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Protein structure prediction and structural biology have entered a new era with an
artificial intelligence-based approach encoded in the AlphaFold2 and the
analogous RoseTTAfold methods. More than 200 million structures have been
predicted by AlphaFold2 from their primary sequences and the models as well as
the approach itself have naturally been examined from different points of view by
experimentalists and bioinformaticians. Here, we assessed the degree to which
these computational models can provide information on subtle structural details
with potential implications for diverse applications in protein engineering and
chemical biology and focused the attention on chalcogen bonds formed by
disulphide bridges. We found that only 43% of the chalcogen bonds observed
in the experimental structures are present in the computational models,
suggesting that the accuracy of the computational models is, in the majority of
the cases, insufficient to allow the detection of chalcogen bonds, according to the
usual stereochemical criteria. High-resolution experimentally derived structures
are therefore still necessary when the structure must be investigated in depth
based on fine structural aspects.
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Introduction

In 2021, sensational progress was made in protein structure prediction with AlphaFold2,
the artificial intelligence system developed by DeepMind (Jumper et al., 2021). These
predictions became freely available in the AlphaFold Protein Structure Database
(AlphaFold DB), created by EMBL-EBI, which presently includes more than 200 million
predictions (Tunyasuvunakool et al., 2021) (Varadi et al., 2022).

The reliability of these predictions is astonishing, and–even more critical–the reliability
is estimated at the level of each single amino acid through the predicted local distance
difference test (pLDDT), enabling users to identify structures’ moieties that might be
uncertain, e.g., conformational disorder. The importance of this precise accuracy
estimate has been documented recently in a survey of AlphaFold2 applications in
structural and molecular biology (Akdel et al., 2022).

Understandably, these predictions have been scrutinized from different perspectives.
Some may find them unsatisfactory because based on statistics and not on physics and
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chemistry first principles (Moore et al., 2022), others suggest that
they cannot, at least for the moment, reach the accuracy of
experimental structures (Shao et al., 2022). Others have observed
that they are insufficient in dealing with structural disorder or
aggregation (Pinhero et al., 2021) and with structural features
independent of gene sequence, like, for example, structuration of
disordered proteins upon ligand binding or protein solvation by
membrane lipids (Azzaz and Fantini, 2022). It has also been
observed that other prediction methodologies, particularly
homology modeling, can give equally good results in many cases
at a much lower computational cost (Lee et al., 2022). Akdel and
colleagues observed that the impact of missense mutations on the
thermodynamic stability of proteins can be predicted equally well by
using experimental structures or AlphaFold2 models (Akdel
et al., 2022), though AlphaFold2 does not seem to be
appropriate to forecast the structure of mutated proteins (Buel
and Walters, 2022) (Pak et al., 2021). Naturally, the next desired
level of prediction is on protein-protein, protein-nucleic acid and
protein-ligand interactions. Fine progress on prediction of
protein-protein interactions and automatization of pipelines
has been made with AlphaFold-Multimer and AlphaPullDown
(Evans et al., 2022) (Bryant et al., 2022) (Humphreys et al., 2021)
(Mosalaganti et al., 2022) (Yu et al., 2023), for protein-protein
interactions and as well as on generation of models loaded with
their ligands (Hekkelman et al., 2022). Recently,
AlphaFold2 models have also been used for validation of
experimental models (Sanchez Rodriguez et al., 2022),

computational docking (Holcomb et al., 2023), and cryo-EM
refinements (Terashi et al., 2023).

Here, we seek to assess the degree to which these computational
models can provide information on subtle details thatmay be important
in various applications in protein engineering, chemical biology, and
biotechnology. As an example, we focus on chalcogen bonds (referred to
as ChB according to (Aekeroy et al., 2019)) formed by disulphide
bridges (Aekeroy et al., 2019) (Vogel et al., 2019). This is an interesting
test case because chalcogen bonds are not yet parameterized in any
molecular mechanics/dynamics force field, and consequently, their
presence cannot be affected by energy minimization protocols. In
other words, these moderate clashes can be tolerated if compensated
by a good and native-like packing around them, involving attractive
interactions like hydrogen bonds, van der Waals interactions etc.

A ChB is an attractive interaction similar to a hydrogen bond,
where a nucleophilic atom is attracted by an element of group 16
heavier than oxygen (chalcogens; sulphur, selenium and tellurium).
While in proteins the most abundant chalcogen atom is
sulphur—selenium is very rare and tellurium absent—there are
several nucleophiles—oxygen, sulphur, and aromatic rings
(Aekeroy et al., 2019; Scilabra et al., 2019; Carugo et al., 2021).

In the interacting moiety (C,S)-S. . .Nu (Figure 1A), where Nu is
a nucleophile, an electrostatic attraction between the positively
charged region found along the prolongation of the C-S bond
can stabilize the interaction (Pascoe et al., 2017); additionally a
n→σ* orbital delocalization between the nucleophile lone pair and
the anti-bonding orbital of C-S may occur (Pascoe et al., 2017). The

FIGURE 1
(A) Schematic representation of a chalcogen bond; the position of the nucleophilic atom, for example, a main-chain oxygen atom, relative to the
sulfur atom ismonitoredwith two variables, d, its distance from the sulfur atom, and α= 180– θ, where θ is the angle defined by the nucleophile, the sulfur,
and the atom covalently bound to the sulfur. (B)Distribution of the Delta-ds, the differences between the distances d observed in the predicted structures
(Alpha Fold DB) and in the experimental structures (PDB). (C) Distribution of the Delta-αs, the differences between the angles α observed in the
predicted structures (Alpha Fold DB) and in the experimental structures (PDB). (D) Scatter plot of the Delta-α versus the Delta-d values. Delta-d andDelta-
α values are given in Å and degrees, respectively.
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strongest ChBs may compare to conventional H-bonds (Pascoe
et al., 2017), though it has been shown that in proteins hydrogen
bonds tend to prevail over ChBs (Carugo, 2023).

ChBs are an interesting test case because they are not yet
parameterized in any molecular mechanics/dynamics force field,
and consequently, their presence cannot be favoured by energy
minimization protocols. On the contrary, they would be considered
inter-atomic clashes and consequently disfavoured. In other words,
these moderate clashes can be tolerated if compensated by a good
and native-like packing around them, involving attractive
interactions like hydrogen bonds, van der Waals interactions etc.

Materials and methods

Data selection

All experimental structural data were taken from the Protein
Data Bank (PDB) (Bernstein et al., 1977) (Berman et al., 2000)
(wwPDBConsortium, 2019). Only X-ray crystal structures refined at
a resolution better than (or equal to) 1.5 Å and determined in the

90–110 K temperature range were retained. Care was taken to
discard multi-model refinements and structures where more than
5% of the atoms are not protein or water atoms. Then, pairwise
percentage of sequence identity was limited to 40% with CD-HIT (Li
and Godzik, 2006) (Fu et al., 2012), to avoid redundancy.

Computational models were taken from the AlphaFold Protein
Structure Database (Tunyasuvunakool et al., 2021) (Varadi et al.,
2022). They were identified through the sequence database accession
codes, reported in the DBREF of the PDB files, which allow to
identify the computational model with exactly the same sequence of
the experimental structure. In this way, we ensured to compare
molecules that share the same chemical formula. Not all PDB files
have a DBREF annotation, typically mutants which are not in
UniProt (Wu et al., 2006) and in AlphaFold DB
(Tunyasuvunakool et al., 2021) (Varadi et al., 2022).

ChBs detection

A ChB can be formed by a nucleophilic atom and a chalcogen
atom that is covalently bound to another atom (Figure 1A). The

FIGURE 2
Comparison between the experimental and computation ChBs in three selected examples. The experimental structure is represented with ball and
sticks and the computational model only with sticks. In (A) the ChB is detectable in both structures; in (B), the ChB is detectable only in the experimental
structures since the distance d is slightly too long in the computational model; in (C), the ChB is detected in the experimental structures and it cannot be
detected in the computational model where the disulphide bond is absent–this is a region partially unstructured of the protein. Color code: nitrogen
is blue, oxygen red, sulfur yellow, carbon light grey in the experimental structure and azure in the AlphaFold DB model. For each residue, the following
information is given: name, sequence number and chain identifier. The figure was prepared with Chimera 1.16.
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nucleophilic atom must be positioned along the prolongation of the
covalent bond, or along the prolongation of one of the two covalent
bonds if the chalcogen is divalent. As a consequence, there are two
parameters that must be monitored, the distance d between the
nucleophilic and the chalcogen atom and the angle α (Figure 1A).

According to the IUPAC recommendations, the distance d must
be shorter than the sum S of the van der Waals radii of the
nucleophilic and chalcogen atoms (Aekeroy et al., 2019), despite
the fact that the use of van der Waals radii in determining non-
bonding interactions may need to be revised (Politzer et al., 2007).
Here, to account for the lower accuracy of macromolecular structures
relative to small molecule structures, we added a small margin to S
and, consequently, a in a ChB d must not be larger than S + 0.1 Å.

The angle α, which is supplementary to the angle θ, must be as
small as possible. In chemical crystallography andmaterial science, a
ChB is usually characterized by a value smaller than 20°. Here, to
account for the lower accuracy of macromolecular structures, we
increased this threshold value to 25°.

Similar settings were previously used (Carugo, 2023) (Carugo,
2023) and can be compared with estimated average positional
standard errors of 0.046 Å, which imply estimate errors of about
0.06 Å on bond distances and of about 2° on bond angles.

Results and discussion

About one-half (43%) of the ChBs observed in the experimental
structures are present in the computational models if the same
stereochemical criteria are used. This means that about one-half of
the ChBs observed experimentally in high resolution crystal structures
are not observed in the models deposited in AlphaFold DB.

Does this indicate that these models are wrong? Not really. On
the contrary, models available in AlphaFold DB are extremely
similar to the experimental crystal structures.

In many cases, the chalcogen-nucleophile contacts cannot be
recognized as ChB because they are slightly longer than the
experimental ones. In fact, the predicted distances d and angles α

are close to those observed experimentally, with the differences between
predicted and experimental d (Delta-d) and α (Delta-α) are not very far
from 0 (Å or °; Figures 1B,C). The average absolute values of Delta-d
and Delta-α are equal to 0.28 ± 0.04 Å and 9.5° ± 1.3°, respectively.
These values must be compared to the estimated positional standard
errors (Dinesh Kumar et al., 2015), which are very small (0.046 ±
0.002 Å) as expected for high-resolution structures.

Furthermore, the average absolute value of Delta-d is about three
times greater than that calculated on the contacts (shorter than
3.5 Å) between main-chain oxygen and nitrogen atoms involving
the residues that form ChBs (0.106 ± 0.008 Å). This clearly reveals
that, within the same structural region, ChB predictions are much
less accurate than main-chain hydrogen bond predictions.

Figure 2A shows an example in which the ChB is detected in
both the experimental structures and in the computational model.
The sulfur-oxygen distance d is even shorter in the AlphaFold DB
model and the angle α is even closer to 0° in the AlphaFold model.
Figure 2B shown an example in which the ChB is detected in the
experimental structure and not in the AlphaFold DB model. The
local stereochemistry is quite well predicted but the sulfur-oxygen
distance is slightly too long (the threshold is sum of the van der

Waals radii, 1.52 Å for oxygen and 1.80 Å for sulfur, with and small
positive tolerance of 0.1 Å, is 3.42 Å). This might seem a minor
distortion, but in terms of chemical interactions is crucial.

In principle, it would be possible to increase the threshold values
of d and α that allow to automatically detect ChBs in such a way to
increase the number of ChBs in the models of AlphaFold DB.
However, the values of these thresholds strictly depend on the
laws of chemistry and physics and nothing indicates here that
this is justified. AlphaFold2 is a powerful tool for predicting
protein three-dimensional structures.

There are only a few cases where the predicted structure is very
different from the experimental one. For example, in ten cases with
Delta-α > 30°, most of them have large Delta-ds (Figure 1D). However,
in seven of them (PDB: 1vf8, 3b4n, 3om0, 3uci, 6ac5, 6h20, and 6jk4),
the average pLDDT values of the residues bridged by the ChB are <90,
indicating that side-chains might not be predicted reliably, or even <50,
suggesting that predictions should be treated with caution. Only three
predicted structures (PDB: 3soj, 4kl3, and 6ya1) have pLDDT >90,
suggesting that models have high accuracy, despite Delta-α >30°.

Figure 2C shows one of the rare examples where AlphaFold DB
models seem to be completely inadequate. The local
stereochemistry–this a partially disordered part of the protein–is
wrong, the cysteine 4 is misplaced and the disulphide bonds is
broken. No surprisingly, the ChB is broken, too.

We conclude that computational models produced with
AlphaFold2 and stored in AlphaFold DB are accurate–we note
that for these proteins a high-resolution crystal structure is
available in the PDB. In the majority of the cases, they show
contacts between sulphur atoms of disulphide bridges and
protein nucleophilic atoms that are comparable to the
experimental ones. However, the accuracy of the computational
models is, in the several cases, insufficient to allow the detection of
ChBs, according to the usual stereochemical criteria.

This indicates that high-resolution structures are still necessary
when the structure must be investigated in depth and when the
importance of weak interactions, like ChBs, is assessed. While
current AlphaFold2 models stored in AlphaFold DB still lack
atomic resolution, they certainly provide useful information for a
number of semiquantitative applications. However, in agreement
with Shao and colleagues, it is reasonable to conclude that
“experimentally determined crystal structures are more reliable
than AlphaFold2-computed structure models and should be used
preferentially whenever possible” (Shao et al., 2022).
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