahashi and Yamanaka, 2006): pluripotency
markers by immunocytochemistry (ICC) and quantitative PCR
(qPCR), spontaneous or TriDiff differentiation into the three germ
layers by ICC and qPCR, assessment of chromosomal abnormalities
by karyotyping, and MAPT mutation status was confirmed by Sanger
sequencing (Supplementary Figure S1). To determine the impact of
the MAPT mutant allele on molecular phenotypes, we used CRISPR/
Cas9-edited isogenic controls in which the mutant allele was reverted
to the wild-type (WT) allele in each of the donor iPSC lines as
previously described (GIH36C2; F11362.1; F0510.2; Supplementary
Table S1; Supplementary Figure S1) (Karch et al., 2019). Resulting
edited lines were characterized as described above in addition to on-
and off-target sequencing (Supplementary Figure S1). All iPSC lines
used in this study carry the MAPT H1/H1 common haplotype.

Differentiation of iPSCs into cortical neurons

iPSCs were differentiated into cortical neurons using a two-step
approach as previously described (Karch et al., 2019) (https://dx.doi.
org/10.17504/protocols.io.p9kdr4w). iPSCs were plated at a density of
65,000 cells per well in neural induction media (StemCell
Technologies) in a 96-well v-bottom plate to form neural
aggregates and after 5 days, transferred into culture plates. The
resulting neural rosettes were then isolated by enzymatic selection
(Neural Rosette Selection Reagent; StemCell Technologies) and
cultured as neural progenitor cells (NPCs). NPCs were
differentiated in planar culture in neuronal maturation medium
(neurobasal medium supplemented with B27, GDNF, BDNF,
cAMP). Neurons typically arose within 1 week after plating,
identified using immunocytochemistry for β-tubulin III (Tuj1). The
cells continue to mature and were analyzed at 6 weeks.

RNA extraction, sequencing, and transcript
quantification

iPSC-derived neurons were re-suspended in 200 µL of 50:
1 homogenization solution: 1-Thioglycerol solution. After addition
of 200 µL of Promega lysis buffer, the samples were transferred to the
appropriate well of the Maxwell RSC cartridge. DNase solution was
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added to each cartridge. TapeStation 4200 System (Agilent
Technologies) was used to perform quality control of the RNA
concentration, purity, and degradation based on the estimated
RNA integrity Number (RIN), and DV200 (Supplementary Table
S1). Samples were sequenced by an Illumina HiSeq 4000 Systems
Technology with a read length of 1 × 150 bp, and an average library
size of 36.5 ± 12.2 million reads per sample.

Identity-by-Descent (IDB) (Browning and Browning, 2010) and
FastQC (Andrews et al., 2012) analyses were performed to confirm
sample identity. STAR (v.2.6.0) (Dobin et al., 2012) was used to align
the RNA sequences to the human reference genome: GRCh38.p13
(hg38). The quality of RNA alignment was evaluated using sequencing
metrics such as read distribution, ribosomal content, and alignment
quality in Picard (v.2.8.2). The average percentage of unique mapped
reads in the BAM files was 80.3% ± 3.62, and the average percentage of
total mapped reads to GRCh38.p13 was 90.1% ± 5.12 (Supplementary
Table S1). IGV (Integrative Genomics Viewer) (Thorvaldsdottir et al.,
2013) was used with the reference Human Genome (hg38) to visualize
mutation containing reads and their absence in samples edited using
CRISPR/Cas9 protocols (isogenic controls).

Salmon (v. 0.11.3) (Patro et al., 2017) was used to quantify the
expression of the genes annotated within the human reference genome
used in this project (GRCh38.p13). Protein coding genes were selected
for downstream analyses.

Principal component and differential
expression analyses

Principal component analyses (PCA) were performed based on
19,957 protein coding genes using regularized-logarithm
transformation (rlog) counts. Differential gene expression was
performed using the DESeq2 (v.1.22.2) R package (Love et al., 2014).
PCA and differential gene expression analyses were performed
independently for each set of MAPT mutations and isogenic controls.
Each MAPT mutation and its isogenic control were considered
independent cohorts due to their shared genetic background. As such,
the relationship across the threeMAPTmutation sets was evaluated using
the MetaVolcanoR R package (v1.10.0) (Prada et al., 2021). The meta-
analysis included those genes that were differentially expressed (p <0.05)
in the same direction across the three cohorts (n = 275 genes). A meta-
volcano plot summarizing the gene fold change of theMAPT IVS10 + 16,
p.P301L, and p.R406W datasets was generated using a Random Effect
Model (REM) estimation. PCA and Volcano plots were created for each
comparison using the ggplot2 R package (v3.3.6) (Wickham, 2016).

Pathway enrichment and network analyses

ToppGene (Chen et al., 2009) and Enrichr (Chen et al., 2013;
Kuleshov et al., 2016; Xie et al., 2021) were used to identify pathways in
which differentially expressed genes are enriched. Gene ontologies
(GOs) related to molecular function, biological process and cellular
component were selected based on two criteria: i) p ≤ 0.05 and ii)
number of query genes associated with each GO > 1. Gene
relationships including physical, predicted and genetic interactions,
and gene networks including co-expression and co-localization were
annotated using the geneMANIA prediction server (Warde-Farley
et al., 2010).

Mouse model of tauopathy

To evaluate whether the genes differentially expressed in iPSC-
derived neurons were altered in animal models of tauopathy, we
analyzed the gene expression in the Tau-P301L mouse model of
tauopathy and non-transgenic controls (Ramsden et al., 2005).
Transcriptomic data from mice was obtained from the Mouse
Dementia Network (Matarin et al., 2015). Gene expression across the
timepoints (2-, 4-, 8-, and 18-months oldmice) was normalized tomice at
2 months of age and plotted. Differential gene expression at 18 months of
age was analyzed by unpaired t-tests to assess significance.

Drug target identification

To determine whether differentially expressed genes were
associated with known drugs, we interrogated: (i) the WEB-based
Gene SeT AnaLysis Toolkit (Liao et al., 2019), (ii) the Drug-Gene
Interaction Database (Freshour et al., 2021), and (iii) the DrugBank
(Wishart et al., 2018).

Calcium imaging

To measure calcium levels in iPSC-derived neurons, MAPT IVS10 +
16 mutation (GIH36C2) and isogenic controls (GIH36C2Δ1D01) were
analyzed. NPCs were differentiated into cortical neurons as described
above. After 22 days in culture, 2 × 105 neurons of each genotype were
seeded into poly-L-ornithine and laminin-coated 96-well plate. Ca2+ levels
in the iPSC-derived neurons were then measured using the Invitrogen™
Fluo-4 Direct™ Calcium Assay Kit (catalog number: F10471) following
manufacturer’s instructions. Briefly, at 36 days in culture, growth medium
was replaced with 50 μL per well Fluo-4 DirectTM calcium assay buffer and
50 μL per well of the 2x Fluo-4 DirectTM calcium reagent loading solution.
The 96-well plate was then incubated at 37°C for 60 min, after which Fluo-
4 fluorescence in intact cells directly proportional to cytoplasmicCa2+ levels
was measured using Synergy HTXmulti-mode microplate reader (BioTek
Instruments excitation at 494 nm and emission at 516 nm). Negative
controls included Fluo-4 DirectTM calcium assay buffer plus reagent with
no neurons and neurons without assay reagent. Fluo-4 staining in cells was
imaged under a Nikon Eclipse 80i fluorescent microscope at 20x
magnification. After measuring cytoplasmic Ca2+ levels, cells were lysed
to break cellular and organelle membranes in 1% Triton X-100 and total
Fluo-4 fluorescence intensities from cytoplasmic and intracellular Ca2+

stores were measured as described above.

Human brain datasets

To determine whether the differentially expressed genes in the iPSC-
derived neurons capture molecular processes that occur specifically in
primary tauopathies or that represent more general pathways associated
with neurodegeneration, we analyzed gene expression in human brains
with primary tauopathy (e.g., MAPT mutation carriers and progressive
supranuclear palsy (PSP)), secondary tauopathy (e.g., Alzheimer disease
(AD)), and FTLD with TDP-43 pathology (FTLD-TDP). Primary
tauopathy datasets included: i) middle temporal gyrus from MAPT
IVS10 + 16 mutation carriers (2 samples) and healthy controls
(3 samples); ii) insular cortex from MAPT R406W carriers
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(2 samples) and healthy controls (2 samples) (Jiang et al., 2018); and iii)
Temporal cortex from progressive supranuclear palsy (PSP) brains
(82 samples) and healthy control brains (76 samples; syn6090813)
(Allen et al., 2015; Allen et al., 2016). Secondary tauopathy datasets
included temporal cortex from AD brains (84 samples) and healthy
controls (76 samples) (Allen et al., 2015; Allen et al., 2016). To determine
whether gene expression changes in iPSC-neuron models reflect a more
general impact on neurodegenerative pathways, we examined gene
expression profiles isolated from tissue of FTLD-TDP caused by rare
mutations theGRN,C9ORF72 expansions, or from sporadic cases (Knight
ADRC)(Li et al., 2018; Dube et al., 2019;Wani et al., 2021): i) parietal lobe
from GRNmutation carriers (5 samples), ii) C9ORF72 expansion carriers
(5 samples), iii) sporadic cases (8 samples), and (iv) healthy controls
(16 samples). Differential gene expression analyses comparing controls
and disease diagnosed brains were performed using gene expression
measures and including as covariates sex, age-at-death, RNA integrity
number (RIN), and brain tissue source.

Results

MAPT mutations are sufficient to induce
global transcriptomic changes in human
neurons

The goal of this study was to identify common genes and pathways
that are downstream of MAPT mutations and candidate drivers of
disease pathogenesis in FTLD-Tau (Figure 1). To address this goal, we

studied a series of MAPT mutations that represent three major
mutation types: MAPT IVS10 + 16, p.P301L and p.R406W
(Figure 1; Supplementary Table S1). Protein coding genes obtained
from RNA-sequencing data generated from iPSC–derived neurons
carrying one of these three MAPT mutations together with isogenic
controls were analyzed (Figure 2A). Among isogenic pairs, each of the
MAPT mutations were sufficient to induce global transcriptomic
changes in iPSC-neurons: 81.66% principal component 1 (PC1) for
MAPT IVS10 + 16; 79.33% PC1 for MAPT p.P301L; and 57.28%
PC1 forMAPT p.R406W (Figures 2B,D,F). PCA of the CRISPR/Cas9-
engineered MAPT WT lines from independent donors reveal donor-
dependent clustering (Supplementary Figure S2), suggesting that
genetic background of the donor is the largest driver of
transcriptomic variation which is consistent with prior reports
(Kilpinen et al., 2017). Given that the genetic background remains
conserved within the isogenic pairs, we treated each pair as a cohort
and performed differential expression analyses to determine the
impact of the presence of each mutant allele (Figures 2C,E,G;
Supplemental Tables 2 and 3). Together, these findings illustrate
that FTLD-causing MAPT mutations are sufficient to produce
robust gene expression changes in neurons.

MAPT mutations produce a shared gene
expression signature in human neurons

Differential gene expression analyses within isogenic pairs
illustrates that individual MAPT mutations produce global

FIGURE 1
Integrative analysis to identify dysregulated pathways in FTLD-Tau. (A)MAPT gene annotated with the location of themutations used in this study. Lower
left panel displays the six major isoforms expressed in the central nervous system. (B) Comparison of human iPSC-neurons carrying the MAPT mutation
specific and isogenic controls served as a discovery cohort to identify genes dysregulated across the threemutations. (C)Overlap analysis between all mutants
compared with control. After multiple test corrections (BY-FDR ≤ 0.05), we identified 11 commonly differentially expressed genes. (D) Functional
annotation was performed using the commonly differentially expressed genes.
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transcriptomic changes; thus, we sought to determine the extent of
overlap in the differentially expressed genes among these three distinct
MAPT mutation types (Figure 1C). We identified 11 differentially
expressed genes across the three datasets (BY-FDR<0.05) (Figures
3A–D; Supplementary Table S4): CELSR1, CHRDL1, EFNB1,
NOTCH1, CALB1, FOSL2, PLK2, PRICKLE2, ST8SIA3, NRP2,
SPP1. Pathway analyses revealed that the 11 genes were enriched
for i) trans-synaptic signaling pathways; ii) neuronal projection
pathways; iii) lysosomal functions; and iv) calcium homeostasis
(Figure 3E). These findings point to a common set of genes and
pathways that are altered downstream of three distinct classes of
MAPT mutations.

Unique gene signatures

Beyond molecular signatures shared across the three MAPT
mutations, we observed an imbalance in those genes shared
between point mutations (MAPT p.P301L and p.R406W) and exon
10 mutations (MAPT IVS10 + 16 and p.P301L). We identified
64 genes that were shared between iPSC-neurons carrying the
MAPT p.P301L and p.R406W mutations (BY-FDR<0.05;
Figure 3A; Supplementary Table S5), while 973 genes were shared
between iPSC-neurons carrying the MAPT IVS10 + 16 and p.P301L
mutations (BY-FDR<0.05; Figure 3A; Supplementary Table S6). Thus,
the number of differentially expressed genes associated with mutations
located around the alternatively spliced exon 10 was 15-fold higher
than the number of dysregulated genes associated with the MAPT
p.P301L and p.R406W mutations.

Despite the different patterns in gene expression, pathway analyses
were consistent with observations across all three MAPT mutations.
The 64 dysregulated genes shared between the MAPT p.P301L and

p.R406W neurons were enriched in pathways related to neurogenesis
and trans-synaptic signaling (Figure 3F; Supplementary Table S7).
Among MAPT IVS 10 + 16 and p.P301L (n = 973 genes), 409 up-
regulated genes were enriched in pathways involved in the regulation
of cell signaling: i) receptor signaling via JAK-STAT pathway; ii) Rap
protein signal transduction; and iii) ERBB signaling pathway
(Figure 3G; Supplementary Table S8). The 564 down-regulated
genes were enriched in pathways involved in endolysosomal
function: i) the coated vesicle membrane; ii) secretory vesicles; iii)
lysosome; and iv) vacuolar lumen (Figure 3G; Supplementary
Table S8).

A number of genes were found to be uniquely differentially
expressed within each of the isogenic pairs, suggesting mutation-
specific effects on gene expression (Figure 3A; Supplementary
Table S3). The MAPT IVS10 + 16 mutation led to a significant
increase in 1,804 unique genes, which are associated with synapse,
learning, and vesicle-mediated transport (Supplementary Table
S9), while the 1,746 uniquely down-regulated genes were
associated with lysosome functions and apoptotic signaling
(Supplementary Table S9). The MAPT p.P301L mutation
produced 1,333 unique up-regulated genes that were associated
with cell cycle processes (e.g., mitosis, meiosis, organellar fusion/
division) and 1,645 unique down-regulated genes were associated
with vesicle-mediated transport and neuron projections
(Supplementary Table S9). Finally, the MAPT p.R406W
mutation resulted in 217 uniquely up-regulated genes that were
associated with lysosomal pathways, and the 174 uniquely down-
regulated genes were associated with GABA receptor complex,
neurotransmitter receptor activities, and synaptic signaling
(Supplementary Table S9). Together, we demonstrate that many
of these uniquely differentially expressed genes fall within
pathways shared among all the MAPT mutations.

FIGURE 2
Global transcriptomic effects of MAPT IVS10 + 16, p.P301L, and p.R406W mutations. (A) Overview of iPSC differentiation into cortical neurons. (B–C)
Principal component analyses and volcano plots obtained from MAPT IVS10 + 16 neurons compared to isogenic controls. (D–E) PCA and Volcano plots
obtained from MAPT p.P301L neurons compared to isogenic controls. (F–G) PCA and Volcano plots obtained from MAPT p.R406W neurons compared to
isogenic controls. PCA and Volcano plotswere based on 19,957 protein-coding genes using regularized-logarithm transformation (rlog) counts. Volcano
plots showing log2fold change between iPSC-derived neurons carryingMAPTmutations vs. isogenic controls, and the –log10 p-value for each gene. Red and
blue dots within volcano plots represent, respectively, genes differentially expressed under adjusted-BY (BY-FDR) and unadjusted p-values (p ≤ 0.05).
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MAPT mutations lead to common genetic
signatures that are associated with tau
aggregation in mouse models of tauopathy

We sought to determine the extent to which the 11 commonly
differentially expressed genes acrossMAPTmutations (Figure 3) were
altered during disease course in the Tau-P301L mouse model of
tauopathy. Using the Mouse Dementia Network (Matarin et al.,
2015), we analyzed transcriptomic data generated from the cortex
of WT and Tau-P301L mice collected at 2, 4, 8, and 18-months
(Figure 4A). Compared with WT littermates, transgenic Tau-P301L
mice develop tau aggregates beginning at 8 months of age (Ramsden
et al., 2005). Among the 11 genes, six genes were differentially
expressed at 18 months of age, when tau aggregation is most

prominent (Figures 4B–G; Supplementary Figure S3): Celsr1,
Chrdl1, Calb1, Plk2, Prickle2, and St8sia3. These six genes are
highly related to one another and enriched in pathways related to
neurodegeneration such as neurogenesis, behavior, learning, memory,
and glutamatergic synapse (Figure 4H; Supplementary Table S10). At
earlier timepoints when tau aggregation is beginning in the Tau-P301L
mouse model, we observed statistical differences in expression of
Efnb2 (8 months), Fosl2 (8 months), Calb1 (4 months), Nrp2
(8 months), Prickle2 (8 months), and St8sia3 (8 months). The
Drug-Gene Interaction Database (Freshour et al., 2021) and
DrugBank (Wishart et al., 2018) revealed that two genes, PLK2 and
CALB1, are known targets of FDA approved drugs including tramadol,
ethosuximide, levodopa, nicotine and oxcarbazepine, which are
currently used to treat neurological symptoms (Supplementary

FIGURE 3
MAPT mutations result in common defects in synaptic signaling, neuronal projection, and lysosomal function. (A) Venn diagram presenting the
differentially expressed genes common among iPSC-neurons carryingMAPT IVS10 + 16, p.P301L and p.R406Wmutations (BY-FDR ≤ 0.05). (B–D)Normalized
TPM expression of 11 genes shared between the three datasets (MAPT-IVS10 + 16, p.P301L and p.R406W; BY-FDR ≤ 0.05). (E) Bar graph showing the most
significant pathways enriched among the 11 shared differentially genes (black bars). (F) Bar graph of the pathways enriched among the genes shared
between MAPT p.P301L and p.R406W neurons. (G) Bar graph of the pathways enriched among the genes shared between MAPT IVS10 + 16 and p.P301L
neurons. (F–G) Pathways from up-regulated genes (red bars). Pathways from down-regulated genes (blue bars).
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Table S11). Together, these findings illustrate that MAPT mutations
are sufficient to induce molecular changes in iPSC-neurons that are
relevant to tau aggregation in vivo.

Gene dysregulation downstream of MAPT
mutations impact calcium content

Next, we sought to explore the functional consequences of
MAPT mutation-driven gene changes. Pathways associated with
trans-synaptic signaling and lysosomal function were commonly
altered by the three MAPT mutations and are regulated by calcium
signaling (Figure 3E) (Lloyd-Evans and Waller-Evans, 2020).
Among the 11 commonly differentially expressed genes
(Figure 3), NOTCH1, PLK2, PRICKL2, and CALB1 are involved
in calcium signaling. The CALB1 gene, which encodes the calbindin
1 protein and regulates Ca2+ entry into cells upon the stimulation of
glutamate receptors (Noble et al., 2018), was significantly down-

regulated in MAPT mutant iPSC-neurons (Figures 3B–D) and in
18-month old Tau-P301L mice when tau aggregation was present
(Figure 4D). Thus, we hypothesized that reduced CALB1
expression leads to reduced intracellular calcium. To test this
hypothesis, we verified that Calbindin 1 protein levels were
significantly reduced in MAPT IVS10 + 16 neurons compared to
isogenic controls (Figures 4I,J). We then measured calcium levels
in iPSC-neurons from MAPT IVS10 + 16 and isogenic controls
using Fluo-4 DirectTM, a cell-permeable fluorescent Ca2+ indicator.
We observed a significant reduction in calcium levels under basal
conditions, representing cytoplasmic calcium levels, in MAPT
IVS10+16 iPSC-neurons compared with isogenic controls
(Figure 4K). After treating with Triton-X to release intracellular
calcium stores, we found that total calcium levels were also
significantly reduced in MAPT IVS10+16 iPSC-neurons
compared with isogenic controls (Figure 4K). Thus, we show
that MAPT mutations are sufficient to disrupt calcium
homeostasis in neurons.

FIGURE 4
Genes altered in iPSC-neurons from MAPT mutation carriers are replicated in disease end-stage in the Tau-P301L tauopathy mouse model. (A) The
expression of the 11 genes observed in iPSC-neurons were evaluated in the mouse model of tauopathy (Tau-P301L vs. wild type). Statistical comparisons
reflect gene expression at disease end-stage (18 months old mice). (B–G) Expression of the six selected genes (2 up- and 4 down-regulated) in mice. Black
circles, transgenic Tau-P301Lmice; blue squares, non-transgenic control mice. Graphs show normalized gene expression relative to 2 months oldmice.
The genes presented were selected based on: (I) the expression of the genes in the human cell models and in mice followed the same direction, and (ii) the
difference in the expression of each gene in 18-month old controls and transgenic Tau-P301Lmice was significant. Statistical analyses (t-tests) were based on
values normalized related to mice that were 2 months old. *p ≤ 0.05; **p ≤ 0.01; ****p ≤ 0.0001. (H) Relatedness of the six selected genes dysregulated in
human and mice, including the MAPT gene. The plot demonstrates the strong physical (orange nodes: 80.3%) and genetic interactions (green nodes 4.28%)
between the query genes and genes have been related to pathways such as neurogenesis, behavior, learning or memory, and glutamatergic synapse. The size
of the gene nodes is proportional to the degree to which the genes are related. Query genes are presented as striped dark grey balls and other selected genes
subjected to interaction are presented as dark grey balls without stripes. Physical (orange; 80.3%), predicted (yellow; 9.48%), and genetic (green; 4.28%)
interactions are displayedwithin the network. (I–K)Calcium is dysregulated inMAPT neurons. iPSC-neurons fromMAPT IVS10 + 16 and isogenic control were
cultured for 42 days and evaluated for calbindin 1 protein and intracellular calcium levels. (I) Immunoblot for calbindin 1 protein levels. (J) Quantification of
calbindin 1 protein levels. (K) Inset, inverted fluorescent imaging representing the calcium concentration in iPSC-neurons treated with Fluo-4 Direct™
CalciumAssay Kit. Fluo4-Ca2+ binding dye relative fluorescence units (RFU) observed in iPSC-neurons carrying the IVS10 + 16 (grey bars) and isogenic controls
(white bars) (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001). Scale bar 20uM.
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Stem cell models capture tauopathy-relevant
gene signatures

Leveraging isogenic iPSC lines to understand the contribution of a
single allele to downstream phenotypes is a powerful system that when
applied here has revealed gene signatures shared across MAPT
mutations that also change during tau accumulation in mouse
models of tauopathy. However, a limitation of this approach
remains that iPSC-neurons are cultured in a dish and remain
relatively immature. For example, iPSC-neurons predominantly
express 0N3R tau (Patani et al., 2012; Sposito et al., 2015; Sato
et al., 2018), while the adult brain expresses six tau isoforms (Hefti
et al., 2018; Sato et al., 2018). Thus, we next sought to determine the
extent to which the gene signatures we observe in iPSC-neurons from
MAPTmutations are relevant to gene expression changes occurring in
human brains with tauopathy and the extent to which these gene

signatures are occurring across neurodegenerative diseases
(Supplementary Table S12).

To determine the extent to which the iPSC-neuron model
recapitulates gene signatures that occur in brains from MAPT
mutation carriers, we analyzed transcriptomic datasets from MAPT
IVS10 + 16 and MAPT p.R406W carrier brains compared with
neuropathology free controls (Jiang et al., 2018). A meta-analysis of
the threeMAPTmutation pairs revealed that there are additional gene
expression changes occurring commonly (Figure 5A); thus, for
analyses of human brain datasets, we relaxed the p-value threshold
and examined 275 genes (criteria: p <0.05 in single cohort analyses and
Fisher’s exact FDR<0.05 in meta-analysis). Of the 275 genes changing
in iPSC-neurons, we identified 114 genes inMAPT IVS10 + 16 brains
and 141 genes in MAPT p.R406W brains (Figure 5B; Supplementary
Table S12). The majority of the genes that are altered inMAPT carrier
brains changed in the same direction as the iPSC-neuron model

FIGURE 5
Genes changed in iPSC-neurons fromMAPTmutations are also altered in brains from tauopathy patients. (A)Meta-Volcano plot identifies the common
gene expression changes byMAPT IVS10 + 16, p.P301L and p.R406W. Red and blue dots represent up- and down-regulated genes, respectively. (B) Bar graph
of the number of genes differentially expressed in iPSC-neurons fromMAPTmutations (n = 275) and differentially expressed in brains from tauopathy patients
(MAPT IVS10 + 16 and p.R406W carriers, PSP, and AD) and from FTLD-TDP (GRN mutation carriers, sporadic FTLD-TDP (sFTLD-TDP), and C9ORF72
expansion carriers). Up-regulated genes, red. Down-regulated genes, blue. Discordant genes (defined as p <0.05 and logFold change opposite of iPSC-
neurons), gray. (C)Heatmap of gene expression of 275 genes in iPSC-neurons and human brains with hierarchical clustering revealing relatedness of cohorts.
(D–F). Bar graphs showing the most significant pathways enriched shared between the iPSC-neurons and (D) MAPT IVS10 + 16 brains; (E) MAPT p.R406W
brains; (F) sporadic AD brains; (G) GRN mutation carrier brains. Pathways from up-regulated genes (red); pathways from down-regulated genes (blue).
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(Figure 5B), making gene signatures from theMAPTmutation carrier
brains the most similar to the iPSC-neurons in hierarchical clustering
analyses (Figure 5C). The genes that change as a function of theMAPT
mutations in a dish and in disease pathology in the brains are
commonly enriched in pathways related to trans-synaptic signaling,
neuronal projects, and lysosomal function (Figures 5D, E;
Supplemental Tables 13-14).

To determine the extent to which our genetic cellular model of
primary tauopathy recapitulates molecular signatures of sporadic
tauopathies, we analyzed transcriptomic data from AD, PSP, and
control brains (Allen et al., 2016). We found that 63 of the 275 genes
were differentially expressed in PSP brains, and 164 genes were
differentially expressed in sporadic, late onset AD brains
(Figure 5B; Supplementary Table S12). Interestingly, a large
number of genes that were implicated in disease processes by the
iPSC-neuronal model were changed in opposite directions in the PSP
(n = 20) and AD brains (n = 51; Figure 5B), leading to a similar
clustering of these brains with the iPSC-neuronal model but to a lesser
extent than what we observe in brains from MAPT mutation carriers
(Figure 5C). Again, the common genes were enriched in pathways
related to trans-synaptic signaling, neuronal projection and lysosomal
function (Figure 5F; Supplementary Tables S15–S16).

Synaptic dysfunction, neuronal projections, and lysosomal
dysfunction have been implicated in many neurodegenerative
diseases. Thus, we asked whether the gene signatures captured in
the iPSC-neuronal model represents broader molecular changes in
neurodegeneration. To address this question, we examined
transcriptomic data from FTLD brains where the primary
pathology is TDP-43 pathology (GRN, sporadic FTLD-TDP, and
C9ORF72). There was minimal overlap between the genes changing
in a dish as a function of theMAPT mutations and genes changing in
sporadic FTLD-TDP (n = 8) and C9ORF72 expansion carrier brains
(n = 12; Figures 5B,C; Supplementary Table S12). Interestingly, we
observed substantial overlap between the iPSC-neuronal signatures
and those occurring in GRN mutation carriers (n = 68; Figure 5B;
Supplementary Table S12). Surprisingly, this led to brains from GRN
mutation carriers clustering closely with brains fromMAPTmutation
carriers, appearing to be more similar in expression profile than
sporadic tauopathies (Figure 5C). The genes were enriched in
lysosomal function but also include trans-synaptic signaling and
neuronal projections, all of which are consistent with proposed
functions of the progranulin protein (Figure 5G; Supplementary
Table S17) (Amin et al., 2022). Together, these analyses identified a
set of gene signatures captured in stem cell models ofMAPTmutations
that also change in human brains with genetic and sporadic forms of
tau pathology.

Discussion

The goal of this study was to identify commonly perturbed genes
and pathways downstream ofMAPTmutations and to define a core set
of genes that drive disease pathogenesis in FTLD-Tau. MAPT
mutations result in a range of clinical and neuropathological
phenotypes (Whitwell et al., 2009; Ghetti et al., 2015; Moore et al.,
2020). Here, we aimed to study three major classes of MAPT
mutations that represent: splicing mutation (MAPT IVS10 + 16),
4R-expressing point mutation (MAPT p.P301L) and point mutation
expressed in all isoforms (MAPT p.R406W). Our results suggest that

these three mutations lead to a common series of events, causing the
dysregulation of genes associated with pathways involved in synaptic,
neuronal, and lysosomal function (Figure 6). Several of the
differentially expressed genes were also altered in a mouse model
of tauopathy, suggesting that these genes are relevant to disease
pathogenesis and tau accumulation. A subset of genes were also
found to be dysregulated in human brains from MAPT mutation
carriers, AD, and PSP donors, illustrating that the molecular
signatures we identified in iPSC-neurons are relevant to human
disease. Together, this study demonstrates that iPSC-derived
neurons capture molecular processes that occur in both mice and
human brains, and can be used to model neurodegenerative diseases
such as FTLD-Tau.

The three mutations located in distinct regions of theMAPT gene
produced a common molecular signature of genes that were enriched
for pathways involved in trans-synaptic signaling, neuronal projection
and lysosomal regulation. Several pathways were related to functional
changes described in FTLD. Wnt signaling has been previously shown
to be associated with the MAPT IVS10 + 16 mutation (Harrison-Uy
and Pleasure, 2012) and linked to several neurodegenerative disorders
such as AD and FTLD (Korade and Mirnics, 2011; Rosen et al., 2011;
Riise et al., 2015; Verheyen et al., 2018; Bottero et al., 2021). In
addition, Notch signaling has been shown to be related to the
microtubule stability within neurons (Bonini et al., 2013). The Ras
signaling regulates basic cellular processes in the construction of
neuronal networks, including neurogenesis, vesicular trafficking, or
synaptic plasticity (Johnson and Chen, 2012; Qu et al., 2019). The
synapse assembly has been associated with Alzheimer’s-type dementia
(Clare et al., 2010). Anterograde trans-synaptic signaling; regulation of
synaptic; and long-term synaptic potentiation have all been implicated
in tauopathies (Purves et al., 2001; Gómez-Palacio-Schjetnan and
Escobar, 2013; Liou et al., 2019). Additionally, several genes were
enriched for pathways related to the loss of learning or memory and
cognition (Rabinovici and Miller, 2010; Bott et al., 2014). Finally, we
found that genes associated with dysregulation of the vesicle transport
along microtubule pathway; phagosome maturation and autophagy
were significantly reduced. This finding is consistent with a recent
study of MAPT p.V337M-expressing cerebral organoids, where
mutant organoids exhibited failure of protein homeostasis, a
disruption of autophagy function, and loss of glutamatergic
neurons (Bowles et al., 2021). Defects in endolysosomal pathways
have been implicated in reduced clearance of protein and cell debris,
which may contribute to neurodegeneration (Liu et al., 2012; Viegas
et al., 2012; Gunawardena et al., 2014; Etchegaray et al., 2016; Kulkarni
and Maday, 2018; Xu et al., 2021c). Thus, here, we identify a series of
pathways that are common across different MAPT mutation types,
suggesting that stem cell models capture defects observed in FTLD-
Tau patients (Figure 6).

We report that several genes from the mutant iPSC-neurons were
also altered at disease end-stage in the Tau-P301L mouse model of
tauopathy: CALB1, PLK2, CELSR1, CHRDL1, PRICKLE2, and
ST8SIA3. PLK2 (Polo like kinase 2) is associated with synaptic
plasticity and prevention of cell death in neurodegenerative
diseases (Kauselmann, 1999; Seeburg et al., 2005; Seeburg et al.,
2008; Li et al., 2014; Weston et al., 2021). Modulating the activity
of the PLK2 gene has been proposed as a therapeutic strategy for the
treatment of Parkinson’s disease (Oueslati et al., 2013). CELSR1
(Cadherin EGF LAG seven-pass G-type receptor 1) encodes a
receptor protein involved in cell adhesion and receptor-ligand
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interactions (Hadjantonakis et al., 1997). CELSR1 has been related to
neurodevelopment and maintenance of the nervous system (Boutin
et al., 2012), and mutations in this gene have been associated with
neural tube defects (Robinson et al., 2012) and AD risk (Patel et al.,
2019). CHRDL1 (Chordin-like 1) plays an important role in CNS
development, learning, and promoting synaptic plasticity (Sun et al.,
2007; Webb et al., 2012; Gao et al., 2013; Blanco-Suarez et al., 2018).
PRICKLE2 (Prickle planar cell polarity protein 2) is an important
cytoplasmic regulator of Wnt/PCP signaling (Katoh, 2005; Barrow,
2006; Vandervorst et al., 2019). Dysregulation of PRICKLE2 enhances
the amyloid β (Aβ) plaque pathology and synaptic dysfunction in mice
(Tao et al., 2011; Fujimura and Hatano, 2012). PRICKLE2 has been
proposed to be a potential candidate for the diagnosis and treatment of
AD (Sun et al., 2020). ST8SIA3 (alpha-N-acetyl-neuraminide alpha-
2,8-sialyltransferase 3) is involved in neurite growth, cell migration,
and synaptic plasticity (Goodman et al., 1997; Lee et al., 1998;
Eckhardt et al., 2000; Lin et al., 2019) and plays an important role
in the development of Huntington’s disease, schizophrenia, and
Parkinson’s disease (Belarbi et al., 2020; Moll et al., 2020). A strong
physical interaction was observed between MAPT and CALB1, PLK2,
CELSR1, CHRDL1, PRICKLE2, and ST8SIA3 and 20 additional genes.
The glutamatergic synapse pathway was enriched among these genes.
Impairments in glutamatergic circuits predispose GABAergic neurons
to dysfunction (Ferrer, 1999; Bowie, 2008; Hughes et al., 2018; Benussi
et al., 2019; Murley et al., 2020). Dysregulation of the glutamatergic
system has been described in MAPT p.V337M cerebral organoids
(Borroni et al., 2017; Borroni et al., 2018; Bowles et al., 2021) and
MAPT p.R406W neurons (Jiang et al., 2018). Thus, our findings
suggest that the glutamatergic synapse pathway is disrupted more
commonly across MAPT mutations.

The absence of overlap in the five remaining genes, and the
variability in the expression observed at 4 and 8 months of mouse

disease may be driven by several factors. For example, gene expression
profiles represent multiple cell-types in the brain which are not
included in the iPSC-neuron model, which may mask neuronal-
specific gene signatures. Additionally, species differences may also
impact the gene signature profile.

CALB1 was found to be down regulated across the threeMAPT
mutations and reduced at disease end-stage in Tau-P301L mice.
The CALB1 gene (Calbindin 1) regulates the calcium homeostasis
in neurons (Noble et al., 2018), which plays a crucial role in
neuronal development and memory performance (Sun et al.,
2005; Soontornniyomkij et al., 2012; Kook et al., 2014; Goffigan-
Holmes et al., 2018; Jung et al., 2020). Given the important role of
CALB1 in neuronal calcium homeostasis, we measured calcium
levels in the mutant and isogenic control neurons. We found that
calcium levels were significantly reduced inMAPTmutant neurons
compared with isogenic controls, supporting a dysregulation in
calcium homeostasis. Calcium homeostasis is critical for the health
and function of neurons and dysregulation of calcium leads to
altered synaptic function, endolysosomal function, and neuronal
development (Gleichmann and Mattson, 2011). This is in line with
recent observations in genetically engineered iPSC expressing the
MAPT IVS10 + 16 mutation, which showed disturbed intracellular
calcium dynamics along with impaired neuronal activity (Britti
et al., 2020; Kopach et al., 2021). The Drug-Gene Interaction
Database (Freshour et al., 2021) and DrugBank (Wishart et al.,
2018) revealed CALB1 and PLK2, also implicated in calcium
regulation, are known targets of FDA-approved drugs including
tramadol, ethosuximide, levodopa, nicotine and oxcarbazepine,
which are currently utilized to treat neurological symptoms
(Chen et al., 2015; Tambasco et al., 2018; Morana et al., 2020).
Additional work is needed to evaluate calcium across these and
other MAPT mutations. Thus, restoring calcium homeostasis may

FIGURE 6
MAPT mutations lead to changes in the regulation of pathways related to FTLD-Tau.
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be a therapeutically viable approach for treating genetic forms of
primary tauopathy.

A subset of the commonly differentially expressed genes from the
MAPT mutant iPSC-neurons were found to be altered in human
brains from MAPT IVS10 + 16 and p.R406W carriers. Brains from
MAPT mutation carriers most closely recapitulated the gene
signatures in a dish, but we also detected an overlap among
sporadic tauopathies, including AD and PSP. Among the up-
regulated genes, we observed an enrichment in pathways involving
a negative regulation of: i) nervous system development; ii)
neurogenesis; iii) neuron differentiation; iv) neuron projection
development; and v) the canonical Wnt signaling pathway.
Dysregulation of these pathways have been linked to FTLD
patients (Rabinovici and Miller, 2010; Mann and Snowden, 2017;
Yousef et al., 2017; Sobue et al., 2018; Bottero et al., 2021).
Interestingly, we observed a broad reduction of gene enriched in
lysosomal pathways. This is consistent with recent implications of
lysosomal dysfunction in genetic and sporadic forms of FTLD-Tau
(Polito et al., 2014; Caballero et al., 2018; Silva et al., 2019; Xu et al.,
2019; Silva et al., 2020; Xu et al., 2021a; Bowles et al., 2021; Xu et al.,
2021b; Caballero et al., 2021; Mahali et al., 2022; Silva et al., 2022).
These gene signatures were largely specific for tauopathy; however, we
identified a number of lysosomal genes that were altered in iPSC-
neurons from MAPT mutations and in brains from GRN mutation
carriers. GRN has been implicated in lysosomal function and neuronal
integrity (Martens et al., 2012; Kao et al., 2017; Logan et al., 2021;
Mohan et al., 2021; Simon et al., 2022). Thus, our stem cell model
revealed several genes and pathways that are also altered in primary
tauopathy patients.

Our results demonstrate the potential of iPSC technology to
investigate disease mechanisms related to FTLD-Tau pathogenesis.
A major challenge related to the iPSC technology and neuronal
derivatives (iPSC-neurons) when modeling adult-onset
neurodegenerative disease concerns capturing age-related
phenotypes (Steg et al., 2021). While iPSC-neurons remain
relatively immature and do not express the full complement of tau
isoforms (Sposito et al., 2015; Sato et al., 2018), we are able to capture
molecular signatures that change during disease course in mouse
models of tauopathy and patient brains. Thus, there remains
tremendous value in a combinatorial multiple model systems
approach to identify key pathways that are affected early and
remain relevant throughout the disease course.

Furthermore, the observation that differentMAPTmutations may
lead to a common pathophysiological mechanism has not been
carefully studied. Thus, these findings have broader implications
when considering therapeutic development and trial design. For
example, drugs that target these common pathways may be
effective across tauopathy patients. This study provides a
framework for developing drugs targeting key dysregulated genes.

In conclusion, our approach provides a tractable system to identify
genes altered directly by the MAPT-IVS10 + 16, p.P301L, and
p.R406W mutations, which are relevant to tauopathies and that
point to new therapeutic targets. The stem cell lines used in this
research allowed for the identification of molecular drivers of disease,
which could serve as a platform to identify new targets for drug
development. Our iPSC-based cellular models have discovered a
common gene signature which is enriched in dysregulated
pathways involving synaptic connections, lysosome transport and
neuronal development, and mechanisms that have been previously

described to be altered in human brains and mouse models of
tauopathy.
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