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Clinical diagnosis of epilepsy significantly relies on identifying interictal
epileptiform discharge (IED) in electroencephalogram (EEG). IED is generally
interpreted manually, and the related process is very time-consuming.
Meanwhile, the process is expert-biased, which can easily lead to missed
diagnosis and misdiagnosis. In recent years, with the development of deep
learning, related algorithms have been used in automatic EEG analysis, but
there are still few attempts in IED detection. This study uses the currently most
popular convolutional neural network (CNN) framework for EEG analysis for
automatic IED detection. The research topic is transferred into a 4-labels
classification problem. The algorithm is validated on the long-term EEG of
11 pediatric patients with epilepsy. The computational results confirm that the
CNN-based model can obtain high classification accuracy, up to 87%. The study
may provide a reference for the future application of deep learning in automatic
IED detection.
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1 Introduction

Epilepsy is a central nervous system (neurological) disorder in which brain activity
becomes abnormal, causing seizures or periods of unusual behavior, sensations, and
sometimes loss of awareness (Fisher et al., 2014). More than 70 million patients
worldwide suffer from epilepsy accompany by about 2 million to 4 million new cases
every year (Akyuz et al., 2021). Approximately 450,000 patients under the age of 17 are
diagnosed with this disease out of nearly 3 million American patients (Galanopoulou et al.,
2012). There are about 10 million epilepsy patients in China, and the first attack is mostly in
children and adolescents (Ding et al., 2021).

The electroencephalogram (EEG) is a fundamental tool in the diagnosis and
classification of epilepsy (Tatum et al., 2018). Epileptic brain activities include

OPEN ACCESS

EDITED BY

Xin Gao,
King Abdullah University of Science and
Technology, Saudi Arabia

REVIEWED BY

A. M. Mishra,
Independent Researcher
Ilya Pyatnitskiy,
The University of Texas at Austin,
United States
Ji Tu,
Chinese Academy of Medical Sciences
and Peking Union Medical College, China
Jia Jing,
Hefei University of Technology, China

*CORRESPONDENCE

Duo Chen,
380013@njucm.edu.cn

Jun Jiang,
jiangjunzm@163.com

Naian Xiao,
wsxna@163.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Molecular
Diagnostics and Therapeutics,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 17 January 2023
ACCEPTED 28 March 2023
PUBLISHED 07 April 2023

CITATION

Zhang L, Wang X, Jiang J, Xiao N, Guo J,
Zhuang K, Li L, Yu H, Wu T, Zheng M and
Chen D (2023), Automatic interictal
epileptiform discharge (IED) detection
based on convolutional neural
network (CNN).
Front. Mol. Biosci. 10:1146606.
doi: 10.3389/fmolb.2023.1146606

COPYRIGHT

© 2023 Zhang, Wang, Jiang, Xiao, Guo,
Zhuang, Li, Yu, Wu, Zheng and Chen. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 07 April 2023
DOI 10.3389/fmolb.2023.1146606

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1146606/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1146606/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1146606/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1146606/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1146606&domain=pdf&date_stamp=2023-04-07
mailto:380013@njucm.edu.cn
mailto:380013@njucm.edu.cn
mailto:jiangjunzm@163.com
mailto:jiangjunzm@163.com
mailto:wsxna@163.com
mailto:wsxna@163.com
https://doi.org/10.3389/fmolb.2023.1146606
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1146606


seizure and interictal epileptiform discharge (IED) (Horak et al.,
2017). However, the availability of ictal EEGs is scarce for most
seizures randomness, and uncertainty. Alternatively, IED is
becoming one of the most important diagnostic hallmarks of
epilepsy and can be used to localize epileptogenic foci, appearing
mainly as spikes and sharp waves (de Curtis M et al., 2012). Half
of the routine EEG recordings include IEDs, with this number
even rising to 80% in sleep recordings from epilepsy patients
(Westin et al., 2022).

IED is routinely assessed by visual analysis of the EEG by
experts, considered the gold standard for many years. However,
visual assessment is time-consuming and tends to be subjective,
leading to misdiagnosis rates up to 30% (Lodder and van Putten,
2014) and motivating the development of computer-aided IED
detection. An algorithm aimed to automatically detect IED
started in 1976 based on scalp EEG. Extensive research on
approaches to automatic IED detection has been carried out,
ranging from mimetic methods to deep learning techniques (da
Silva Lourenço et al., 2021).

Deep learning has been used in computer vision and speech
recognition with automatic feature extraction and classification,
which learn from the raw data without any a priori feature
selection, scaling well to large datasets and exploiting
hierarchical structure in natural signals (LeCun et al., 2015).
Convolutional neural network (CNN) is the most widely-used
deep learning method, which is increasingly popular in EEG
analysis (Schirrmeister et al., 2017; Lawhern et al., 2018). There
are some typical disadvantages of CNN, including false
predictions output with high confidence, a large amount of
training data, longer training time, a large number of
hyperparameters (Thomas et al., 2021). In addition, the EEG
signal is a dynamic and three-dimensional series in contrast to
two-dimensional static images and has a comparatively low
signal-to-noise ratio, which could make learning features in an
end-to-end mode more difficult for EEG signals than for images
(Lian and Xu, 2022). Despite the problems of CNN, the
application of CNN still obtained some good results in EEG
analysis. Several combinations of archetypes and variations of
Convolutional and Recurrent Neural Networks also detect
epileptiform discharges with high specificity (Tjepkema-
Cloostermans et al., 2018). A VGG network shows high
sensitivity and specificity in detecting epileptiform discharges,
achieving intersections of metrics at 93% (Lourenço et al., 2020).
The most representative work is the use of CNN in EEG decoding
(Schirrmeister et al., 2017; Lawhern et al., 2018). The models in
both reports achieved high classification accuracies on certain
datasets.

Increasing studies attempt to use deep learningmethods for EEG
analysis. However, deep learning methods are still limitedly used in
IED detection, a challenging but vital task in the diagnosis of
epilepsy. Motivated by the good performance of the deep-
learning-based models in EEG analysis, we here evaluate their
effects on automatic IED detection. Several CNN-based
frameworks are used to automatically annotate the IEDs from
the long-term EEG recordings of 11 children with epilepsy.
There are 3 types of IED in this study, i.e., spike and wave, spike,
and low amplitude spike. With the non-IED EEG, the research in
this paper can be transformed into a 4-labels classification problem.

The computational results demonstrated an excellent classification
accuracy of up to 87% on the validation set. This study may provide
a reference for the future application of deep learning in automatic
IED detection.

2 Materials and methods

2.1 Subjects

We retrospectively included 11 patients meeting the diagnosis
standard in 2021 at Wuhan Children’s Hospital. All children with
epilepsy also met the following inclusion criteria: 1) each patient
with the video-EEG after treatment; 2) patients with 4 h of video-
EEG monitoring, including a slow-wave sleeping period; 3) patients
aged between 4 and 12 years old (mean ± std: 7 ± 3 years) during the
video-EEG examination. The study was approved by the Research
Ethics Board of Wuhan Children’s Hospital with IRB number
2022R034-E01.

2.2 Data acquisition

Using the standard international 10–20 system with
19 channels, EEG was recorded at a sampling rate of 200 Hz
with a video-EEG system (Nihon Kohden). The non-IED, spike
and wave, spike, and low amplitude spike are labeled as 0, 1, 2,
and 3, respectively. All EEG clips were then shuffled into a
random order, with all personal and identifying information
completely removed.

2.3 Data preprocessing

Three experienced epileptologists manually read the long-
term EEG and annotated the spike, low amplitude spike, spike
and wave, and non-IED. A 64-order butter-worth band-pass filter
([0.5, 50]Hz) was enabled to eliminate the noises. The EEG was
then cropped into segments using a 1-s sliding window with 0.9-s
overlap, and then a z-score method was used to normalize the
EEG data. Figure 1 illustrates the preprocessing. Table 1
summarizes the number and duration of IEDs of each subject
after the preprocessing.

2.4 Problem formulation

Since the EEG was manually annotated into four labels, the
experimental task here was a 4-label classification problem. Given a
multi-channel EEG dataset X with patient i ∈ {1, 2, . . . , N}, where N
is the number of patients. Each dataset was divided into segments, as
described earlier. Concretely, given dataset
Di � (X1, y1), (X2, y2), . . . , (XNi , yNi ), where Ni denotes the
total number of segments for patient i. The jth EEG segment Xj

∈ RC.T, 1 ≤ j ≤Ni contains C channels and T time points per segment,
where C = 19 and T = 1 × 200 = 200, in this study. The class label of
segment j is denoted by yj ∈ {0, 1, 2, 3}, corresponding to non-IED,
spike and wave, spike, and low amplitude spike.
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The EEG segments were divided under a 10-fold cross-validation
strategy. The dataset was divided into ten portions. In each repeated
iteration, one portion of the data was randomly used as testing data and
the rest nine portions of the data was applied as training data. This
process would be repeated 10 times until all data had been tested once.
The classification performance was evaluated by aggregating all
iterations. The approach was carried out with Tensorflow 2.10.0. For
training models, Adam was used with a batch of 10,000 EEG segments
and 500 epochs. The drop-out rate was 0.5 for the protocol.

2.5 Convolutional neural network

Three CNN-based frameworks are used in this study, including,
EEGNet (Lawhern et al., 2018), Deep ConvNet, and Shallow
ConvNet (Schirrmeister et al., 2017). The model structure can be
found in Figure 2.

All models were trained on an NVIDIA A40 GPU, with CUDA
11.8 and cuDNN v8, in tensorflow-gpu (v 2.10.0). Bias units are left
out in all convolutional layers. Two-dimensional convolution
functions are used for easy software implementation.

2.6 Model evaluation

In this paper, the EEG clips have four classes, i.e., non-IED, spike and
wave, spike, and low amplitude spike, whichwere labeled as 0, 1, 2, and 3,
respectively. A confusion matrix and three metrics (accuracy, precision,
and recall) are used to evaluate the algorithm performance. A confusion
matrix was used to visualize the overall classification results. Accuracy
was used to count the probability of the samples being correctly identified
in the EEG clips. In addition, precision, and recall were used to further
evaluate the algorithm performance in each class.

For example, if the class “spike” was considered as “positive,” all
the other samples would be considered as “negative”. Therefore, the
classifier has 4 possible outcomes: True positive (TP), false positive
(FP), true negative (TN), and false negative (FN). The accuracy,
precision, and recall were calculated as follows:

Precision � TP

TP + FP

Recall � TP

TP + FN

(1)

In a similar way, we can calculate the precision and recall for the
other three classes.

FIGURE 1
EEG Preprocessing. The raw EEG was band-pass filtered at [0.5, 50]Hz. A 1-s sliding window with 0.9-s overlap is used to crop the long-term EEG
into segments.

TABLE 1 Summary of subjects and IEDs.

Subject Gender Age (Year) Number of IEDs Duration summary (sec)

sub01 Male 10 135 192

sub02 Female 4 90 203

sub03 Male 11 124 149

sub04 Male 10 55 91

sub05 Female 5 131 163

sub06 Male 4 122 157

sub07 Female 12 87 473

sub08 Male 6 106 218

sub09 Male 10 114 302

sub10 Male 9 111 158

sub11 Male 12 131 268

Sum 1,206 2,373
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3 Results and discussion

3.1 Performance evaluation

A total of 11 patients (8 boys and 3 girls) with epilepsy were
finally included (age range: 4–12 years, mean age, 7 years, standard
deviation: 3 years). A total of 11 4-h video-EEG datasets were
obtained. The classification performance of the three models was

tested on both the validation set and training set. Table 2 displays the
result for evaluating the score on the two sets, indicating a relatively
good detection effect with the three models. The Shallow ConvNet
achieved the highest mean accuracy in evaluating the score
automatically both on the validation set with a 10-fold cross-
validation strategy and the training set. The accuracy is 87.0%
and 84.8%, respectively. Recall and precision generally reflected
the proportion of true positive, which also shows a similar superior

FIGURE 2
Network structure. (A): EEGNet, (B): Shallow ConvNet, (C): Deep ConvNet. The input is multi-channel EEG segment with a dimension 19(channel) ×
200(sampling point, 1 × 200). The EEGNet and Shallow ConvNet both contain two 2D convolution layers, while Deep ConvNet contains 5. The structure
details can be found in (Schirrmeister et al., 2017; Lawhern et al., 2018)

TABLE 2 The performance on training and validation datasets.

Type Dataset Accuracy (%) Recall (%) Precision (%)

EEGNet Training set 78.2 72.3 81.9

Validate set 80.5% 74.7% 83.9%

Shallow ConvNet Training set 84.8% 86.3% 85.6%

Validate set 87.0% 86.2% 87.6%

Deep ConvNet Training set 83.5% 82.8% 84.1%

Validate set 70.6% 69.1% 72.5%
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performance on the Shallow ConvNet. It is worth noting that the
models carried out a suitable trade-off in four-class scores.

3.2 Multi labels classification performance
evaluation

A confusion matrix as a metric was introduced to measure the
multi-label classification performance of the three models. The
full confusion matrix of the training set and validation set are
shown in Figure 3, including precision and recall for
quantification. Some misclassifications are presented. Among
all the attempts, the highest recall rate is 99.98%, while the
lowest rate is 33.05%. The maximum was 93.17% and the
minimum was 54.98% for precision.

Figure 4 illustrates the performance of the three models in the
10-fold cross-validation. As described, the experiment was repeated

10× to obtain the averaged results. It is obvious that the accuracy of
each test was much higher than the chance level (1/4 = 25%) in the
validation set. The highest and lowest accuracy showed 87.0% and
70.6%, while the highest accuracy was 84.8% accompanied by 78.2%
lowest accuracy in the training set.

3.3 Method comparison

To our best knowledge, there are few deep learning methods
for automated EEG analysis of IED in epilepsy diagnostics. In this
study, we use the CNN framework for automatic IED detection
from EEG data. To validate the effectiveness of the proposed
framework, we use Shallow ConvNet for automatic IED
detection. As a comparison method, we also implement deep
neural network (Tjepkema-Cloostermans et al., 2018), which
used several combinations of convolutional and recurrent

FIGURE 3
Confusion matrix for the training set and validation set. (A):
EEGNet, (B): Shallow ConvNet, (C): Deep ConvNet. Labels 0-4
represent non-IED, spike and wave, spike, and low amplitude spike,
respectively.

FIGURE 4
Performance of the models with 10-fold cross-validation. (A):
EEGNet, (B): Shallow ConvNet, (C): Deep ConvNet. In each subfigure,
the blue curve is the average of the 10 subfolders, while the green and
the orange curves represent the ± 1 standard deviation.
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neural networks to detect epileptiform discharges from scalp
EEG data. For readability sake, we select the best models in the
two research for comparison, i.e., Shallow ConvNet in our study,
and Deep Neural Network in (Tjepkema-Cloostermans et al.,
2018). The classification performance of the two models was
tested on both the validation set and the training set. Table 3
displays the performance comparison of Shallow ConvNet and
Deep Neural Network. The proposed Shallow ConvNet achieves
an 87% accuracy on validate set with a 10-fold cross-validation
strategy, while the compared method Deep Neural Network has
an accuracy of 77.02%. This demonstrates the effectiveness of
Shallow ConvNet in detecting IED on EEG data.

3.4 Discussion

Automatic IED detection based on CNN is gaining attention
for clinical auxiliary diagnosis of epilepsy in the future. Here,
three CNN-based models are evaluated for IED detection. The
scalp EEG was data as the input of the CNN detector. The
performance of Shallow ConvNet was obviously best good and
considered to be promising by the accuracy of over 84.0%.
Precision and/or recall was consistent at over 85.0%, being
very promising. The accuracy and precision of EEGNet
performed well at about 80%, while recall was relatively low at
about 73.5%. The Deep ConvNet showed good performance
(83.5%, 82.8%, 84.1%) in the training set while fluctuating
substantially in the validation set (70.6%, 69.1%, 72.5%),
indicating running more epochs to converge (Figure 4).

All EEG segments were classified according to spike, low
amplitude spike, spike and wave, and non-IED. It is friendly to
label 3 with over 97% recall and over 90% precision. The label 0 is
more likely to be misclassified with about 33% recall in the Deep
ConvNet, 48% in the EEGNet, and 67% in the Shallow ConvNet.
Precision is higher than 82% for four classifications in the Shallow
ConvNet. Although precision is only about 68% and 55% for labels
0 and 1 in the Deep ConvNet, about 68% and 55% for labels 0 and
1 in the EEGNet. It is good for labels 3 and 4 with a consistent
precision of over 81% and 91%, indicating different advantages of
the three models. The three models used here perform well in IED
identification. The results verified that the Shallow ConvNet model
showed outstanding performance for the 4-label classification
problem, displaying its good stability, in the IED detection here.
The EEGNet and Deep ConvNet performed well in limited
classification, indicating promising CNN-based automatic IED
detection.

Apparently, there are still some limitations in our study.
The raw EEG data here only came from 11 children with
epilepsy. It requires proving whether the models can be
applied to all the EEG datasets of all patients with epilepsy.
The sample size was still small in contrast to large-sample
clinical trials for clinical application. Further optimization
must be considered for its computational cost.

4 Conclusion

Rapid progress in neuroimaging techniques and deep learning
with CNN has significantly enhanced research on automatic IED
detection. Our study investigated the usability of three different
CNN-based models in a 4-label classification problem for automatic
IED detection. A remarkable classification accuracy of above 87%
was achieved for the Shallow ConvNet. The EEGNet and Deep
ConvNet also showed advantages in certain classes. Further research
will focus on the interpretability of the layers and the optimization of
the model structure.
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