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Defining predictors of antigen-binding affinity of antibodies is valuable for
engineering therapeutic antibodies with high binding affinity to their targets.
However, this task is challenging owing to the huge diversity in the
conformations of the complementarity determining regions of antibodies and the
mode of engagement between antibody and antigen. In this study, we used the
structural antibody database (SAbDab) to identify features that can discriminate high-
and low-binding affinity across a 5-log scale. First, we abstracted features based on
previously learned representations of protein-protein interactions to derive
‘complex’ feature sets, which include energetic, statistical, network-based, and
machine-learned features. Second, we contrasted these complex feature sets
with additional ‘simple’ feature sets based on counts of contacts between
antibody and antigen. By investigating the predictive potential of 700 features
contained in the eight complex and simple feature sets, we observed that simple
feature sets perform comparably to complex feature sets in classification of binding
affinity. Moreover, combining features from all eight feature-sets provided the best
classification performance (median cross-validation AUROC and F1-score of 0.72).
Of note, classification performance is substantially improvedwhen several sources of
data leakage (e.g., homologous antibodies) are not removed from the dataset,
emphasizing a potential pitfall in this task. We additionally observe a classification
performance plateau across diverse featurization approaches, highlighting the need
for additional affinity-labeled antibody-antigen structural data. The findings from our
present study set the stage for future studies aimed at multiple-log enhancement of
antibody affinity through feature-guided engineering.
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1 Introduction

Interactions between proteins are foundational in driving biological processes and critical
for therapeutic interventions to treat diverse diseases. Two broad categories of protein-protein
interactions include self-interactions to form oligomeric or tertiary protein assemblies and non-
self-interactions between distinct proteins. The three-dimensional structure of proteins is
critical for understanding and manipulating the molecular contacts between proteins in both
self- and non-self-interactions. Therefore, the ability to reliably predict three dimensional
structures of proteins is an important part of understanding the molecular interactions between
proteins.

Protein structure prediction tools have continually evolved to improve reliability and
accuracy in predicting three-dimensional structures of individual protein domains (AlQuraishi,
2021; Pearce and Zhang, 2021a; Pearce and Zhang, 2021b). Recently, the machine learning tool
AlphaFold2 achieved an unprecedented leap forward in this effort (Wilson et al., 2022). This
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advance was followed by tools including AlphaFold-Multimer and
RoseTTAFold that further demonstrated that the neural network deep
learning methods can model protein complexes in addition to
individual proteins (Baek et al., 2021; Evans et al., 2022). However,
the success of obtaining reliable models of protein-protein complexes
lags behind that of individual protein domains and is particularly
challenging for antibody-antigen complexes (Akdel et al., 2022; Bryant
et al., 2022; Yin et al., 2022).

Among the various non-self-protein-protein interactions,
understanding and modeling the interactions between antibodies and
antigens are of great interest from the standpoint of developing
therapeutic antibodies (Norman et al., 2020). However, obtaining
reliable models for antigen-antibody interactions has been challenging
given that they involve non-self-interactions between distinct and highly
flexible protein domains. While the three-dimensional structure of most
of the regions of the variable Fab domain of an antibody can be modeled
reliably (Leem et al., 2016), the loop region H3 of the heavy chain is often
modeled with substantially lower confidence owing to a wide variety in
its length and composition (Abanades et al., 2022; Ruffolo et al., 2022).
Furthermore, predicting the right pose ormode of engagement of the Fab
domain with the antigen is challenging given that several poses
correspond to optimal molecular interactions (Fernández-Quintero
et al., 2021).

Our early attempts to improve reliability ofmodeling antibody-antigen
interactions around a decade ago involved using concepts from machine
learning that are more widely employed currently (Tharakaraman et al.,
2013; Robinson et al., 2015; Quinlan et al., 2017; Tharakaraman et al.,
2018). At that time, we had featurized antibody antigen interfaces using
various physicochemical and geometric properties of amino acids at these
interfaces (Soundararajan et al., 2011; Quinlan et al., 2017; Tit-oon et al.,
2020). Using these features, we developed various scoring functions and
used linear regression methods based on these scores to reliably
discriminate native poses of antibody-antigen complexes from decoy
poses. Using this approach, we predicted a model of a broad-spectrum
anti-Dengue virus antibody and engineered mutations that improved its
affinity bymore than 450-fold to Dengue virus serotype 4 while preserving
and even moderately improving its affinity to the other three serotypes
(Robinson et al., 2015). This was one of the early success stories for a
computational method that was built using basic machine learning
principles of featurization and regression to achieve such a drastic
improvement in the binding affinity of an antibody (Wong et al.,
2018). Of note, these physicochemical and geometric interface
properties were likewise found to be useful for modeling viral escape
from neutralizing antibodies, including instances where escape was
conferred by combinations of epistatic mutations as occurred for the
BA.1 Omicron variant of SARS-CoV-2 (Tharakaraman et al., 2014; Miller
et al., 2021a; Miller et al., 2022a; Miller et al., 2022b).

Over the past decade, there has been a substantial increase in the
available data on antibody sequences and antibody-antigen complex
structures. Further, there have been significant advances in
development of machine learning methods to build learning models
from this information to simultaneously optimize multiple properties of
antibodies including affinity and developability. The structural antibody
database (SAbDab; https://opig.stats.ox.ac.uk/webapps/newsabdab/
sabdab/) is a consistently annotated database of all antibody structures
from the Protein Data Bank (PDB; http://www.rcsb.org/pdb/) (Berman
et al., 2000; Dunbar et al., 2014). SAbDab also contains annotated
information on the experimentally observed binding affinity for a
structural antibody-antigen complex in the PDB (Schneider et al.,

2022). Given that experimental binding data is associated with a three-
dimensional structural complex and that the binding affinity values ranges
over a five log scale, we postulated that we could employ learningmethods
to identify features in the antibody-antigen complex that are useful for
discriminating strong and weak antibody-antigen binding affinity.

Importantly, this task is distinct from both our previous efforts to
engineer antibodies toward higher affinity and recent efforts to
develop machine learning models for prediction of antibody
affinity (Myung et al., 2022; Yang et al., 2023). Specifically, these
related works employ regression models trained on mutagenesis
datasets, and as such perform best on antibodies with high homology to
antibodies in the training set and spanning relatively narrow ranges of
affinity from within two logs in the nM range, as the bulk of available
structural data fall within this range. Instead, we chose to discriminate
binding over a wider log-scale to facilitate approaches for rational
engineering of antibodies for enhancing binding affinity over several
log. Further, given the small dataset size (356 Ab-Ag complexes with
numerous homologous Abs) it is critical that such features are derived
using an approach that isolates the learning process from several sources
of potential data leakage and erroneous signals.

We employed two distinct approaches to extract features that we
postulated as useful for classifying high vs. low binding affinity. First, we
considered features derived from previously learned representations of
protein interactions, such as differentiable molecular surface interaction
fingerprinting (dMaSIF)-site scores, significant interaction network (SIN)
values, amino acid interface fitness (AIF) scores, and interaction
descriptors annotated via PyRosetta including energetics, solvent
exposed surface area (SASA), and surface complementarity (Chaudhury
et al., 2010; Soundararajan et al., 2011; Tharakaraman et al., 2013; Gainza
et al., 2019; Sverrisson et al., 2020; Lee et al., 2021).We refer to each of these
sets of learned features as “complex feature-sets”. Second, we combined
and contrasted these learned feature-sets with additional “simple feature-
sets” computed directly from the Ab-Ag complexes. The simple feature-
sets include features that measure the degree of complementarity
determining regions (CDRs) involvement in the interaction, the
number of amino acid contacts for the entire interaction (aa_counts)
and for each complementarity determining region (aa_counts_by_CDR),
and the multivalency of the interaction according to CDR involvement.

Herein, we investigate the ability of 700 features contained in the
eight complex and simple features-sets to identify sub-nM Ab-Ag
interactions. We observe that simple contact counting-based features
perform as well or better than the complex feature-sets. Amongst the
complex feature-sets, we find that network-based features perform better
than energetics and prelearned features. Additionally, we demonstrate
that a mix of features from all eight feature-sets provides the best sub-nM
classification performance using the fewest total number of features
(median cross-validation AUROC and F1-score of 0.72 via 16 features).
The findings from the present study set the stage for future studies aimed
at several-log enhancement of antibody target binding affinity in an
“intelligent” fashion by focusing on improving features that show
potential predictive value for identifying sub-nM Ab-Ag interactions.

2 Results

2.1 Dataset refinement and analysis

We performed a systematic investigation to benchmark distinct
approaches and algorithms for featurizing antibody-antigen
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complexes. The workflow for the featurization and data analysis is
shown in Figure 1A and implemented in an open-source Google
Colaboratory (Colab) notebook. In brief, we first obtained a set of
affinity-annotated antibody-antigen complexes from SAbDab. As
described in the methods, we filtered this initial dataset to remove
several sources of potential confounders and data leakage, including
nanobodies and homologous antibodies. We subsequently pre-
processed the remaining complexes, in which antibody sequences
were renumbered using the Chothia scheme (Chothia and Lesk, 1987),
heteroatoms were removed, missing side chains were replaced, and all
complexes were relaxed via pareto-optimal relaxation (Nivón et al.,
2013).

356 antibody-antigen complexes remained after filtering and pre-
processing. The majority have heavy chain classes of IGHV1 or
IGHV3, while the light chain subclasses were more diverse
(Figure 1B). The median affinity in the dataset was 3nM, and the
median resolution of the structures is ~2.5Å. For both affinity and
resolution, the dataset is approximately normally distributed
(Figure 1B). However, the dataset is minorly skewed toward higher
affinity and lower resolution, likely resulting from a selection bias in
the choice of which antibodies are rigorously characterized and
published. Of note, antibody-antigen interfaces containing non-
protein components (e.g., glycans) comprise 13% of the dataset and
are observed to have systematically lower affinity.

Subsequently, we applied existing featurization algorithms to every
antibody-antigen complex in the dataset, as well simple descriptors of
the interactions, to obtain 700 features describing each antibody-antigen

interaction. Next, we evaluated the performance of all 700 features for
their utility in classifying antibodies according to high- or low-affinity
(1 nM cutoff). We employed a middle-dropped-out (MDO) dataset
refinement, wherein all antibodies with affinity within one order-of-
magnitude of the dataset median were removed to maximize the signal
of features that best describe high- or low-affinity interactions spanning
five logs of affinity. A classifier was selected instead of affinity regression
(Myung et al., 2022; Yang et al., 2023) toward globally differentiating
high- and low-affinity binders rather than predicting specific antibody
ΔG values or ΔΔG values associated with point mutations.

2.2 Features relevant to classification of
binding affinity

In this section, we first evaluate four published featurization
methods of protein-protein interfaces for classification of binding
affinity (Figure 2A). Second, we evaluate four simpler featurizations
that are directly computed from the antibody-antigen complexes
(Figure 2B). For each feature set, we perform feature selection to
obtain the 10 most discriminating features from the set and use these
features to train a classifier. We then evaluate the cross-validation
performance of the classifier on the task using the given feature-set.
We also investigate the 10 features selected and their relative
importance for the classifier, as well as correlative relationships
amongst the 10 features. Finally, we aggregate features from the
eight published and simple featurizations to obtain a ‘combined’

FIGURE 1
Workflow and data set overview. (A)Open-source workflow implemented via Google Colab. (B)Characteristics of affinity-labeled antibody data set from
SAbDab. The counts of the antibodies displaying each heavy and light subclass are shown, as well as the distribution of antibody affinities and structural
resolutions. For the affinity distribution, all antibodies included in the dataset are shown in blue, while the subset of antibodies containing a glycan or lipid in the
epitope-paratope interface are shown in orange.
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feature-set and evaluate the relative importances of the top features for
the combined classifier.

2.1.1 Performance of the existing feature-sets
We first investigate four existing featurizations: machine-learned

(dMaSIF-site), energetics+ (PyRosetta), graph theory-based networks
(SIN), and statistical descriptors (AIF) (Chaudhury et al., 2010;

Soundararajan et al., 2011; Tharakaraman et al., 2013; Gainza et al.,
2019; Sverrisson et al., 2020). For these four existing feature-sets, we
obtain classifiers with median cross-validation AUCs and F-1 scores
ranging from 0.58 to 0.69 and 0.67 to 0.70, respectively (Table 1). The
network-based feature-set performed best (AUC = 0.69, F-1 = 0.70),
while the statistical feature-set performed worst.

The top 10 features derived from the PyRosetta
InterfaceAnalyzer and AntibodyDesign packages (referred to as
the “Energetics” set) returned median AUC and F-1 of 0.62 and
0.67 (Table 1). The top two most important features in the feature-
set are the total interaction energy for the interaction (interaction_
total_energy) and the surface complementarity (sc_total)
(Supplementary Figure S1). We observe these two features to be
inversely correlated as expected (Figure 3). Features describing the
isolated epitope energy score (epitope_total_energy), the interface
energy (interface_dG), and the delta solvent accessible surface area
upon antibody-antigen complexation (dSASA) are also of high
importance. Amongst CDR-associated features, the CDR-H3
interaction energy ranks as most important, though CDR-
features rank as less important than the aforementioned
interaction-wide features.

The top 10 features derived from the dMaSIF-site predictions
returned a median AUC and F-1 of 0.62 and 0.67 (Table 1). The two
most important features within the dMaSIF feature-set are the average
dMaSIF-site scores across the antigen epitope and the CDR-L1
(Supplementary Figure S2). dMaSIF-site scores for CDR-H3 and
CDR-L2 also rank highly. In general, the dMaSIF-site features are
positively correlated with each other and with affinity, though with the
important exception of the light chain features describing total
dMaSIF scoring of these CDRs. Additionally, across the dMaSIF-
site features, dMaSIF-site scoring of the antigen ranks as more
important than dMaSIF-site scoring of the antibody. This
relationship is observed at the level of the entire interaction as well

FIGURE 2
Features used to describe antibody-antigen interactions (A) Existing featurizations that have been validated for diverse protein-protein interaction
modeling exercises. These featurizations model aspects of the antibody-antigen binding event such that they may be useful for affinity classification (see
Methods). (B) Simple features that directly describe single components of the antibody-antigen interaction. These include the number of each combination of
amino acid contact within the interface (aa_counts), the count of each interaction type for each CDR (aa_counts_CDRs), basic antibody descriptive
information including the length and canonical class of each CDR (Ab_info), as well as the number of multivalent contacts spanning the epitope-paratope
interface (num_multivalent_contacts).

TABLE 1 Antibodyaffinity classifier ccross-validationperformanceacross feature-sets.
Summary of XGBoost (XGB) classifiers trained on each of the feature-sets, including
feature numbers and classifier cross-validation (AUC and F-1 score). Performance of
different classifier architectures, including RandomForest (RF), Support Vector
Classifier (SVC), and Multi-layer Perceptron (MLP) are also shown for the "combined"
feature-sets.

Feature-set #Features in set (#used) AUC/F1

Energetics 18 (10) 0.62/0.67

dMaSIF-site 26 (10) 0.62/0.67

Network (SIN) 26 (10) 0.69/0.70

Statistical (AIF) 26 (10) 0.58/0.67

aa_counts 400 (10) 0.61/0.64

aa_counts_CDR 150 (10) 0.67/0.67

num_multivalent 7 (7) 0.57/0.64

Ab_info 47 (10) 0.60/0.63

Combined-XGB

700 (16)

0.72/0.72

Combined-RF 0.70/0.73

Combined-SVC 0.66/0.74

Combined-MLP 0.67/0.71
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as for individual CDRs. This finding may reflect the fact that the
dMaSIF-site training dataset predominantly included non-antibody
protein-protein interactions, and further suggests that the standard
dMaSIF training weights are more appropriate for scoring of epitope
residues rather than paratope residues. Re-training a dMaSIF-site
model on an antibody-enriched dataset may therefore improve the
model’s capability to score paratope residues and to classify antibody
affinity.

The top 10 features derived from the statistical (AIF) feature-set
returned a median AUC and F-1of 0.58 and 0.67 (Table 1). The most
important AIF feature is the average AIF across the entire epitope,
followed by average epitope AIFs for the epitopes of the CDR-L1 and
CDR-H3 (Supplementary Figure S1). As in the dMaSIF-site feature-
set, the relative feature rankings display a trend toward feature
descriptions of the epitope outweighing descriptions of the
paratope. Further, average scores outrank total scores, suggesting
that the average quality of the interaction is more useful than the
total number of interactions weighted by quality. Interestingly, the top
10 AIF features are highly associated with each other, and these
correlations are overwhelmingly positive in nature. This

observation may result from the statistical definition of AIF scores,
in which amino acid interface fitnesses are derived in aggregate across
the epitope-paratope interface without specific information on CDR-
location.

The top 10 features derived from the networking (SIN) features
returned a median CV AUC and F-1 of 0.69 and 0.70—the top
performing feature-set (Table 1). The top-ranking SIN features are
consistent with the top three features for AIF—the average SIN for the
L1-epitope, the entire epitope, and the H3-epitope (Supplementary
Figure S4). Also consistent with the AIF feature-set, there is an
enrichment of SIN features describing the epitope side of the
interaction over the paratope side. Among the top 15 features, only
four features reference the paratope—the average and total SIN for the
L1, and the average SIN for the H3 and across the entire paratope.

2.1.2 Performance of the simple feature-sets
Second, we investigated four simple featurizations that can be

best defined as “counting” features. The four counting feature-sets are:
aa_counts (the number of each combination of amino acid contact
within the antibody-antigen interface), aa_counts_CDR (the number

FIGURE 3
Correlations between top features and affinity for the combined classifier. Correlationmatrix for the 16 features selected in the combined classifier versus
each other and the affinity value. The parent feature-set for each feature is given at left. Affinity is treated as −log10(KD [M]) such that a positive correlation (red)
describes a feature (e.g., number of aromatic-aromatic contacts) that is positively correlated with higher affinity. Pearson correlation coefficients are shown
according to the color scale and range from −0.5 to 0.3.
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of contacts between each CDR and the epitope, split out by amino acid
chemical type), num_multivalent_contacts (mulitvalent contacts
within the interface), and Ab_info (summary information about
each antibody such as CDR lengths and canonical class). For the
counting feature-sets, we obtain classifiers with median cross-
validation AUCs and F-1 scores ranging from 0.57 to 0.67 and
0.63 to 0.67, respectively (Table 1). The aa_counts_CDR feature-set
performed best (AUC = 0.67, F-1 = 0.67), while the num_multivalent
feature-set performed worst.

The aa_counts feature-set returned an AUC and F-1 of 0.61 and
0.64 when utilizing the 10 top features (Table 1). The most important
features are enriched for interactions involving aromatic and/or charged
residues, with eight of the top ten features including a charged/aromatic
residue. Examining these top features in detail, it is clear that a number of
AA interactions are enriched for either high- or low-affinity
antibodies—but not both (Supplementary Figure S5). For example,
alanine-serine interactions occur in numerous low-affinity but not
high-affinity interfaces in the dataset. In contrast, Ab-glycine/Ag-
Lysine interactions occur more frequently and in higher numbers per
interface for high-affinity interactions. It will be valuable to observe if these
trends are reinforced as additional affinity-labeled antibody-antigen
structures are added to the SAbDab.

The aa_counts_CDR feature-set aggregates over the aa_counts
features to summarize interaction types and CDR-locations (e.g.,
CDRL1-polar-charged). aa_counts_CDR returns an AUC of
0.67 and F-1 of 0.67 when utilizing the 10 top features (Table 1).
The trend for top features is consistent with that of aa_counts, with all
10 of the top 10 features involving either an aromatic or a charged
component. Interestingly, all five of the most important features
describe light chain interactions, with four of these five describing
CDR-L3 (Supplementary Figure S7). In contrast to aa_counts, wherein
the top features identify interactions occurring uniquely for a small
number of high- or low-affinity antibodies, the top aa_counts_CDR
features appear to describe interactions in which the median counts
for the entire distribution of high- and low-affinity antibodies are
distinct (Supplementary Figure S6). This may explain the superior
performance of aa_counts_CDR as compared to aa_counts, and
additionally suggests it is a more robust feature-set than aa_counts.

The seven features measuring the multivalency of the interaction
(num_multivalent_contacts) for each CDR and for the entire
interaction returned an AUC of 0.57 and F1 of 0.64 (Table 1). The
poor performance may occur because these seven features are highly
correlated with one another (Supplementary Figure S7). This
observation is easily explained, as the multivalency features share

FIGURE 4
Relationships amongst most important features for classification of high- vs. low-affinity antibodies. Pairwise relationship matrix for the top 10 features
across the feature-sets, as determined by feature importance rankings for th combined classifier (Table 2). For all plots, high- and low-affinity antibodies are
shown in orange and blue, respectively. Cutoffs for high- and low-affinity are one-log above or below the dataset median affinity of 3nM (<300pM or >30nM).
The raw data for each feature-pair are shown in the upper triangle. On the diagonal, kernel density estimates (KDE) for the distribution of each feature are
shown. On the lower triangle, contour plots are superimposed on the raw pairwise data. Two pairwise associations and one KDE are enlarged on the right side
of the figure. Additional pairwise relationship matrices for the top five features within each feature-set are provided in the supplement (Supplementary Figure
S1–S8).
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significant information content with each other—a multivalent
interaction between L2 and L3 would be counted by both the
L2 and L3 multivalency features. As such, the features return
similar relative importance to each other, except for the feature
describing the multivalency of the L2 interaction (L2_multivalent_
count). The L2 multivalency feature ranks as more than twice as
important as the next highest multivalency feature.

The 47 Ab_info features describe the length of each CDR and
include a one-hot encoding of each CDR canonical class. The top
10 features in the Ab_info feature set returns an AUC of 0.60 and an
F1 of 0.63 (Table 1). Examining the relative importance of the features
indicates that H3 length is the most important feature by a large
margin, followed by several features describing the canonical classes of
light chain CDRs (Supplementary Figure S8). Interestingly, the lengths
of each CDR are positively correlated with the antibody affinity (longer
CDR implies higher affinity). The single exception to this trend occurs
for the H3 length feature, wherein a longer H3 is associated with lower
antibody affinity (Supplementary Figure S9). We discuss this finding
in detail in the Discussion.

2.1.3 Performance and complementarity of feature-
set combinations

Finally, we selected a combined feature-set in which the top two
features from each of the eight existing and simple feature-sets were
aggregated. A classifier trained on the combined set achieves a CV
AUC of 0.72 and F-1 score of 0.72 (Table 1). Of note, this represents
the top cross-validation performance we report in this study when the
dataset is carefully treated to remove sources of data leakage. When
sources of data leakage such as homologous antibodies are not
removed, cross-validation performance exceeds 0.80 (data not

shown). Additional performance increases are also achieved when
classifiers are not prevented from overfitting the small dataset; a
cautionary note for future work in this area.

Examining the relative importance of all features derived from the
combined feature-sets (Table 2) indicates that the most important
feature describes the average amino acid networking of the epitope for
CDR-L1 (L1_avg_epitope_SIN). The other top scoring features for the
combined feature-set classifier rank at similar relative importance and
include the number of isoleucine-lysine interactions, the number of
charged-aromatic interactions on CDR-L3, the average paratope
networking (SIN), the number of aromatic-aromatic interactions
on the CDR-L2, and the interaction energy and surface
complementarity.

The top features spanning the eight feature-sets are on average less
correlated than the top features within a given feature-set (Figure 3;
Supplementary Figures S1–S8). This observation may explain the
slight performance bump obtained when features from distinct sets
are combined in this fashion. However, the top features, regardless of
whether they derive from counting-, statistical-, energetics-, or
network-based featurizations remain moderately associated, with
absolute correlations up to Pearson r of 0.50 recorded. Most
surprisingly, the strongest correlations are observed between
H3 length and several network-based and dMaSIF features,
suggesting that long H3s are associated with poor interaction
quality as measured by distinct methodologies.

Finally, examination of the pairwise associations between features
derived from distinct sets identifies several pairs that appear to offer
complementary information for classification (Figure 4). The most
striking pairs include L2_aromatic_aromatic + L1_average_epitope_
AIF, and L3_charged_aromatic + avg_paratope_dMasSIF. The
complementarity of these combinations suggests that high-affinity
antibodies in the dataset utilize aromatic and charged interactions via
one light chain CDR while not compromising the statistical quality
(AIF) of the interactions for adjacent light chain CDRs.

Together, the most important features within each feature-set as
well as within combinations of feature-sets appear to be enriched for
features describing certain broad interaction qualities. These include:
1) contributions from charged and aromatic residues, especially when
the charged/aromatic residues occur on the paratope (as historically
observed (Zemlin et al., 2003; Birtalan et al., 2008; Robin et al., 2014));
2) substantial participation of light chain CDRs with high quality
interactions (as measured by statistical or network metrics); 3)
favorable epitope character (as measured by dMaSIF, making direct
interpretation of such character difficult); and 4) interaction
networking, which appears best measured by network-based
features rather than direct counts of multivalent network
interactions, suggesting that higher-order network interactions
rather than shallow networks are critical.

3 Discussion

In this study we used the affinity-annotated datasets of antibody-
antigen structural complexes to identify features to classify affinity of
antibody-antigen interactions. While the dataset in SAbDab is unique in
terms of having simultaneous three-dimensional structure and
annotated affinities for antibody-antigen complexes, the dataset is
still small and therefore there is a performance limit for all of the
classifiers. Due to the limited dataset size and our focus on

TABLE 2 Combined classifier features and feature importances. Tabular summary
of the most important features for the combined classifier. The importance of
each feature averaged over 500 XGBoost trees is reported and ranked. The
parent feature-set from which each feature belongs to is given.

Feature Importance Parent Feature-Set

L1_avg_epilope_SIN 0.154 Network (SIN)

IE 0.075 aa_counts

L3_charged_aromallc 0.075 aa_counts_CDR

avg_paratope_SIN 0.074 Network (SIN)

L2_aromatic_aromallc 0.065 aa_ counts_ CDR

lnteraction_total_onergy 0.064 Energetics

avg_paratope_dMaSIF 0.063 dMaSIF-site

sc_total 0.061 Energetics

RE 0.061 aa_ counts

L1_avg_epito po_AIF 0.055 Statistical (AIF)

avg_paratope_AIF 0.052 Statistical {AIF)

L2_total_dMaSIF 0.052 dMaSIF-site

L1_mullivalent 0.048 num_mu/livalent

H3_1ongth 0.040 Ab_info

L2_multivalenl 0.039 num_multivalent

L3·9.10·A 0.023 Ab_info
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understanding the information of feature-sets rather than in measuring
absolute performance, we chose to compare the feature sets using a
robust cross-validation process, where the dataset is randomized and the
cross-validation is run fifty times to avoid biases introduced in AUC by
small test sets as in Saal et al. (Saal et al., 2007). Thus, ourmethod ismore
appropriate for determining the relative predictive power of various
feature sets than if we tested all models on a small (<30 complexes) static
hold out test set. In light of the small dataset size, we observe an upper
limit of classifier performance despite implementing several distinct
featurization approaches that span from first principles to statistical to
machine-learned. Even when a large number of features exceeding the
number of observations by a factor of five is utilized, the median AUC
and F1-scores do not exceed ~0.80. A similar performance increase is
also observed when sources of data leakage are not properly removed
from the dataset. Together, this suggests additional affinity-annotated
structural data and novel featurizations may substantially improve the
trained models.

Many of the antibody-antigen complexes include non-protein
components in the interaction interface. These interactions primarily
include anti-influenza hemagglutinin (HA) or anti-HIV envelope (env)
antibodies that bind complex glycan-protein epitopes. Such antibodies
often exhibit distinct features such as an unusually long CDR-H3 used
to penetrate the immune-evasive glycan shields on these viruses (Miller
et al., 2021b). A subset of structures in the dataset also includes acids or
lipids in the interface. However, exclusion of antibodies with non-
protein-protein interactions reduces classifier performance, even
though none of the learned and basic feature-sets employed directly
describe non-protein interactions. This finding suggests that the
classifier can identify antibodies that target complex (e.g., protein +
glycan) epitopes based on the conformation of the protein components
of the antibody and antigen. Indeed, this may explain why individual
features such as the CDR-H3 length may alone have such high
classification value (Supplementary Figure S3). While this finding
also suggests that the introduction of features describing non-
protein-protein interactions could further improve top-line classifier
performance, we chose not to pursue this route. Rather, we focus on the
identification of features potentially useful for multiple log-fold affinity
enhancement via protein engineering. As shown in Figure 1B, the
dataset is essentially absent of very high-affinity antibodies that interact
with glycan-epitopes. It is therefore unlikely that this dataset can provide
meaningful insights into very high-affinity glycan- or lipid-based
antibody interactions.

Our study adds to the recent body of work around machine
learning predictors of antibody-antigen binding affinity by
providing a comprehensive assessment of the information content
of previously learned and basic counting features in a novel
classification task. Recently, Myung et al. published CSM-Ab,
which uses graph-based signatures to predict the binding affinity of
antibody-antigen complexes, as well as rank docked poses (Myung
et al., 2022). However, Myung et al. focus on regression rather than
classification, and test their model on single and multi-point mutation
data rather than on arbitrary antibody-antigen interactions. Such
interactions are substantially more diverse. For example, the
number of charged and aromatic CDR-H3 residues likely provides
better regressive value for datasets that include a number of highly-
homologous antibodies with identical light chains + CDR-H1/H2,
whereas in this study all homologous antibodies were removed to
maximize diveristy and minimize data leakage. Similarly, Yang et al.
utilize a regression-based approach, employing area- and contact-

based features to measure the predictive accuracy of numerous linear
and non-linear models (Yang et al., 2023). Yang et al. show, amongst
other findings, that Random Forests are superior to neural networks
for this dataset size and featurization technique. Our resulting
indicating superior performance of Random Forest and XGBoost as
compared to a multi-layer perceptron support a similar conclusion.
Further, our results suggest that counting and area-based features
provide less value for global affinity classification as compared to
affinity regression.

Complementing the aforementioned recent work, our approach
focused on identifying features that perform relatively well at the
related but distinct task of separating high- and low-antibodies when
no labeled homology information is available (e.g., as would occur
when evaluating a novel antibody). We also focus on benchmarking
the performance of simple features such as amino acid contact
numbers against higher complexity ‘learned’ features that have
been previously developed. It is both useful and encouraging that
we observe simple features to perform as well or better than learned
features, as simple features bear fewer human biases and reduce
computational complexity.

In line with previous reports in the literature (Zemlin et al., 2003;
Birtalan et al., 2008; Robin et al., 2014), we find, employing a naïve
approach, that features describing the number and chemical nature of
CDR-H3 interactions are of high value for classifying antibody affinity.
Across the feature-sets, H3-associated features rank highly. Also in
agreement with generally-accepted concepts of antibody interactions,
features describing charged and aromatic interactions are found to be
of high value and enriched in the aa_counts and aa_counts_CDR
feature-sets.

We make several unexpected observations as well. First, we find
that a feature describing the length of the CDR-H3 ranks as more
important than features describing the contact numbers or energy of
CDR-H3 in a given interface. CDR-H3 length is found to be inversely
correlated with binding affinity. We believe several factors may
contribute to the inverse association observed between H3 length
and affinity and the high importance of this feature: 1) antibodies with
unusually long H3s often target heavily glycosylated epitopes (e.g.,
HIV env), as the long H3 is selected to accomodate glycans and glycan-
engaging antibodies in our dataset tend to have lower affinity
(Figure 1B); 2) there appears to be a tradeoff between H3 length
and the number of CDRs that interact with the antigen, where the
number of CDRs interacting with the antigen is correlated with higher
affinity 3) there may be an elevated entropic cost associated with
binding for longer H3s. We note that it is non-trivial to deconvolute
the various causal vs. correlative contributions of these factors and
others to the H3 length-affinity relationship, but highlight this
relationship as a potentially fruitful avenue for future work.

Second, although H3 features are generally and broadly enriched, the
most important features describing the quantity or quality of a given CDR
interaction occur for the light chain. The top-ranking features that count
aromatic and charged interactions do so for the CDR-L2 and -L3 rather
than for H3. Moreover, the top statistical (AIF) and machine-learned
(dMaSIF) features describing the quality of a specific CDR interaction also
select light chain CDRs rather than H3. These findings support a
conclusion that significant and high-quality contact for multiple light
chain CDRs is more important for very high affinity interactions than a
highly-optimized H3 interaction in isolation. Importantly, however, we
note that the existence of numerous high-affinity nanobodies establish
that light chaininteractions are not strictly required for very high affinity.
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Third, the simple feature-sets we compute directly from the
structural complexes perform nearly as well for classification as the
complex network, statistical, and machine-learned feature-sets. This
finding has several implications. Most importantly, for future work
featurizing antibody-antigen interactions, simple features such as the
top-performing aa_counts_CDR can be computed quickly and
efficiently with minor performance loss. These features are less
sensitive to structural resolution than more complex features such
as energetics, and they do not require computationally-intensive and
error-prone preprocessing workflows involving repacking and
relaxation. For example, despite our efforts to implement an
accurate yet computationally-reasonable energetics workflow, a
single outlying structure recording implausibly high interface
energy made it through to the classification stage (as can be seen
in the raw data distribution for the interaction_total_energy feature in
Figure 4).

Finally, we observe that network-based features (SIN) are the
best performing individual feature-set. Historically, the SIN
networking metric has been used to identify structurally-critical
residues on viruses that mutate at lower rates due to this structural
constraint. Observing a light chain SIN networking feature as the
most important across all 700 features examined indicates that
structural networking may also be useful in identifying and
engineering high-affinity antibody interactions. However, there
is room for improvement to better engineer these network
features. For example, the SIN network implementation in this
paper does not weight higher-order networks between CDRs any
differently than those networks occurring within one CDR. This
additional information may be useful to leverage in the future to
develop better network features for this task.

The relative feature value within feature-sets and across combined
feature-sets is interpretable because of the approach we have taken.
Feature correlations are also annotated. These rankings and
correlations inform future featurization and can also contribute to
rational antibody design approaches—for example—via engineering
multivalency and/or increased light chain involvement.

Several examples of outliers both in the category of low-affinity
binders and high-affinity binders were observed in our analyses
(summarized in Supplementary Figure S1). Through comparison
of these outlying antibodies, we highlighted certain interaction
features key to high-affinity binding events that appear to be
poorly described by existing approaches. Specifically, it is
observed that there is a blind-spot in the current approach for
high-affinity antibodies that achieve this affinity without
significant light-chain contributions. These analyses suggest
fruitful avenues for future work to classify antibody affinity
from complexed structure.

The open-source Colab notebook approach enables readers to
quickly test their algorithms/features on the task at hand, and
benchmark against existing approaches. It is our hope that our
open-source implementation will therefore accelerate progress
in antibody-antigen structural featurization and antibody affinity
classification. In particular, we are excited to watch progress
in this area, which we posit may stem most fruitfully from
molecular dynamics simulations, geometric deep learning, and
higher-complexity network algorithms. We also eagerly await
expansion of the valuable affinity-annotated subset of SAbDab.

4 Methods

4.1 Google Collaboratory (colab)
implementation and data/code availability

All code was implemented in a Google Collaboratory (Colab)
notebook, and the code and raw data are further available on GitHub.
We additionally provide the cleaned PDB files for each antibody-
antigen complex. As certain features have a long runtime when applied
across the entire dataset such that users using the free version of Colab
would not be able to run the entire pipeline before timeout, we also
host final feature-extracted files on the GitHub so that users of the free
version can run the full pipeline while skipping certain feature
extraction steps.

4.2 Antibody-antigen structural dataset
acquisition and curation

The Structural Antibody Database (SAbDab) developed and
maintained by the Oxford Protein Informatics Group [Dunbar
et al., 2014] was accessed on 18 September 2022, and all antibodies
in the database with labeled affinity and “protein” antigens were
downloaded. Nanobodies were removed from the dataset as they
were found to have systematically lower affinity than antibodies in
the dataset (median affinity of 10 nM vs. 3 nM). Nanobody removal
prevents the classifier from learning this format-affinity correlation
which would exaggerate classifier performance. Further, several
antibodies in the dataset are duplicates or derivates of one another.
To prevent potential data leakage during cross-validation, we removed
all antibodies with >95% heavy chain sequence identity, yielding a
dataset of 356 affinity-labeled antibodies with a median affinity of
3 nM. For a given pair of high-identity antibodies, the antibody-
antigen interaction with the affinity further from the dataset median
affinity was selected. Additionally, for the classification task antibodies
with affinities within one order of magnitude of the dataset median
were removed. We refer to this set consisting of 142 antibodies as the
middle-drop-out (MDO) set.

4.3 Antibody-antigen complex
pre-processing

All antibody-antigen complexes were pre-processed prior to
feature extraction and analysis. The antibody-antigen complex pre-
processing comprised of: 1) sequence renumbering to the Chothia
numbering scheme, 2) removal of water molecules and ligands, 3)
replacement and repacking of missing side chain atoms in
PyRosetta, 4) all complexes were relaxed in PyRosetta via
pareto-optimal relaxation. Pareto-optimal relaxation minimally
perturbs backbone structure (mean RMSD < 1 Å), provides
optimized performance for protein design tasks (Nivón et al.,
2013), and is utilized for antibody-specific tasks as in the
RosettaAntibodyDesign framework (Adolf-Bryfogle et al., 2018).
The pre- and post-relaxation processed antibody-antigen complex
structures are available on the GitHub that accompanies this
manuscript.
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4.4 Feature extraction for external
feature-sets

Features derived from existing published algorithms or workflows,
which are referred to as “complex” feature-sets, were implemented and
extracted as follows.

• dMaSIF-site: dMaSIF site is a machine-learned annotation of
protein surface residues in which each residue is scored
according to the likelihood that the given residue participates
in a protein-protein interface based on combined geometric and
chemical features. All protein residues in each antibody-antigen
complex were scored using the following dMaSIF-site model:
3Layer_16dims_epoch85; using the following parameters:
model_resolution = 0.7 Å, patch_radius = 9 Å, subsampling =
150. From these residue-wise scores, 26 dMaSIF-site features
were generated: the average and total dMaSIF-site score for each
CDR (12 features) and each CDR-epitope (12 features), and the
average dMaSIF-site for the entire epitope and paratope
(2 features).

• Energetics/PyRosetta: 15 features generated via the PyRosetta
InterfaceAnalyzerMover and RosettaAntibodyDesign
applications were extracted. The 18 features extracted
included: the number of epitope residues calculated using
select_epitope_residues(); the epitope SASA calculated using
SasaMetric(); the epitope total energy calculated using
TotalEnergyMetric(); the interaction energy calculated using
InteractionEnergyMetric(); the crossterm interface energy
calculated using get_crossterm_interface_energy(); the complex
delta free energy calculated via get_interface_dG(); the separated
interface energy ratio calculated using get_separated_interface_
energy_ratio(); the total complex energy calculated using get_
complex_energy(); the antibody and antigen normalized scores
calculated using get_side1_score() and get_side2_score(); the
interface surface complementarity and dSASA according to
the InterfaceAnalyzerMover variables sc_value and dSASA;
and the interaction energies for all six CDRs individually
calculated via InteractionEnergyMetric().

• Network (SIN): All antibody-antigen complexes were modeled
as Significant Interaction Networks (SIN) as previously described
(Soundararajan et al., 2011). Briefly, antibody-antigen complexes
were converted to network representations inwhich each amino acid
was defined as a node, and edges were constructed based on inter-
residue interactions computed from a set of eight weighted
interaction types. Subsequently, the edge weights denoting
interactions across the epitope-paratope interface were summed
for each epitope or paratope residue to obtain a single score
describing the degree of networking between the given epitope/
paratope residue and the cognate surface (e.g., networking between
CDRH3 TYR101 and the entire epitope). 26 SIN features were
generated from these residue-level scores as the average and total
SIN-score for each CDR (12 features) and each CDR-epitope
(12 features), and the average SIN for the entire epitope and
paratope (2 features). The significant interaction networks for all
antibody-antigen complexes are available at the GitHub
accompanying this manuscript.

• Statistical (AIF): The Amino Acid Interface Fitness (AIF) was
computed for every interface residue on each antibody-antigen
complex as previously described (Tharakaraman et al., 2013).

Briefly, every amino acid pairing across the epitope-
paratope interface is scored based on the propensity for
observing the given amino acid pairing in a dataset of
84 non-redundant antibody-antigen complexes. While
there may be partial overlap between the antibody-
antigen complexes the AIF weights were trained on and
those employed in this paper, this is unlikely to introduce
bias as the AIF scoring scheme did not include affinity
annotation or affinity weighting. 26 AIF features were
generated from the residue-level AIF scores, which
include the average and total AIF for each CDR
(12 features) and each CDR-epitope (12 features), and the
average AIF for the entire epitope and paratope (2 features).

4.5 Feature extraction for simple feature-sets

Further, we extracted several relatively straightforward features
computed directly from the antibody-antigen complexes, with all code
implemented in the accompanying Google Colab notebook. These
features were computed as follows.

• aa_counts: Every pairwise amino acid interaction (e.g., Tyr-
Tyr or Ser-Thr) within the antibody-antigen interface was
counted resulting in 400 features (20 AA x 20 AA). Two
residues were denoted as potentially interacting and thus
were counted if the distance between their carbon alpha
residues was less than the length of their combined
sidechains plus an interaction distance of 4.5 Å, wherein
the sidechain length was measured as the distance between
the amino acid alpha carbon and the furthest side chain
heavy atom in the pareto-optimal relaxed pose.
Pre-processing scripts for these computations were
adapted from: https://github.com/HeliXonProtein/binding-
ddg-predictor (Shan et al., 2022) and https://github.com/
dauparas/ProteinMPNN (Dauparas et al., 2022).

• aa_counts_by_CDR: A second feature-set was generated from
the aa_counts feature-set, in which the aa_counts feature-set was
reduced to 150 features that abstracted the aa_counts by residue
chemical type and assigned them to CDRs. In short, each amino
acid was assigned a chemical type based on canonical
definitions: charged = R, H, K, D, E; aromatic = F, Y, W;
polar = S, T, N, Q; hydrophobic = A, V, I, L, M; special = C,
G, P, as well as a location based on CDR. Every interaction type
for each CDR was then counted. This resulted in 25 chemical
interaction types (e.g., aromatic-aromatic or polar-charged) for
each of the six CDRs, producing a total of 150 features (e.g., H3_
aromatic-epitope_aromatic). Interaction cutoff distances were
computed as for aa_counts.

• num_multivalent_contacts: A feature-set describing the
degree of multivalency of the interactions for each CDR as
well as for the entire paratope was generated, resulting in
seven features. First, for each residue on the antigen, the
number of distinct CDRs the given antigen residue interacts
with was computed according to the interaction distance
cutoff used in the aa_counts calculation. Subsequently, for
each CDR, the number of epitope sites the given CDR
interacts with that also interact with two additional CDRs
was summed. For example, the H3_multivalent feature would
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be assigned a value of four if the CDR-H3 interacted with four
epitope residues that each interacted with at least two other
CDRs. Finally, a seventh feature describing the multivalency
of the entire interaction was computed as the number of
CDRs with at least five multivalent interactions each.

• Ab_info: A feature-set describing basic information about each
antibody was generated with 57 features. The first six features
describe the length of each CDR, and the subsequent 51 features
represent a one-hot encoding of each CDR canonical class. CDR
length and class were annotated using SCALOP (Wong et al.,
2019). All CDRs with failed class assignment were aggregated
under a single one-hot entry labeled “None.” The North CDR
definition was used for defining all CDRs and calculating CDR
lengths (North et al., 2011).

4.6 Affinity classifier implementation

We implemented a binary:logistic XGBoost classifier to classify
antibodies according to greater than or less than 1 nM affinity using
a variety of features and feature-sets (Chen and Guestrin, 2016).
XGBoost hyperparameters were not tuned. For each classifier, 90/
10 cross-validation was performed 50 times, where a new random
split was generated for each of the 50 runs to minimize the noise
introduced by the small validation-set. These 500 cross-validations
were used to compute median area under the receiver operating
curve (AUC) and F-1 scores. Features were selected using sklearn’s
SelectKBest() and the f_classif selection metric (ANOVA F-value).
For each feature-set classifier, the top 10 features within the set
were selected and utilized by the classifier. For the ‘combined’
classifier, the top two features from each feature-set were selected
and then aggregated to obtain a total of 16 features. To confirm
feature-observation associations, affinity labels were randomized
and classifiers trained on the randomized dataset were confirmed to
return an AUC of 0.50 ± 0.01. Further, normalized feature
importance for each feature-set were obtained via XGBoost’s
feature_importances_ attribute, which describes the mean gain
for each feature across all splits. Several alternative classifier
architectures including RandomForest, GradientBoosting,
Support Vector (SVC), and Multi-layer Perceptron (MLP) were
also implemented via sklearn and not tuned. In addition to
classifier architecture, readers may adjust several variables in the
Colab notebook including: 1) the affinity-cutoff for classification,
2) the number of cross-validations to perform, 3) the cross-
validation training vs test set split, 4) the range of affinities to
use for training and cross-validation, 5) the number of total
features or features from each feature-set to utilize, and 6)
whether to include nanobodies and/or high-homology
antibodies in the experiment, which demonstrates the
performance gain as a result of data leakage.

4.7 Identification of recurrently misclassified
antibodies

The number of times that each antibody wasmisclassified by a classifier
trained on each feature-set was tracked during the fifty-fold cross-validation
process for each classifier. Antibodies that were incorrectly classified at rate
of ≥80% for at least seven of the nine feature-sets were identified as
recurrently misclassified antibodies for which classification performance
was very poor across all investigated feature-sets. Recurrently misclassified
antibodies were subsequentlymanually investigated through examination of
1) relative/marginal performance of feature-sets on these antibodies, 2)
specific scoring of these antibodies via the most important features within
feature-sets, 3) literature review of known structure-function relationships
for these antibodies.
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