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p53 is a transcription factor that regulates the expression of genes involved in
tumor suppression. p53 mutations mediate tumorigenesis and occur in
approximately 50% of human cancers. p53 regulates hundreds of target genes
that induce various cell fates including apoptosis, cell cycle arrest, and DNA
damage repair. p53 also plays an important role in anti-tumor immunity by
regulating TRAIL, DR5, TLRs, Fas, PKR, ULBP1/2, and CCL2; T-cell inhibitory
ligand PD-L1; pro-inflammatory cytokines; immune cell activation state; and
antigen presentation. Genetic alteration of p53 can contribute to immune
evasion by influencing immune cell recruitment to the tumor, cytokine
secretion in the TME, and inflammatory signaling pathways. In some contexts,
p53 mutations increase neoantigen load which improves response to immune
checkpoint inhibition. Therapeutic restoration of mutated p53 can restore anti-
cancer immune cell infiltration and ameliorate pro-tumor signaling to induce
tumor regression. Indeed, there is clinical evidence to suggest that restoring
p53 can induce an anti-cancer immune response in immunologically cold tumors.
Clinical trials investigating the combination of p53-restoring compounds or p53-
based vaccines with immunotherapy have demonstrated anti-tumor immune
activation and tumor regression with heterogeneity across cancer type. In this
Review, we discuss the impact of wild-type and mutant p53 on the anti-tumor
immune response, outline clinical progress as far as activating p53 to induce an
immune response across a variety of cancer types, and highlight open questions
limiting effective clinical translation.
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1 Introduction

Approximately 50% of cancer patients have tumors with one or more genetic alterations
in the tumor suppressor p53, making it the most frequently mutated gene in cancer. In
response to DNA damage, hypoxia, oncogene activation, or ribosomal stress, p53 acts as a
transcription factor to activate target genes that mediate various cell fates including
apoptosis, cell cycle arrest, DNA damage repair, metabolic changes, and more (Hafner
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et al., 2019). p53 regulates hundreds of target genes which are
carefully selected based on the desired cell fate. p53 is expressed
in a wide variety of tissues and cell types, but variations in expression
level and target gene selection result in a variety of cellular fates
across different cell types (Burns et al., 2001; Fei et al., 2002).
p53 activation may be accomplished by reactivating wild-type
p53 function, for example, by inhibiting its negative regulator
MDM2 (Shangary and Wang, 2008) or by restoring wild-type
function to mutant p53, for example, by altering protein
confirmation or inducing transcription of select target genes
(Martinez, 2010). Numerous recent advancements as far as
targeting p53 highlight its therapeutic potential (Zhang et al., 2022).

p53 activation in cancer cells can impact the immune system
through several mechanisms (Figure 1). p53 activation induces
expression of immune-related genes such as tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) (Kuribayashi
et al., 2008; Cardoso Alves et al., 2021), death receptor 5 (DR5)
(Wu et al., 1997), toll-like receptors (TLRs) (Muresan et al., 2020;
Muresan et al., 2020), Fas (Müller et al., 1998), and ULBP1/2 (Textor
et al., 2011) (Table 1); engages the cyclic GMP–AMP synthase
(cGAS)–stimulator of IFN genes (STING) pathway (Ghosh et al.,
2021; Pu et al., 2021; Ghosh et al., 2022); modulates levels of
programmed death-ligand 1 (PD-L1) (Wang Y. et al., 2018;

Thiem et al., 2019; Yadollahi et al., 2021); and promotes
cytotoxic T cell-induced tumor cell death (Braun and Iwakuma,
2016). Experimental and clinical evidence suggests that mutated or
non-functional p53 induces chronic inflammation in cancer cells
and promotes an immunosuppressed tumor microenvironment
(Cui and Guo, 2016; Agupitan et al., 2020), however it is also a
tumor antigen (DeLeo et al., 1979) that can enhance response to
immunotherapy (Dong et al., 2017; Biton et al., 2018; Deniger et al.,
2018; Chasov et al., 2021). Together, these data suggest that
p53 plays an important role in the modulation of anti-tumor
immunity.

Evidence supporting the crucial role of p53 in the anti-tumor
immune response has driven interest in the clinical translation of
therapies involving p53 activation to induce an immune response
with or without immunotherapy (Meric-Bernstam et al., 2017;
Chung et al., 2019; Fang et al., 2019; Zhou et al., 2021). p53-
restoring compounds and p53-based vaccines −/+ immune
checkpoint inhibition (ICI) have been evaluated in clinical trials
(Table 2). In this Review, we discuss the role of wild-type p53 in the
anti-tumor immune response, the impact of p53 dysfunction,
clinical progress as far as activating p53 to induce an immune
response across a variety of cancer types, and open questions
limiting effective clinical translation.

FIGURE 1
The microenvironment of tumors with wild-type or mutant p53. Wild-type p53 upregulates MHC-I expression, antigen presentation, secretion of
proinflammatory cytokines, and immunostimulatory genes including TRAIL, DR5, TLRs, PKR, and ULBP1/2. Wild-type p53 also upregulates STING to
support the cGAS/STING pathway, induces growth arrest, growth suppression, and apoptosis, and can upregulate or downregulate PD-L1 depending on
the cancer type. p53 dysfunction induced by mutations can downregulate MHC-I expression, antigen presentation, and IRF3 activity while
increasing NF-κB levels, NF-κB signaling and IL-6-mediated STAT3 phosphorylation. Mutant p53 can upregulate or downregulate PD-L1 depending on
the cancer type. Created in BioRender.
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2 Wild-type p53 and the anti-tumor
immune response

Reactivating wild-type p53 or restoring mutant p53 in cancer
cells activates the innate immune system (Menendez et al., 2013),
demonstrating clear involvement of p53 in the anti-tumor immune
response. For example, the p53-reactivating compound APG-115
synergizes with ICI (Fang et al., 2019) and the efficacy of another
p53-reactivating compound DS-5272 is dependent on natural killer
(NK) cell activity (Hayashi et al., 2019). In this section, we discuss
the role of wild-type p53 in the anti-cancer immune response.

2.1 p53 induces expression of
immunomodulatory genes

p53 regulates the expression of hundreds of genes, many of
which are involved in the immune response to cancer including
TRAIL, DR5, TLRs, Fas, PKR, ULBP1/2, and CCL2.

TRAIL is a p53 target gene (Kuribayashi et al., 2008) that is
primarily expressed by immune cells such as NK cells, T-cells,
natural killer T (NKT) cells, dendritic cells (DCs) and
macrophages (Smyth et al., 2003; Falschlehner et al., 2009).
TRAIL binds to the p53 target gene DR5 (Wu et al., 1997) to
induce apoptosis in a wide variety of cancer types while maintaining
cancer cell specificity (Smyth et al., 2003), making it an attractive
target for combination with immunotherapy. TRAIL compounds
and agonists targeting DR5 (Dubuisson and Micheau, 2017) for
treatment of numerous cancer types are highly developed in the
clinic, providing further rationale to investigate this cytokine further

as a widely applicable p53 target that may induce apoptosis and an
immune response across numerous cancer types (Falschlehner et al.,
2009; Ralff and El-Deiry, 2018). Further characterization of
noncanonical TRAIL pathways and potential immunosuppressive
effects of TRAIL treatment are needed prior to clinical translation
(Sag et al., 2019; Cardoso Alves et al., 2021).

TLR3, 5, 7, 8, and 9 are primarily involved in the innate immune
response and trigger type I interferon (IFN) synthesis through IFN
regulatory factors (IRFs) (Sameer and Nissar, 2021). p53 can directly
activate IRF5 (Mori et al., 2002) and IRF9 (Muñoz-Fontela et al.,
2008; Menendez et al., 2011). IRF5 activates the transcription of pro-
inflammatory cytokines (Honda and Taniguchi, 2006) and can
mediate apoptosis in cancer cells (Barnes et al., 2003; Hu et al.,
2005; Yanai et al., 2007; Couzinet et al., 2008; Hu and Barnes, 2009).
Interestingly, IRF9 is thought to contribute to p53-mediated
upregulation of IFNs in response to viruses (Muñoz-Fontela
et al., 2008), but may also promote cancer cell survival by
enhancing IL6 expression and STAT3 activation (Nan et al., 2018).

The Fas receptor is a p53 target and death receptor that is
expressed on the surface of many different cell types and induces
apoptosis upon ligand binding (Yamada et al., 2017).
Examination of lpr (lymphoproliferation) and gld
(generalized lymphoproliferative disease) mice with mutations
in the Fas or FasL gene, respectively, revealed that Fas receptor
defects cause loss of immune tolerance, an accumulation of
CD4−CD8− T-cells, and production of autoantibodies
(Takahashi et al., 1994; Sobel, 1996). Together this suggests
that Fas and FasL expression in T-cells mediates activation-
induced cell death (Yamada et al., 2017) and that both have a
critical role in T-cell development.

TABLE 1 p53-regulated genes that impact immune function.

p53-regulated
gene

Up/down
regulation by p53

Function Ref.

CCL2 ↑ Pro-cancer: can promote polarization of M2 macrophages Hacke et al. (2010), Fei et al. (2021)

DR5 ↑ Anti-cancer: also known as TRAIL-R2, receptor for TRAIL
that promotes cellular apoptosis upon TRAIL binding

Wu et al. (1997)

Fas ↑ Anti-cancer: FasL receptor that promotes extrinsic cellular
apoptosis pathways upon ligand binding

Müller et al. (1998)

IRF5 ↑ Anti-cancer: activates the transcription of pro-
inflammatory cytokines and mediates apoptosis in cancer
cells

Mori et al. (2002), Barnes et al. (2003), Hu et al. (2005), Honda
and Taniguchi (2006), Yanai et al. (2007), Couzinet et al.
(2008), Hu and Barnes (2009)

IRF9 ↑ Anti-cancer: contributes to p53-mediated upregulation of
IFNs

Muñoz-Fontela et al. (2008)

Pro-cancer: may promote cancer cell survival via IL6 &
STAT3 activation

PD-L1 ↑/↓ Pro-cancer: binding to receptor PD-1 suppresses CD8+

T-cell activation
Cortez et al. (2016), Thiem et al. (2019), Costa et al. (2020)

PKR ↑ Anti-cancer: supports p53-mediated tumor suppression,
mediates inflammasome activation and release of HMGB1

Yoon et al. (2009), Lu et al. (2012)

TLRs ↑ Anti-cancer: stimulates pro-inflammatory cytokines in
cancer cells & lymphocytes

Muresan et al. (2020), Muresan et al. (2020)

TRAIL ↑ Anti-cancer: DR4/5 ligand expressed primarily by immune
cells

Kuribayashi et al. (2008)

ULBP1/2 ↑ Anti-cancer: enhances NK cell target recognition Textor et al. (2011)
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PKR may be regulated by p53 and contributes to p53-mediated
tumor suppression under genotoxic conditions (Yoon et al., 2009),
though controversial findings necessitate further investigation of the
p53-PKR relationship (Rahman et al., 2009). In addition to
supporting p53-mediated tumor suppression, PKR mediates
inflammatory signals such as inflammasome activation and
subsequent release of the inflammatory protein high mobility
group box 1 (HMGB1) (Lu et al., 2012).

NK cells express NKG2D receptors that bind to ULBP1/
2 ligands on the tumor cell surface. ULBP1/2 ligands are direct
p53 target genes that enhance NK cell–mediated target cell
recognition (Textor et al., 2011).

p53 is an important regulator of CCL2, though there is
conflicting evidence pointing to both p53-dependent induction
(Hacke et al., 2010) and suppression (Tang et al., 2012; Walton
et al., 2016). The role of CCL2 in the tumor microenvironment is
complex but much evidence points to an immunosuppressive role
(Fei et al., 2021). Further investigation of the role of CCL2 and its
regulation by p53 is needed to determine potential therapeutic
strategies.

The cGAS/STING pathway is a key mediator of inflammation
in response to cytosolic microbial and host DNA (Decout et al.,
2021). Briefly, this pathway involves recognition of cytosolic

DNA by cGAS, which generates the second messenger 2′,3′-
cGAMP. 2′,3′-cGAMP binds to STING, which triggers the
phosphorylation of IRF3 via TBK1. IRF3 then translocates to
the nucleus and activates the transcription of inflammatory genes
including IFNs which play a key role in tumor suppression (Du
et al., 2021; Ke et al., 2022). Treatment of lung cancer cells with
actinomycin D and nutlin-3a primes cells for production of type I
IFN by upregulating STING in a p53-dependent manner
(Krześniak et al., 2020; Pu et al., 2021), suggesting a critical
role of p53 in regulating STING levels to allow for type I IFN-
mediated immune responses. These types of experiments must be
replicated in other cancer types to determine heterogeneity of
this effect across different tumor sites.

2.2 p53 impacts immune cells directly

Several studies have found that p53 can alter the abundance and
activation state of cells within the TME. For example, activation of
wild-type p53 can reverse an immunosuppressed TME via
elimination of myeloid-derived suppressor cells (MDSCs) by
inducing cell death and/or reversal of their immunosuppressive
capacity (Guo et al., 2017). p53 can also upregulate the NK cell

TABLE 2 Clinical trials involving p53 activation to induce an immune response.

ID Intervention Cancer Type Status Outcome Ref.

p53 activation + immune checkpoint inhibition

NCT04785196 APG-115 + toripalimab Liposarcoma & advanced
solid tumors

Recruiting Not yet available

NCT03611868 APG-115 +
pembrolizumab

Solid tumors Recruiting Not yet available Fang et al. (2019)

NCT04383938 PRIMA-1Met (APR-246)
+ pembrolizumab

Solid tumors Completed Acceptable safety profile; clinical activity in
patients with solid tumors

Dumbrava et al.
(2021), Park et al.
(2022)

p53 vaccines -/+ immune checkpoint inhibition

NCT01191684 p53MVA Colorectal, stomach, or
pancreatic cancer

Completed Elevated p53-specific CD8+ T cell responses;
clinical response not apparent

Chung et al. (2019)

NCT03113487 p53MVA +
pembrolizumab

Recurrent ovarian, primary
peritoneal, or fallopian tube
cancer

Active, not
recruiting

Not yet available

NCT02432963 p53MVA +
pembrolizumab

Solid tumors that have failed
prior therapy

Active, not
recruiting

3/11 patients SD for 30, 32, and 49 weeks with p53-
specific T cells; 7/11 patients PD before 10 weeks,
minimal p53-specific T cell responses, no clinical
benefit

Chung et al. (2019)

NCT03406715 Ad.p53-DC + nivolumab
& ipilimumab

Small cell lung cancer Terminated Not yet available

NCT01639885 SLP-p53 + IFN-α2b Platinum-resistant ovarian
cancer

Completed Not yet available

NCT00844506 SLP-p53 +
cyclophosphamide

Ovarian cancer Completed Not yet available

NCT00617409 Paclitaxel -/+ INGN 225 Small cell lung cancer Completed Positive immune response in 20% of paclitaxel -/+
INGN 225 arm. Failed to improve ORR compared
to paclitaxel alone.

Chiappori et al.
(2019)

Unknown ALVAC-p53 Advanced colorectal cancer Completed Potent T-cell and IgG responses induced in the
majority of the patients

van der Burg et al.
(2002)

SD, stable disease; PD, progressive disease
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ligand ULBP2 on cancer cells, which enhances NK cell anti-tumor
activity (Li et al., 2011; Textor et al., 2011).

Wild-type p53 can induce TAP1 to enhance the transport of
MHC class I and expression of surface MHC-peptide complexes on
tumor cells. p53 also cooperates with IFN-γ to activate the MHC
class I pathway. These TAP1 and IFN-γ-mediated effects are
abrogated in p53-null cells (Zhu et al., 1999). Another study
found that p53 upregulates MHC class I expression via
upregulation of the endoplasmic reticulum aminopeptidase
ERAP1 (Wang et al., 2013). The functional impact of these p53-
dependent effects on cytotoxic T-cell activation and tumor
regression needs to be validated in vivo.

p53-mediated induction of cell cycle arrest and the DNA
damage response is essential for immunoglobulin generation
through variability, diversity, and joining (VDJ) recombination.
VDJ recombination involves the generation of double-stranded
DNA breaks in B cells, thus constant monitoring of genomic
integrity is crucial (Dujka et al., 2010). One study found that
p53 binds to the regulatory regions of immunoglobulin genes in
B cells to regulate their maturation, function, and ability to perform
VDJ recombination. p53-null mice had increased splenic white pulp,
higher numbers of immature B cells in their bone marrow, and B
cells that were hyperresponsive to proliferative challenge.
Immunoglobulin deposition was lower in tumors that developed
spontaneously in p53-null mice as compared to tumors from p53+/−
mice (Shick et al., 1997). Together, these findings further support
the crucial role of p53 in B cell function and immunoglobulin
formation.

PD-L1 has become increasingly important since the discovery
and approval of ICI therapy for treatment of cancer. PD-L1 is an
immune checkpoint protein that is expressed by cancer cells,
macrophages, some activated T-cells and B cells, DCs and some
epithelial cells. PD-L1 binds to programmed cell death protein 1
(PD-1), which is expressed on immune cells including cytotoxic
CD8+ T-cells, and causes T-cell inactivation (Han et al., 2020).
Several ICI therapies target this interaction by binding to PD-L1 or
PD-1 to stimulate an anti-tumor immune response, though it must
be noted that ICI therapies can cause diarrhea, colitis,
hypothyroidism, hyperthyroidism, pneumonitis, and myocarditis,
(Wang D. Y. et al., 2018), can increase risk of sepsis in individuals
who are already at risk for this condition (Zhang et al., 2023), and
occasionally cause mucositis (Jacob et al., 2021).

High expression of PD-1 or PD-L1 is a reliable predictor of
favorable response to ICI across multiple cancer types. Interestingly,
the relationship between p53 and PD-L1 expression varies across
different cancer types. In non-small cell lung cancer, the p53-
inducible miR-34 degrades PD-L1 mRNA (Cortez et al., 2016;
Wang Y. et al., 2018). In melanoma cells, however, p53 can
positively regulate IFN-γ-induced PD-L1 expression by boosting
JAK2 expression (Yadollahi et al., 2021). Careful evaluation of PD-
L1 expression after administration of p53-activating therapies
should be considered before concurrent or subsequent
administration of PD-L1-targeting therapy. Furthermore, the
effects of p53 activation on other immune checkpoint proteins
such as CTLA-4, LAG-3, and TIM-3 need to be investigated in
order to identify ideal combinations with other types of ICI drugs.

Though most research has focused on the contribution of cancer
cell p53 to anti-tumor immunity, some studies have investigated the

role of immune cell p53. For example, there is evidence to suggest
that knocking out p53 in cytotoxic T-cells leads to T-cell activation
and significant enhancement of melanoma tumor control in mice
(Banerjee et al., 2016). Further investigation in a wider range of
cancer types could provide important guidance in the construction
of chimeric antigen receptor (CAR)-T cell therapies and
p53 vaccines that deliver wild-type p53 to immune cells. This
type of work may also inform the administration of
p53 activators that may have off-target effects on immune cells.

2.3 p53, the DNA damage response, and
immunity

In addition to direct pharmacological activation, p53 can also be
activated with DNA-damaging agents that induce apoptosis in
rapidly dividing cells and/or cells with deficient DNA repair
pathways. p53-mediated cell death after DNA damage can induce
the immune system, a phenomenon known as immunogenic cell
death (ICD) (Zhou et al., 2019). ICD can induce long-lasting
protective immunity and synergize with or sensitize patients to
immunotherapy (Dosset et al., 2018). Many questions remain as far
as optimal time to administer immunotherapy following treatment
with a DNA-damaging agent, and whether concurrent, sequential,
or alternating treatment is ideal.

It is well-known that p53 target gene selection is highly context-
dependent, thus the target genes that induce a p53-dependent
immune response likely vary depending on the type of DNA-
damaging agent that is being administered. For example, in
HCT116 cells treated with chemotherapies 5-FU, irinotecan,
oxaliplatin, cisplatin, or clinically relevant combinations, the
soluble form of the p53 target TRAIL-R2 was downregulated in a
drug-specific manner (Carlsen et al., 2021), but in breast cancer cells
was upregulated in a pan-drug manner (Groysman et al., 2021). The
p53 target gene TLR3, which plays a role in anti-tumor immunity,
was upregulated in an irinotecan-specific manner in colorectal
cancer cells (Carlsen et al., 2021). The contribution of these
genes to chemotherapy-mediated immune responses remains to
be investigated.

The abscopal effect describes a phenomenon in which local
radiation treatment induces tumor suppression at distant sites,
presumably through activation of a systemic anti-tumor
immune response. One in vivo study demonstrated delayed
growth of Lewis lung carcinoma and fibrosarcoma tumors
after irradiation of a non-tumor bearing leg of mice with
wild-type p53. The same experiment was repeated on
p53 null mice, but normal tumor growth was observed
(Camphausen et al., 2003). Another study found that
irradiation of a non-tumor site induced regression of
A549 tumors, but not p53-silenced A549 or p53-null
H1299 tumors. This study was conducted in nude mice,
which lack functional T-cells but have an intact innate
immune system, pointing to the innate immune system as a
major mediator of the p53-dependent abscopal effect (Tesei
et al., 2021). These data support the role of p53 in anti-tumor
immune responses and supports the use of radiation therapy
with immunotherapy to bolster the abscopal effect (Liu et al.,
2018).
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There is evidence to suggest that radiation therapy can convert
the tumor into an in situ vaccine (Formenti and Demaria, 2012).
One study found that in a murine model of colorectal cancer,
radiation and a CEA-targeting vaccine therapy were ineffective
alone, but when combined elicited CD4+ and CD8+ T-cell
responses against CEA, p53, and gp70 (Chakraborty et al., 2004).
The use of radiation to upregulate tumor antigens in combination
with vaccine therapies hold promise and should be investigated
further.

2.4 p53-induced senescence and immunity

Senescence is a state of irreversible cell cycle arrest that can be
induced by the p53 transcriptional program. The senescence-
associated secretory phenotype (SASP) describes the highly
specific secretome of senescent cells, which is composed of
both pro- and anti-tumor cytokines. The role of the SASP in
cancer is context-dependent. It can stimulate immune-mediated
clearance of tumor cells and limit fibrosis but can also mediate
chronic inflammation and stimulate the growth and survival of
tumor cells (Lopes-Paciencia et al., 2019). Further investigation
of SASP-mediated immune responses is needed.

p21 is a p53 target gene that plays a critical role in p53-
induced cell cycle arrest (El-Deiry et al., 1993; el-Deiry et al.,
1994) and is a marker of senescence along with increased levels of
p16, p53, p-p53 and decreased levels of pRb (González-Gualda
et al., 2021). Recent investigation has pointed to a novel role of
p21 in the regulation of an early form of the SASP through Rb-
dependent transcription involving SMAD and STAT. The
secretome induced by this transcriptional program is known
as the p21-associated secretory phenotype (PASP) and is
initiated early in the stress response in parallel with cell cycle
arrest. The PASP is made up of several hundred factors including
CXCL14, which recruits macrophages to the tumor site. If
p21 levels do not stabilize after 4 days, macrophages polarize
toward the M1 phenotype and cytotoxic T-cells are recruited to
eliminate the target cell. Notably, p21 overexpression recruited
macrophages, T-cells, and B cells, but did not have any effect on
NK cell recruitment (Sturmlechner et al., 2021). Future studies
should aim to identify the extent to which this p21-dependent
immunosurveillance mechanism is functional in cells with
mutated p53 and if necessary, how to reactivate it.

A study by Iannello, et al. demonstrated that induction of
p53 caused senescent liver cancer cells to secrete several
chemokines involved in the recruitment of immune cells
including CCL2, CCL4, CCL5, CCL3, CXCL1, and CXCL2.
Neutralization of CCL2 prevented NK cell recruitment to the
tumors and reduced tumor rejection, indicating an important
role of p53-mediated CCL2 in NK cell killing of senescent
tumors (Iannello et al., 2013).

3 Mutant p53 and the anti-cancer
immune response

The TME includes cancer cells, immune cells, fibroblasts,
signaling molecules, blood vessels, and extracellular matrix. The

TME directly determines the immune status of the tumor. Mutant
p53 can impact immune cell infiltration, cytokine secretion, and
inflammatory pathways in the TME, thereby significantly impacting
the anti-cancer immune response (Blagih et al., 2020a).

3.1 Mutant p53 and its impact on immune
cell recruitment and cytokine secretion

Immune surveillance involves innate and adaptive immune
responses that recruit immune cells such as CD8+ and CD4+

T-cells, NK cells, and neutrophils to clear tumor cells. Immune
surveillance can be suppressed by cell types such as regulatory
T-cells, MDSCs, and M2 macrophages (Swann and Smyth, 2007).
Loss or alteration of p53 in cancer cells can modulate the
recruitment and activation of immune cells in the tumor
microenvironment and can impact cytokine secretion within the
TME, resulting in the suppression or evasion of anti-tumor immune
responses and the promotion of cancer progression.

Many studies show a correlation between mutant p53 and
absence or reduction of cytotoxic immune cells. TCGA RNA-seq
gene expression profiling revealed a decrease in the CD8+ T-cell
marker gene (CD8A), NK cell marker genes (KLRC1 and KLRF1),
T-cell cytolytic activity genes (GZMA and PRF1) in p53-mutated
gastric cancers when compared to wild-type p53 gastric cancers
(Jiang et al., 2018). A similar correlation between mutant p53 and
reduced levels of granzyme B and perforin 1, which are mainly
secreted by NK cells and cytotoxic T-cells, was observed in human
head and neck squamous cell cancer based on global gene expression
profiling using three multi-omics datasets (Lyu et al., 2019). Murine
models further demonstrated that p53 missense mutation G242A
(corresponding to human G245A) suppresses the activation of host
NK cells, enabling breast cancer cells to avoid immune assault
(Uddin et al., 2022).

T regs, MDSCs, and type 2 macrophages (M2) sustain pro-
tumor inflammation and immunosuppression (Kerkar and Restifo,
2012). p53 dysfunction in tumor cells alters myeloid and T-cell
recruitment to the tumor, promoting an immune-suppressed
environment (Blagih et al., 2020b; Shi and Jiang, 2021). Higher
density of myeloid cells tend to be observed in p53-mutated prostate,
ovarian and breast cancers as compared to tumors with wild-type
p53 (Blagih et al., 2020b). Moreover, Sallman, et al. demonstrated
that mutant p53 mediates an immunosuppressive phenotype in
myelodysplastic syndromes (MDS) and secondary acute myeloid
leukemia (sAML). In biopsies from tumors with p53 mutations,
there were less OX40+ cytotoxic T-cells and helper T-cells,
decreased ICOS+ and 4-1BB+ NK cells, and expanded
populations of T regs and PD-1-low MDSCs. PD-L1 expression
was also significantly higher in the hematopoietic stem cells of
patients with TP53 mutations (Sallman et al., 2020).

Mutant p53-associated microRNAs can also impact the immune
microenvionment. Cooks, et al. discovered that colon cancer cells
with gain-of-function p53 mutations secrete exosomes containing
miR-1246. When these exosomes were taken up by nearby
macrophages, miR-1246 reprogrammed the macrophage to a
cancer-promoting state characterized by anti-inflammatory
immunosuppression and increased TGF-β activity (Cooks et al.,
2018).
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p53 loss is associated with increased expression of the myeloid
attractant cytokine CCL2 and infiltration of immunosuppressive
myeloid cell populations including M2 macrophages into primary
tumors (Walton et al., 2016). Another study showed that UV-
induced p53 in mouse macrophages hindered LPS-induced
CCL2 production (Tang et al., 2012). However, other work has
shown that p53-targeting siRNA decreased levels of TNF-α-induced
CCL2 transcription, therefore context specificity across different
cancers should be investigated further.

The recruitment and function of immune cells in the TME are
impacted by the tumor secretome, which is affected by loss or
alteration of p53. For example, p53 loss in cancer cells induces
secretion of WNT ligands that stimulate macrophages to produce
IL-1β, promoting systemic inflammation (Wellenstein et al., 2019).
Another study showed that CXCR3/CCR2-associated chemokines
and M-CSF are increased in p53-deficient cancer cells. CCR2 and
M-CSF then lead to the recruitment of suppressive myeloid CD11b+
cells which attenuate the CD4+ T helper 1 (Th1) and CD8+ T-cell
responses in TME (Blagih et al., 2020b). Other work has shown that
CXCL17, an attractant for monocytic cells, increased after p53 loss
(Bezzi et al., 2018). The net effect of the mutant p53-mediated
secretome on the immune status of the TME is a crucial topic of
future investigation that may unveil potential targets and liquid
biomarkers.

3.2 Mutant p53 influences inflammatory
signaling pathways in cancer

Mice harboring a germline p53 mutation develop severe chronic
inflammation and are highly prone to inflammation-associated
colon cancer (Cooks et al., 2013), indicating a role of p53 in
regulating inflammatory signaling pathways in cancer. The
following sections will discuss the impact of p53 mutations on
the cGAS/STING, NF-κB, and STAT3 pathways.

3.2.1 The cGAS/STING pathway
As discussed above, the cGAS-STING pathway is a crucial

component of the anti-tumor immune response and p53 may
upregulate STING, providing important support for this tumor
suppressive pathway (Krześniak et al., 2020; Pu et al., 2021).
Mutant p53 interrupts the cGAS-STING pathway by interacting
with TBK1, preventing formation of the STING-TBK1-
IRF3 trimeric complex and blunting TBK1-dependent activation
of IRF3. IRF3 is a transcriptional regulator of genes involved in type I
IFN production and is critical in the cGAS/STING-mediated
immune response (Ghosh et al., 2021; Ghosh et al., 2022).

3.2.2 The NF-κB pathway
NF-κB is a transcription factor that senses intrinsic cell stress

and regulates signaling pathways involved in inflammatory
responses and tumor growth. The direct interaction between
mutant p53 and NF-κB is demonstrated by genome-wide global
profiling analysis, which suggest NF-κB interaction with
p53 mutants (such as R273H, R248W, R248Q, and G245S) in
different human cancer cell lines (Rahnamoun et al., 2017).
There is a reciprocal antagonistic relationship between p53 and
NF-κB, such that p53 loss results in uncontrolled NF-κB signaling

and an overreaction to pro-inflammatory stimuli (Gudkov et al.,
2011). Mutant p53-mediated upregulation of NF-κB signaling is
observed in various human tumors. For example, mutant p53
prolongs TNF-α-induced NF-κB activation (Cooks et al., 2013)
through interaction with the tumor suppressor disabled 2-
interacting protein (DAB2IP) in the cytoplasm (Di Minin et al.,
2014). Mutant p53 R172H can form a complex with NF-κB and
activate NF-κB target gene expression in the cell lines isolated from
primary pancreatic ductal adenocarcinomas of mice (Schneider
et al., 2010). The interplay between mutant p53 and NF-κB
reshapes cancer-promoting gene expression and cytokine
secretion, driving cell transformation and cancer development.
However, the role of NF-κB in the immune response is highly
pleiotropic and there is evidence to support both NF-κB-mediated
activation and suppression of the anti-tumor response in certain
contexts (Lalle et al., 2021). Careful consideration of context-
specificity should be taken before clinical translation of relevant
targets.

3.2.3 The TGF-β pathway
TGF-β is a pleiotropic cytokine that regulates the transcription

of genes involved in myriad processes including survival, growth,
proliferation, differentiation, and motility in a context-dependent
manner (Elston and Inman, 2012). TGF-β signaling is highly
dependent on the SMAD signal transduction pathway. Following
TGF-β receptor activation, SMAD2 and SMAD3 become
phosphorylated, dissociate from the receptor, and bind to
SMAD4. This SMAD2/3/4 complex translocates to the nucleus to
control tumor suppressor gene transcription (Elston and Inman,
2012). TGF-β impacts the TME by contributing to fibrosis, invasion,
metastasis, angiogenesis, and immunosuppression (Chung et al.,
2021).

Wild-type p53 and TGF-β signaling converge due to physical
interaction between p53 and SMAD proteins, which induces the
transcription of many tumor suppressor genes. Mutant p53,
however, abrogates this effect and promotes tumorigenic TGF-β
signaling that supports migration, metastasis, and
p21 downregulation leading to failure of cell cycle arrest (Kalo
et al., 2007; Ross and Hill, 2008; Wilkins-Port et al., 2009; Elston and
Inman, 2012). These effects depend on mutant p53-mediated
suppression of TGF-β receptor (TGF-βR) II expression,
SMAD2 phosphorylation, SMAD2/3-SMAD4 association, and
SMAD nuclear translocation (Elston and Inman, 2012). In
addition to these mechanisms, oncogenic Ras and mutant
p53 can work in concert with TGF-β to induce a mutant p53-
p63-SMAD2/3 complex that empowers TGF-β-induced metastasis
(Adorno et al., 2009) by inhibiting p63-mediated sharp-1
downregulation (Alvarez et al., 2019). Another study found that
p53-mutant tumor cells secreted exosomes containing miR-21-3p
andmiR-769-3p that increased secretion of TGF-β in fibroblasts and
induced epithelial-mesenchymal transition in tumor cells (Ju et al.,
2019). Together, these studies emphasize mutant p53-mediated
enhancement of pro-tumorigenic TGF-β pathways that enhance
migration, metastasis, and inhibition of cell cycle arrest.

TGF-β affects CD8+ and CD4+ T-cells, B cells, and T regs in
various ways to promote immunosuppression. Many of these
functions are mediated by SMAD proteins. The interplay
between TGF-β, mutant p53, and SMAD proteins suggest that
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mutant p53 impacts TGF-β-mediated immune modulation (Chung
et al., 2021). Future studies should address this role of mutant p53, as
it could reveal biomarkers of TGF-β-mediated immune dysfunction
and relevant therapeutic targets.

Wild-type p53 interactions with TGF-β can also promote worse
patient outcomes. In certain contexts, TGF-β-mediated
p53 upregulation leads to enhanced DNA damage repair and
resistance to radiotherapy (Petroni et al., 2022). TGF-β can
mediate radiation-induced lung fibrosis, however the involvement
of p53 has not been investigated (Gans et al., 2021). One study found
that pulsed low dose rate radiation induced lower levels of TGF-β
and less tissue atrophy when compared to conventional radiation,
pointing to a potential solution to this dose-limiting side effect
(Meyer et al., 2017). As p53 is highly differentially expressed in
tissues exposed to radiation therapy, the role of p53 in TGF-β-
mediated lung injury after radiation should be investigated to
identify the potential of p53-targeting therapies to further
prevent radiation-induced fibrosis.

3.2.4 The STAT3 pathway
STAT3 is a transcription factor that mediates cancer

inflammation and promotes cancer cell survival via regulation of
various cytokines and growth factors. STAT3 can bind to the
p53 promoter to inhibit its transcriptional function (Niu et al.,
2005) and p53 loss in turn leads to IL-6-mediated
STAT3 phosphorylation and activation (Wormann et al., 2016).
Further, STAT3 and NF-κB act synergistically to activate the
transcription of FAT10, a gene that can counteract p53 function
(Choi et al., 2014). As its role in the immune response is more well-
defined than NF-κB, targeting p53 LOF-mediated STAT3 activation
to suppress both STAT3 and NF-κB pro-cancer signaling may be a
viable approach to inducing an anti-tumor immune response.

3.3 p53 as a tumor antigen

p53 is a tumor antigen that can differentiate cancer cells from
normal cells. This was first recognized when researchers identified anti-
p53 antibodies in mice with chemically-induced tumors (DeLeo et al.,
1979). After this initial discovery, numerous studies have contributed
evidence supporting the role of mutant p53 as a tumor antigen and the
therapeutic potential of targeting mutant p53 with adoptive cell
therapies (McCarty et al., 1998). Further, point mutations on p53 in
cancer cells generate neoantigens (Chasov et al., 2021) that can improve
response to immunotherapy. For example, Deniger, et al. found that
p53 hotspot mutations (c.659A>G; p.Y220C and c.733G>A; p.G245S)
expressed by two different patients’ ovarian tumors were individually
immunogenic (Deniger et al., 2018). In patients with lung
adenocarcinoma, tumors with p53 mutations had higher PD-L1
expression and higher levels of tumor-infiltrating cytotoxic T-cells as
compared to tumors with wild-type p53 (Dong et al., 2017; Biton et al.,
2018; Deniger et al., 2018).

Survivin is a member of the inhibitor of apoptosis (IAP) family
and is negatively regulated by wild-type p53 (Hoffman et al., 2002).
When p53 is mutated, survivin levels increase, making it mutant
p53-mediated tumor antigen (Tang et al., 2021). Survivin protein
presented by DCs can induce cytotoxic lymphocytes in vitro
(Schmitz et al., 2000) and prime cytotoxic lymphocytes in an in

vivomurine melanoma model (Hofmann et al., 2009), suggesting its
potential as an antigen target for immunotherapy.

The relative contribution of mutant p53-dependent neoantigen
generation and immune suppression to the overall state of the TME
likely varies across cancer type and subtype. Identifying personalized
clinical approaches to targeting mutant p53 to stimulate the immune
response requires careful investigation.

4 Clinical translation of p53 activation
to induce an immune response

Due to the tumor suppressive role of p53 in apoptosis, cell cycle
arrest, and activation of the immune system, reactivating wild-type
p53 or restoring wild-type function to mutant p53 has great clinical
potential for cancer treatment (Zhang et al., 2022). While numerous
clinical trials have tested the safety and efficacy of p53-activating
therapies, few have evaluated immune responses after treatment or
combined p53-activating therapies with immunotherapy (Table 2).
The following section discusses clinical progress so far. The results
from these clinical trials have been variable, with achievement of an
immune response in some patients but with little evidence of lasting
tumor regression.

APG-115 (alrizomadlin) is an orally active small molecule inhibitor
that activates p53 by interfering with the MDM2-p53 protein-protein
interaction. Preclinical data demonstrated that APG-115 activates wild-
type p53 in immune cells in the TME to promote anti-tumor immunity
regardless of p53 status in the tumor cells (Fang et al., 2019). Ongoing
clinical trials are testing the combination of APG-115 with the anti-PD-
1 antibodies toripalimab (NCT04785196) or pembrolizumab
(NCT03611868). Results from NCT03611868 indicate that APG-115
+ pembrolizumab is well tolerated and demonstrated preliminary
antitumor activity in multiple tumor types (McKean et al., 2022).
Another trial is evaluating the combination of pembrolizumab with
the p53 activating compound PRIMA-1Met (APR-246, eprenetapopt),
which had an acceptable safety profile and showed clinical activity in
patients with solid tumors (NCT04383938) (Park et al., 2022;
Dumbrava et al., 2021). ALRN-6924 is a p53-reactivating peptide
that demonstrated enhancement of the anti-cancer immune
response even in the absence of immunotherapy in vivo. There are
two completed (NCT02264613, NCT02909972) and two active
(NCT03654716, NCT03725436) clinical trials evaluating this peptide,
though none note an intention to evaluate the immune response to
treatment (Zhou et al., 2021).

Some p53-activating therapies involve vaccines that deliver wild-
type p53 to cells such as APCs. For example, p53MVA is a genetically
engineered vaccinia Ankara viral vector that expresses a wild-type
p53 transgene. This vaccine delivers full-length p53 to APCs to
generate T-cell responses against p53 epitopes and stimulate p53-
specific IFN-γ-secreting CD8+ T-cells that proliferate and exhibit
cytolytic function against p53-overexpressing tumor cells in vitro.
Single-agent p53MVA was administered to advanced, refractory
colon and pancreatic cancer in a phase I clinical trial
(NCT01191684) and was well-tolerated and elevated p53-specific
CD8+ T-cell responses (Chung et al., 2013; Hardwick et al., 2014).
Combining this therapy with the TLR9 agonists CpG deoxynuceotides
(CPG-ODN) or CTLA-4 blockade resulted in tumor rejection in vivo
but this strategy remains to be translated (Blagih et al., 2020a). Other
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approaches involve ALVAC-p53, which is a recombinant
canarypoxvirus vaccine encoding wild-type human p53. ALVAC-
p53 induced p53-specific immune responses in colorectal cancer
patients (van der Burg et al., 2002). Two clinical trials investigating
a p53-synthetic long peptide (SLP-p53) vaccine in combination with
IFN-α2b (NCT01639885) or cyclophosphamide (NCT00844506) have
been completed, but results have not been posted.

5 Future directions

Multiple clinical trials have investigated the combination of p53-
activating therapies with immunotherapy (Table 2). Results have been
variable, with achievement of an immune response in some patients but
with little evidence of lasting tumor regression. The multifaceted
contribution of p53 to the anti-cancer immune response provides
numerous therapeutic targets in cancers with mutated p53 and an
immunosuppressed TME, however these targets likely vary depending
on the type of cancer and p53 mutation. For example, p53 can
upregulate PD-L1 to enhance efficacy of anti-PD-L1 and anti-PD-
1 ICI, but this effect varies across cancer type (Wang Y. et al., 2018;
Yadollahi et al., 2021). Genetic alteration of p53 disrupts cancer cell
secretion of pro-inflammatory cytokines (Bezzi et al., 2018; Wellenstein
et al., 2019; Blagih et al., 2020b) and enhancement of antigen
presentation (Zhu et al., 1999; Wang et al., 2013), but mutant
p53 can also enhance the generation of neoantigens (Chasov et al.,
2021) that supports response to ICI. The relative contribution of these
effects likely varies across different types of cancer and p53 mutations.
Further investigation of context-specificity across cancer type, mutation
type, and cell type is needed for optimal clinical translation of
p53 restoration to induce an immune response in immune-
suppressed TMEs.

There is evidence to suggest that treatment of tumors with DNA
damaging agents can sensitize cancer cells to immunotherapy in
certain contexts by upregulating PD-L1 or inducing ICD (Dosset
et al., 2018). The contribution of p53 to these mechanisms remains
to be clarified and much work remains to identify optimal dosing
and treatment timing when combining DNA damaging agents and
immunotherapy to induce a maximal immune response.

Other types of immunotherapies besides ICI and p53 vaccines such
as adoptive cell therapy, monoclonal antibodies, oncolytic viruses, and
immune system modulators have demonstrated efficacy in various
cancer types but have not been tested in combination with p53-
reactivating therapies. It would be relevant to test their efficacy in
combination with p53-reactiving compounds in cancers with mutant
p53. Emerging technologies should also be considered, such as bispecific
antibodies that can efficiently target specific p53 mutants for T cell-
mediated death (Hsiue et al., 2021).

A recent study identified an MDM2/MDM4/MDMX-independent
link between p53 loss and hyperprogression after pembrolizumab
treatment in a murine model of mismatch repair-deficient colorectal
cancer (Sahin et al., 2021). As up to 30% of patients experience
hyperprogression after immunotherapy treatment, elucidating the
mechanisms behind this phenomenon is highly clinically relevant. It
is important to consider p53-dependent prevention of hyperprogression
in these types of studies (Okan Cakir et al., 2019).

In conclusion, p53 may modulate the anti-cancer immune
response via direct activation of immunomodulatory genes,

interaction with the cGAS/STING, NF-κB, TGF-β, and
STAT3 signaling pathways, direct and indirect effects on immune
cells, modulation of PD-L1 and immunomodulatory cytokine levels,
and regulation of the senescence-associated secretory phenotype.
Both wild-type and mutant p53 are tumor antigens that can be
therapeutically targeted and certain p53 mutants may predict
enhanced response to immune checkpoint inhibition. It is likely
that the relative contribution of each of these p53-dependent
mechanisms to the anti-cancer immune response varies across
different cancer types with various genetic backgrounds and
tumor microenvironments. Further investigation with careful
consideration of experimental conditions is needed to identify
optimal personalized treatment strategies for cancer patients.
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Glossary

CAR-T Chimeric antigen receptor

cGAS Cyclic GMP–AMP synthase

DC Dendritic cell

DR5 Death receptor 5

Gld Generalized lymphoproliferative disease

HMGB1 High-mobility group box 1

IAP Inhibitor of apoptosis

ICD Immunogenic cell death

ICI Immune checkpoint inhibition

IFN Interferon

IRF Interferon regulatory factor

Lpr Lymphoproliferation

LUAD Lung adenocarcinoma

MDSC Myeloid-derived suppressor cells

MHC Major histocompatibility complex

NK Natural killer

NKT Natural killer T

PASP P21-associated secretory phenotype

PD-1 Programmed cell death protein 1

PD-L1 Programmed death-ligand 1

SASP Senescence-associated secretory phenotype

SLP Synthetic long peptide

STING Stimulator of interferon genes

TGF-βR TGF-β receptor

Th1 T helper 1

TLR Toll like receptor

TME Tumor microenvironment

TRAIL Tumor necrosis factor-related apoptosis-inducing ligand

TRAIL-R2 Tumor necrosis-factor related apoptosis-inducing ligand receptor 2

VDJ Variability, diversity, and joining
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