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Excessive and chronic alcohol intake can lead to the progression of alcoholic liver
disease (ALD), which is a major cause of morbidity and mortality worldwide. ALD
encompasses a pathophysiological spectrum such as simple steatosis, alcoholic
steatohepatitis (ASH), fibrosis, alcoholic cirrhosis, and hepatocellular carcinoma
(HCC). Aldehyde dehydrogenase (ALDH2) is the most vital enzyme that produces
acetate from acetaldehyde and is expressed at high levels in the liver, kidneys,
muscles, and heart. The ALDH2*2 allele is found in up to 40% of East Asian
populations, and has a significant impact on alcohol metabolism. Interestingly,
several studies have shown that individuals with ALDH2 deficiency are more
susceptible to liver inflammation after drinking alcohol. Furthermore, there is
growing evidence of an association between ALDH2 deficiency and the
development of cancers in the liver, stomach, colon, and lung. Isoflavone
analogues are low molecular-weight compounds derived from plants, similar
in structure and activity to estrogen in mammals, known as phytoestrogens.
Recent studies have reported that isoflavone analogues have beneficial effects
on the progression of ALD. This mini-review summarizes the current knowledge
about the roles of isoflavone analogues in ALD and discusses the therapeutic
potential of isoflavone analogues in liver pathophysiology. In particular, we
highlight the significance of computational approaches in this field.
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1 Introduction

The liver is one of the most important organs in the human body
and is responsible for multiple pathophysiological functions,
including digestion, synthesis, hormone metabolism,
detoxification, and immune responses (Kalra et al., 2018). In
particular, the liver plays a pivotal role in metabolism, which
properly converts ingested food into nutrients and distributes
them to various tissues (Dardevet et al., 2006). Liver diseases are
caused by various harmful factors such as obesity, drugs, viruses, and
alcohol. For example, when the body gains weight, hepatocytes are
unable to break down lipids, which can lead to fatty liver disease
(Parker et al., 2018; Kim et al., 2019; Geng et al., 2021).
Acetaminophen and viral hepatitis are causes of acute liver
failure (Larson et al., 2005; Manka et al., 2016). Excessive and
chronic alcohol consumption leads to immune cell infiltration,
and increased oxidative stress can cause alcoholic liver disease
(ALD) (Parker et al., 2018; Parker et al., 2019; Kim et al., 2021;
Yang et al., 2022). Genetic polymorphisms in enzymes involved in
alcohol metabolism such as ALDH2 and cytochrome P450 2E1
(CYP2E1), are considered risk factors for ALD (Enomoto et al.,
1991; Zeng et al., 2013; Wang et al., 2021). Mitochondrial ALDH
(ALDH2) is a major enzyme involved in ethanol metabolism and
detoxification of alcohol-derived acetaldehyde (Zakhari and Li,
2007). In addition, several studies indicate that
ALDH2 participates in human pathophysiology including alcohol
addiction (Pautassi et al., 2010; Zhang and Ren, 2011). Deletion of
ALDH2 resulted in the acceleration of alcohol-induced liver
inflammation but increase resistance to alcohol-induced steatosis
and serum alanine aminotransferase (ALT) levels in mice (Kwon
et al., 2014). Furthermore, ALDH2 deficiency significantly increases
the progression of alcohol-associated liver cancer (Seo et al., 2019).
Although the incidence of ALD is on the rise worldwide, there are
limited treatment strategies or efficient drugs owing to the
characteristics of irreversible liver diseases. Phytoestrogens can be
classified into several subgroups, including isoflavones, flavonoids,
coumestans, lignans and stilbenes (Dixon, 2004). Isoflavone
analogues (daidzein, genistein, biochanin A, formononetin,
glycitein and puerarin) have protective effects against ALD
induced by various factors such as anti-inflammatory,
antioxidant, anti-fibrotic, and anti-apoptotic signals (Alipour and
Karimi-Sales, 2020; Kim, 2021). Thus, in this mini-review, we
summarize recent advances in our understanding of the roles of
isoflavone analogues in the development of ALD and address the
results of computer simulations at the atomistic level regarding the
interactions between isoflavone analogues and ALDH2.

2 Isoflavone analogues and ALDH2 in
the progression of ALD

As mentioned in the previous section, isoflavone analogues have
protective effects against ALD induced by various factors including
inflammation, oxidation, fibrosis and apoptosis (Alipour and
Karimi-Sales, 2020; Kim, 2021). ALDH2 is the most crucial
alcohol metabolizing enzyme that produces acetate from
acetaldehyde and is considered a risk factor for ALD (Zakhari
and Li, 2007). Several studies have indicated that isoflavone

analogues are promising therapeutic candidates that inhibit
ALDH2 activity (Kimura et al., 2019; Alipour and Karimi-Sales,
2020; Kim, 2021; Zhang et al., 2022). Therefore, this section
discusses the detailed mechanisms of isoflavone analogues in the
progression of ALD. In particular, it will focus mainly on liver cells,
including hepatocytes, macrophages, and other types of immune
cells that mediate cross-talk between isoflavone analogues and
ALDH2 in ALD (Figure 1).

2.1 Hepatocytes

Hepatocytes are the most abundant cells in the liver and play key
roles in protein synthesis, cholesterol synthesis and detoxification
(Zhou et al., 2016). The function of isoflavone analogues during
ALD causes an alteration in the hepatocytes via changes in the
expression of various genes (Alipour and Karimi-Sales, 2020);
however, the role of isoflavone analogues in hepatocytes remains
unclear. In 2016, Zhao et al. demonstrated that isoflavone analogues
could inhibit chronic alcohol-induced hepatocellular apoptosis by
inhibiting caspase-3 activity (Zhao et al., 2016). They selected
genistein, which is one of the major isoflavones that is a potent
inhibitor of ALDH2. Consequently, genistein treatment ameliorated
chronic alcohol-induced liver injury, histopathological changes, and
lipid peroxidation via inhibition of inflammatory signals such as
nuclear factor-κB (NF-κB), monocyte chemoattractant protein-1
(MCP-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α),
and transforming growth factor-β1 (TGF-β1) (Zhao et al., 2016).
Similarly, Xie et al. demonstrated that genistein had a beneficial role
against acute-on-chronic liver failure, which was reflected by
decreased aspartate aminotransferase (AST) levels in serum and
mitochondrial injury in hepatocytes (Xie et al., 2019). In addition,
Zhao et al. reported that puerarin treatment clearly rescued alcohol-
induced lipid degeneration in hepatic cells, cellular swelling, and
focal necrosis via inhibition of oxidative stress in rats (Zhao et al.,
2016). Li et al. indicated that puerarin had a protective effect against
alcohol-induced liver injury by inhibiting immunotoxicity in
hepatocytes through the regulation of the glycogen synthase
kinase-3 beta (GSK-3β)/NF-κB signaling pathways (Li et al.,
2013). Collectively, these observations indicate that isoflavone
analogues exert beneficial effects on alcohol-induced liver injury
via their anti-inflammatory and anti-apoptotic properties in
hepatocytes.

2.2Macrophages and other types of immune
cells

Macrophages are large phagocytes found in all tissues in the
body that play a crucial role in innate and adaptive immunity by
recruiting other immune cells (Hirayama et al., 2017). Therefore,
infiltration of macrophages or activation of resident Kupffer cells is
an important phenotypic marker of ALD progression (Kim et al.,
2021). A recent study reported that isoflavone analogues inhibited
Kupffer cell activation and endotoxin receptor expression in a
mouse model of chronic alcoholic liver injury (Zhao et al., 2016).
Similarly, Tan et al. found that isoflavone analogues inhibit
lipopolysaccharide (LPS)-induced inflammation in
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RAW264.7 macrophages via the MAPK and NF-κB signaling
pathways (Tan et al., 2022). In addition, it has been reported that
daidzein, an isoflavone analogues that is a potent and selective
inhibitor of ALDH2, alters the expression of pro-inflammatory
cytokines in macrophages and adipocytes (Sakamoto et al., 2016).
Neutrophils are the largest white blood cells in mammals and play
an important role in innate immunity (Rosales, 2018). Neutrophil
infiltration into the liver is a major feature of early-stage ALD
progression (Ramaiah and Jaeschke, 2007). Only a few studies have
evaluated the relationship between isoflavone analogues and
neutrophils in ALD. In 1998, Sadowska-Krowicka et al. reported
that genistein treatment significantly decreased
trinitrobenzenesulfonic acid (TNBS)-induced myeloperoxidase
(MPO) activity, which is an index of neutrophil infiltration in a
male Hartley guinea pig model (Sadowska-Krowicka et al., 1998).
Hepatic stellate cells (HSCs) are an important component of the
liver fibrogenesis involved in ALD (Zhang et al., 2016). Interestingly,
Zhang et al. demonstrated that puerarin had a regulatory effect on
alcoholic liver injury in rats by decreasing the levels of TGF-β and α-
smooth muscle actin (α-SMA), which are key factors involved in
liver fibrogenesis (Li et al., 2019). Consequently, isoflavone
analogues may be useful in attenuating alcohol-induced liver
damage through the regulation of macrophages and other types
of immune cells in the liver.

3 Isoflavone analogues and ALDH2:
Computational approaches

As discussed in the previous section, inhibition of
ALDH2 activity can lead to the suppression of alcohol-induced
liver diseases, and isoflavone analogues have gained attention as

promising drug candidates to inhibit ALDH2 activity. So far, several
studies have been carried out to aid the understanding of the
interactions between ALDH2 and isoflavone analogues. In this
section, we will mainly focus on studies using computer
simulations to examine the molecular basis for these interactions
and will discuss the capability of computer simulations in that
regard.

In 2016, Ferreira and Fraga performed molecular docking
calculations for 11 isoflavones to construct a pharmacophore
model (Ferreira and Fraga, 2016). Daidzin and its analogues,
which have been reported as selective inhibitors of ALDH2, were
selected for their docking study (Figure 2A). The predicted docked
conformation of daidzin to ALDH2 was extremely similar to the
X-ray crystal structure (PDB ID: 2VLE), substantiating the reliability
of the docking method. Based on the docked conformations of
daidzin and its analogues, they built a pharmacophore model
consisting of four pharmacophoric points and identified critical
interactions in the binding of the inhibitors to ALDH2. In addition
to this pharmacophore model, they also found that the outstanding
potency of CVT-10216, a highly selective inhibitor of ALDH-2, is
attributed to a π-stacking interaction between its aromatic ring in
positions R1 and Phe292, which is not available in the other
inhibitors.

The same group also investigated the molecular basis of the
preferred binding of diadzin to ALDH2 over its isoform, ALDH1,
using docking and molecular dynamics (MD) simulations (da Silva
Cunha et al., 2020). Selective inhibition of ALDH2 is important
because simultaneous inhibition of ALDH1 could result in fetal
malformation, inflammatory reactions, and vision changes. Based
on their docking andMD simulation results, they concluded that the
preferred binding of daidzin to ALDH2 over ALDH1 originated
from relatively stronger and more stable interactions between

FIGURE 1
Overview of isoflavone analogues-induced protective effects against ALD. Alcohol drinking induces hepatic injury via activating several different
pathways including ROS, MAPK, NF-κb, and TGF-β signaling. Isoflavone analogues have protective effects against ALD induced by various factors
including inflammation, steatosis, fibrosis, and apoptosis. Finally, this pathway decreases hepatic injury via the inhibition of alcohol metabolism.
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daidzin and ALDH2 because ALDH1 has a larger active site cavity,
thereby providing more conformational freedom to daidzin when it
binds to ALDH1.

Recently, Zhang et al. examined the binding pose and strengths of
eight isoflavone analogues (Figure 2B), including daidzin and CVT-
10216, using molecular docking, MD simulations, and various free
energy calculation methods such as molecular mechanics Poisson-
Boltzmann surface area (MM-PBSA) analysis, steered MD, and
umbrella sampling (Zhang et al., 2022). Based on the binding energy
decomposition from the MM-PBSA analysis, they identified the
residues that are crucial for the interactions between inhibitors and
ALDH2. Moreover, they demonstrated that all the free energy
calculation methods employed could successfully reproduce the
order of the relative binding strength of inhibitors against
ALDH2 obtained from the experimentally determined half-maximal
inhibitory concentration. They also pointed out that appropriate
consideration of the desolvation of binding partners is critical for
the accurate prediction of relative binding strength order, which

implies that the desolvation effect is an important factor to be
considered when designing new drugs against ALDH2.

All the studies addressed above computationally investigated the
interactions between inhibitors and ALDH2 and identified key factors
contributing to the interactions, thereby providing valuable clues for
designing newdrugs against ALDH2. These are good examples showing
the role of computer simulations in this field. Such simulations may
provide valuable information in a relatively short time and at a low cost,
which were only previously obtainable from expensive and time-
consuming experiments.

4 Conclusions and perspectives

Although the involvement of isoflavone analogues in the
progression of ALD has been previously established, the
mechanisms underlying the pathophysiology of ALD associated
with it remain unclear. Therefore, studying the role of isoflavone

FIGURE 2
Chemical structures of isoflavone analogues. The substituted groups of daidzin at R1 and R2 position are S1- and -OH, respectively, and those of
CVT-10216 at R1 and R2 position are S2- and -NHSO2CH3, respectively. (A) shows the functional groups of isoflavone analogues addressed in the paper by
Ferreira and Fraga (2016), and (B) shows the functional groups addressed in the paper by Zhang et al. (2022).
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analogues and ALDH2 in the pathophysiological pathways of ALD
is essential. This mini-review focused on current research in animal
models and cells (mainly hepatocytes, macrophages, and other
immune cells) on isoflavone analogues reported in ALD.
Furthermore, we discussed the capability of computational
approaches to inhibit ALDH2 with isoflavone analogues.
Emerging studies have established that isoflavone analogues
inhibit ALDH2 activity and decrease oxidative stress,
inflammation, steatosis, fibrosis, and apoptosis in the liver,
eventually protecting against the progression of ALD. Therefore,
isoflavone analogues are promising therapeutic candidates for ALD.
In the future, further clinical investigation of the relationship
between isoflavone analogues and clinical trials will support the
development of effective treatments for ALD.
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