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Emerging evidence suggests that brain derived extracellular vesicles (EVs) and
particles (EPs) can cross blood-brain barrier and mediate communication among
neurons, astrocytes, microglial, and other cells of the central nervous system
(CNS). Yet, a complete understanding of the molecular landscape and function of
circulating EVs & EPs (EVPs) remain amajor gap in knowledge. This is mainly due to
the lack of technologies to isolate and separate all EVPs of heterogeneous
dimensions and low buoyant density. In this review, we aim to provide a
comprehensive understanding of the neurosecretome, including the
extracellular vesicles that carry the molecular signature of the brain in both its
microenvironment and the systemic circulation. We discuss the biogenesis of
EVPs, their function, cell-to-cell communication, past and emerging isolation
technologies, therapeutics, and liquid-biopsy applications. It is important to
highlight that the landscape of EVPs is in a constant state of evolution; hence,
we not only discuss the past literature and current landscape of the EVPs, but we
also speculate as to how novel EVPs may contribute to the etiology of addiction,
depression, psychiatric, neurodegenerative diseases, and aid in the real time
monitoring of the “living brain”. Overall, the neurosecretome is a concept we
introduce here to embody the compendiumof circulating particles of the brain for
their function and disease pathogenesis. Finally, for the purpose of inclusion of all
extracellular particles, we have used the term EVPs as defined by the International
Society of Extracellular Vesicles (ISEV).
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1 Introduction

From eukaryotes to prokaryotes, all cells secrete extracellular vesicles and particles
(EVPs) as part of their regular homeostasis, intercellular communication, and cargo disposal
(Trams et al., 1981; Pan et al., 1985; Nieuwland and Sturk, 2010). These EVPs may include
but are not limited to apoptotic bodies (Kerr et al., 1972), ectosomes/microvesicles (Dalton,
1975; Thery et al., 2018), exosomes (Trams et al., 1981; Pegtel and Gould, 2019),
mitochondria-derived vesicles (D’Acunzo et al., 2021; Miller et al., 2022; Popov, 2022;
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Nakamya et al., 2022), exomeres (Zhang et al., 2018), supermeres
(Zhang et al., 2021a), high and low density-lipoproteins (HDL/LDL)
(Claude, 1970), ribonucleic proteins (Barrieux et al., 1976),
enveloped and non-enveloped viruses (Dalton, 1975; Alem et al.,
2021; Dogra et al., 2021), and other cell free proteins/DNA/RNA
(Figure 1) (Lo, 2009; Mathivanan et al., 2010; Toden et al., 2020).
Recent literature shows that EVPs carry distinct proteo-
transcriptomic signatures from their cell of origin. (Chen et al.,
2022a). Subsequently, EVPs shuttle around the body as part of a
coordinated system of communication between the cells (Simpson
and Sonne, 1982; Simpson et al., 2009; Kowal et al., 2014; Thery
et al., 2018; Murillo et al., 2019). EVPs are enriched with tissue-
specific biomarkers derived from blood, (Dogra et al., 2020; Chen
et al., 2022a), urine (Nilsson et al., 2009; Smith et al., 2018),
cerebrospinal fluid (Saman et al., 2012; Norman et al., 2021;
Sandau et al., 2022), cell culture media (Valadi et al., 2007; Wei
et al., 2017; Chen et al., 2022a), and a variety of other fluids (Trams
et al., 1981; Valadi et al., 2007; Skog et al., 2008; Nilsson et al., 2009;
Simpson et al., 2009; Palanisamy et al., 2010; Bellingham et al., 2012;
Raposo and Stoorvogel, 2013; Kowal et al., 2014; DeRita et al., 2017;
Shurtleff et al., 2017). These discoveries have brought immense
excitement to novel mechanisms of EVP-derived cellular
communication, therapy, and liquid-biopsy applications (Fruhbeis
et al., 2012; Song et al., 2020; Gaglani et al., 2021).

Groundbreaking evidence shows that brain-EVPs allow
information exchange between the cells of the CNS (Figure 2)
(Takeda et al., 2015; Dickens et al., 2017; Song et al., 2020). First
described in 2006 (Faure et al., 2006), neurons and astrocytes release
EVPs that have a regulatory function at the synapse, which allows
intercellular molecular exchange within the brain (Faure et al., 2006;

Skog et al., 2008; Song et al., 2020). Recently, plasma, serum and CSF
neuronal-enriched EVPs of patients with Alzheimer’s, Parkinson’s,
addiction, and glioblastoma were reported to exhibit modulated
levels of phosphorylated (p) tau (Kapogiannis et al., 2019a;
Palmqvist et al., 2020; Palmqvist et al., 2023), APoE4 (Palmqvist
et al., 2023) and Aβ42 (Li et al., 2022; Palmqvist et al., 2023), α-
synuclein (Niu et al., 2020), and multiple miRNAs/mRNAs (Lopez
et al., 2017; Song et al., 2020) (A detailed list of brain-derived
biomarkers is provided on Table 1). Consequently, brain derived
EVPs have emerged as key mediators of communication and
disposal mechanisms among the CNS. However, there remains a
major gap in knowledge with incomplete understanding of the
molecular landscape of circulating EVPs that reside in the tissue
microenvironment and systemic circulation. To date, most of these
secretory particles remain uncharacterized mainly due to lack of
technologies to isolate and separate all EVPs, given their variable
nanoscale dimensions and low buoyant density (Smith et al., 2018;
Murillo et al., 2019; Norman et al., 2021). Thus, the function of
several EVPs in disease pathogenesis remains unknown and elusive.

In this review, we focus on the biogenesis, function, and
pathogenesis of the complete EVPs of the neurosecretome. We
discuss the extracellular nanoparticles that carry molecular
signatures of the brain in its microenvironment and systemic
circulation. We elaborate on the current status of technologies
used to isolate and separate EVPs of variable sizes and buoyant
densities and discuss that every secretory particle may have a distinct
cargo and function. It is important to note that the technologies to
isolate EVPs are frequently advancing and as a consequence, the
complete landscape of EVPs is constantly evolving. Nonetheless, we
delve into exploratory and validation studies that have investigated

FIGURE 1
The human neurosecretome. (A) Schematic zoom into the universe of extracellular vesicles and particles in the brain microenvironment. We
highlight that neurons, microglia and other accompanying cells co-exist with populations of vesicles and particles that are released and up taken by
circulatory system. (B) Transmission Electron Microscopy of a transversal cut of brain tissue, showing axons (white), myelinated nerves (yellow) and cell
nucleus (blue), surrounded by extracellular vesicles (red). Embedded scale shows 5 micro meter distance. (C) Overview of the most common
subpopulations of EVPs, from smallest (~1 nano meter) to largest components (5 micro meter).
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TABLE 1 List of brain-derived biomarkers.

Disease Biomarker Sample
type

Isolation method References

Alzheimer’s Disease

• Aβ42 Plasma
Neuron-EVs

2,500 × g, (15′at 4°C × 2) + Exoquick® + anti-CD171 Li et al. (2022)

• P-tau217 Plasma and CSF Immunoassays Palmqvist et al.
(2020)

• pSer312

Blood
Neuron-EVs

Thromboplastin-D + 3,000 × g (20′at 4°C) + ExoQuick® +
1,500 × g (20′at 4°C) + L1CAM IP

Kapogiannis et al.
(2019a)

• p-panTyr-IRS-1

• p-tau181

• p-tau231

• Aβ42/Aβ40

Plasma and CSF Elecsys® plasma prototype immunoassays Palmqvist et al.
(2023)

• p-tau181

• ApoE4

• miR-125b-5p

CSF qPCR Wiedrick et al. (2019)

• miR-146a-5p

• miR-146b-5p

• miR-15b-5p

• miR-195–5p

• miR-30a-3p

• miR-328–3p

• miR-23a-3p

Plasma Evs 3,000 × g (15′) + Thrombin + 10,000 rpm (5′) + ExoQuick®
(System Biosciences) + L1CAM IP

Serpente et al. (2020)
• miR-223-3p

• miR-190a-5p

• miR-100-3p

• ANXA5

Tissue
Neuron-EVs

Sucrose density gradient Muraoka et al. (2020)• VGF

• GPM6A

• ACTZ

• NPTX2

Plasma
Neuron-EVs

Thromboplastin-D + 3,000 × g (30′at 4°C) + ExoQuick® +
L1CAM IP

Goetzl et al. (2018)• NRXN2a

• AMPA4

• NLGN1

• SNAP-25 Serum
Neuron-EVs

10,000 × g (10′at RT) + ExoQuick® + L1CAM IP Agliardi et al. (2019)

• N-123 tau, N-224 tau Serum
Neuron-EVs

4,000 × g (20′at 4°C) + ExoQuick® + L1CAM IP Cicognola et al.
(2019)

• BACE1-AS Plasma EVs Thrombin + 14,000 × g (5′at 4°C) + 3,000 × g (15′at 4°C) +
ExoQuick®

Wang et al. (2020)

Parkinson’s Disease • α-synuclein Plasma
Neuron-EVs

2000 × g (15′) + ultracentrifugation + L1CAM IP Niu et al. (2020)

Heroin- dependent patients • hsa-mia-451a Plasma Evs SEC + Exosupur® columns + NTA Chen et al. (2022b)

Methamphetamine-dependent
patients

• hsa-mir-21a Plasma EVs SEC + Exosupur® columns + NTA Chen et al. (2022b)

(Continued on following page)
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TABLE 1 (Continued) List of brain-derived biomarkers.

Disease Biomarker Sample
type

Isolation method References

Major depressive disorder

• pSer312 Plasma
Neuron-EVs

Thrombin + 4,500 × g (20′at 4°C) + ExoQuick® + L1CAM IP Nasca et al. (2021)

• Interferon-γ

Serum
Astro-EVs

3,000 × g (30′at 4°C) + ExoQuick®+ ACSA-1 Xie et al. (2022)

• IL-12p70

• IL-1β

• IL-2

• IL-4

• IL-6

• TNF-α

• IL-17A

• PER3

Blood NanoString + QIAamp RNA blood mini kit Mamdani et al. (2022)

*Antidepressant response

• MTPAP

• SLC25A26

• CD19

• SOX9

• GAR1

• miR-144-3p Blood NanoString + RT-qPCR van der Zee et al.
(2022)

• miR-146a-5p

Blood and tissue mirVana Isolation kit Lopez et al. (2017)
• miR-146b-5p

• miR-425-3p

• miR-24-3p

Bipolar Disorder

• TNFR1 Plasma
Neuron-EVs

Thrombin +4,500 × g (20′at 4°C) + ExoQuick® + L1CAM IP Mansur et al. (2020)

• NF-κB

• Henodeoxycholic Acid

Serum EVs 3,000 × g (10′) + qEV column + NSM + NTA Du et al. (2022)

• Lysope 18 : 0

• Lysope 14 : 0

• N-Acetylmethionine

• 13-oxoODE

• Glycine

• 1-Naphthylacetic Acid

• 2-Aminoethanesulfonic
Acid

• D-2-Aminobutyric Acid

• Lysopc 18 : 0

• Lysopc 20 : 1

• Biopterin

• Phosphoric Acid

• Glucosamine

(Continued on following page)
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several potential biomarkers of brain diseases circulating within
various EVPs. Finally, we employ past literatures and the current
landscape of the EVPs to speculate their role in the etiology of
addiction (Nakamura et al., 2019; Doncheck et al., 2020; Odegaard
et al., 2020; Chand et al., 2021; Odegaard et al., 2022), depression
(Saeedi et al., 2021; van der Zee et al., 2022), psychiatric (Du et al.,
2022; Nakamya et al., 2022), neurodegenerative diseases (Thompson
et al., 2016; Lazo et al., 2021; Noren Hooten et al., 2022; Sandau et al.,
2022), and application in real time monitoring of the “living brain”.

(Odegaard et al., 2020; Nakamya et al., 2022; van der Zee et al.,
2022).

2 Extracellular vesicles, particles, and
their subtypes

As part of the neurosecretome, we depict an overview of
extracellular vesicles, particles, and their diverse subtypes

TABLE 1 (Continued) List of brain-derived biomarkers.

Disease Biomarker Sample
type

Isolation method References

• PAF C-16

• miR-484

Plasma EVs miRCURY Exosome Isolation Kit-Serum/Plasma Ceylan et al. (2020)• miR-652-3p

• miR-142-3p

Schizophrenia

• miR-206

Serum EVs SEC (qEV iZON Science) Du et al. (2019)

• miR619-5p

• miR-133a-3p

• miR-143-3p

• miR-144-5p

• miR-499a-5p

• miR-3614-5p

• miR-941

• miR-30c-5p

• miR-339-5p

• miR-30b-5p

• miR-6515-5p

Human immunodeficiency
virus

• S100B CSF EVs 3,000 × g (15′at 4°C) + ExoQuick® + TEM + NTA Guha et al. (2019b)

Glioblastoma

• miR-182-5p

Serum EVs SEC (qEV iZONE Science) + TEM +NTA Ebrahimkhani et al.
(2018)

• miR-328-3p

• miR-339-5p

• miR-340-5p

• miR-485-3p

• miR-486-5p

• miR-543

• IFN-γ

Plasma EVs 3,000 rpm (15′) + OptiPrep™ solution (Sigma-Aldrich) +
ultracentrifugation

Cumba Garcia et al.
(2019)

• IL-10

• IL-3

• B7-1

• B7-2

• ICOSL

• FASN Plasma EVs 1,000 × g (7′) + 100,00× g (30′) + ultracentrifugation Ricklefs et al. (2020)
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(Figure 1). As a matter of clarity, we begin with the largest vesicles
and end with the smallest known particles.

2.1 Large vesicles (microvesicles, apoptotic
bodies, ectosomes, oncosomes, and
beyond)

2.1.1 Microvesicles
Cell activation and cytokine stimulation triggers the formation

of microvesicles (MVs) from the plasma membrane that are
packaged with cellular components and released into the
extracellular environment (Basso and Bonetto, 2016; Greening
et al., 2017). The membrane budding formation is initiated by
the translocation of phosphatidylserine to the outer membrane
(Combes et al., 2010; Basso and Bonetto, 2016). Actin-myosin
interactions complete the budding process by contracting
cytoskeletal structures (Muralidharan-Chari et al., 2009; Basso
and Bonetto, 2016). Consequently, the membrane proteins found
onMVs would resemble the receptors and proteins found on specific
regions of the plasma membrane of the cell of origin. (Doyle and
Wang, 2019). This makes identification of the universal MVmarkers
for all cells types a strenuous challenge (Lotvall et al., 2014; Thery
et al., 2018). In addition, the use of markers is extremely essential to
identifying MVs since their size range (50–2000 nm) overlaps with
that of apoptotic bodies and exosomes (Basso and Bonetto, 2016;
Ciardiello et al., 2020). The most frequently employed microvesicle
markers are mainly integral membrane proteins and cytoskeletal
proteins, including KIF23, RACGAP, CSE1L, ARF6, and
EMMPRIN (Muralidharan-Chari et al., 2009; Antonyak et al.,
2012; Li et al., 2012; Ghossoub et al., 2014; Greening et al.,
2017). Several studies suggest that MVs carry a wide variety of

cargo including cell surface receptors, cytosolic signaling proteins,
metabolic enzymes, and nuclear proteins indicating their role in
intercellular communication (Antonyak et al., 2011; Kreger et al.,
2016). Specifically, they contain mRNA, lncRNAs and miRNAs,
dsDNAs, cytoplasmic proteins suggesting their potential role in
exchanging genetic material between cells (Balaj et al., 2011;
Greening et al., 2017). Neural stem cells derived MVs have been
shown to influence synaptic activity, nerve protection and
regeneration, and neuronal development (Marzesco et al., 2005;
Lai and Breakefield, 2012). Studies have also demonstrated the
pleiotropic effects of MVs by delivering pluripotent transcription
factors (Ratajczak et al., 2006a; Ratajczak et al., 2006b). However,
shedding of MVs derived from endothelial cells (Minagar et al.,
2001; Schindler et al., 2014), neurons (Bianco et al., 2005; Horstman
et al., 2007; Colombo et al., 2012), glial cells (Saijo and Glass, 2011;
Colombo et al., 2012; Verderio et al., 2012; Agosta et al., 2014), and
platelets (Lee et al., 1993; Geiser et al., 1998) have been reported with
regards to incidences of stress, oxygen radicals, inflammation,
ischemia, and other stimuli. (Porro et al., 2015). Therefore, spike
in MVs would likely be associated with stroke, vascular dementia,
inflammatory, and other neurodegenerative diseases (Doeuvre et al.,
2009; Porro et al., 2015). For instance, increase in MV production is
observed in Alzheimer patients with mild cognitive impairment.
These Alzheimer associated MVs are also characterized for their
increase in toxicity (Verderio et al., 2012; Garzetti et al., 2014; Joshi
et al., 2014). Likewise, the role of oligodendroglioma derived MVs as
signal transductor has been shown to trigger neuronal apoptosis and
suppressing neuronal sprouting (Porro et al., 2015; D’Agostino et al.,
2006). Given that MVs derive from the plasma membrane, they
could effectively reflect the intercellular activities in the
microenvironment, exhibiting characteristics as prominent
markers of the pathophysiology of the CNS (Porro et al., 2015).

FIGURE 2
Extracellular vesicles and particles (EVPs) in communication. A detail representation of EVP-mediated mechanism including intracellular
communication between the cells of CNS andmodulation ofmolecule transport across the BBB. However, it is unclear which EVPs contribute to etiology
of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the “living brain”.
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2.1.2 Apoptotic bodies
Apoptotic cells also release extracellular particles called

apoptotic bodies (Kakarla et al., 2020). These particles are
generally described as vesicles that carry nuclear fragments and
cellular organelles due to apoptosis (Kakarla et al., 2020). Being one
of the largest extracellular particle, their size ranges from 800 to
5000 nm in diameter (Serrano-Heras et al., 2020). Originally these
particles were considered cell debris and were often overlooked in
studies of circulating vesicles (Kakarla et al., 2020). However,
apoptotic bodies purified from neurological patients did not
differ in morphology or size distribution from those purified
from healthy volunteers (Serrano-Heras et al., 2020).
Additionally, they identified neurological apoptotic body
biomarkers that were consistent regardless of the health
condition of their cell of origin (Serrano-Heras et al., 2020).
These studies are not conclusive that these vesicles have a
distinct role in pathological conditions; hence, further studies of
the functionality of these particles is needed.

2.1.3 Ectosomes, oncosomes, and beyond
Although classification of large vesicles is evolving, ectosomes

and large oncosomes have been widely studied (Keerthikumar et al.,
2015). Ectosomes are released from the plasma membrane and are
implicated to have role in cancer (Keerthikumar et al., 2015; Thery
et al., 2018). Large oncosomes are produced from several cancer cells
when stimulated involving EGFR and overexpression of membrane-
targeted Ak1t (Di Vizio et al., 2012). These vesicles differ in
morphology and biogenesis from oncosomes which are any EV
subtype that carries oncogenic cargo (Di Vizio et al., 2012). Large
Oncosomes are 1,000–10,000 nm in diameter and are derived from
ameboid tumor cells (Di Vizio et al., 2012). These cancer cells use
amoeboid movement in order to invade other cells through narrow
3 μm-wide microchannels at a fast velocity that cannot be stopped
by integrin inhibition (Wu et al., 2021). Additionally, amoeboid
cancer cells have been suggested to have drug-resistant properties
(Graziani et al., 2022). Considering their highly invasive properties,
better ways of targeting them in clinics are needed. Further research
should investigate how large oncosomes found in biofluids can be
used as a liquid biopsy alternative to detect the presence of ameboid
tumors.

2.2 Exosomes

Exosomes are nano sized EVPs (~30–200 nm) of endocytic
origin that have demonstrated clinical potential as therapeutic
agents given their role in pathogenesis and the biologically active
molecules they encapsulate. (Kalluri and LeBleu, 2020; Fan et al.,
2022). Exosomes are intraluminal vesicles derived from inward
budding of endosomal multivesicular bodies that are released
into the extracellular space via exocytosis. (Alvarez-Erviti et al.,
2011; Kahlert and Kalluri, 2013; Basso and Bonetto, 2016; van Niel
et al., 2018; Jeppesen et al., 2019). The process of sorting exosomal
cargo mainly revolves around the endosomal sorting complex
(ESCRT), comprised of four complexes (ESCRT-0, I, II, and III)
derived from up to thirty protein accessories (Greening et al., 2017;
van Niel et al., 2018; Mathieu et al., 2019). Likewise, another major
component are the Rab GTPase proteins, largely involved in

modulations of intercellular vesicle transportation and budding
and release of vesicles (Colombo et al., 2014; Greening et al.,
2017; Mathieu et al., 2019; Kalluri and LeBleu, 2020). As a result,
common surface markers unique to exosomes include endosome
related components like flotillin, CD63, TSG101, and Alix (Meckes
et al., 2013; Clark et al., 2015; Costa-Silva et al., 2015; Kowal et al.,
2016; Song et al., 2020). Like MVs, exosomes have been found to
contain proteins and nucleic acids (Zhang et al., 2019a). However, it
has been found that they differ in their lipid, protein, RNA, and
DNA composition, emphasizing their potential unique roles (Wei
et al., 2017; Pegtel and Gould, 2019).

In the context of brain, exosomes facilitates intercellular
communication, synaptic plasticity, neurogenesis, and neuronal
stress response by transferring cell type specific coding and non-
coding RNAs, miRNAs, proteins, and lipids (Lachenal et al., 2011;
Bahrini et al., 2015; Li et al., 2018a; Saeedi et al., 2019).
Consequently, there have been reports of pathogenic amyloids
and protein deposits found within and outside of brain cells
associated with neurodegenerative diseases (Sweeney et al., 2017;
Saeedi et al., 2019). Thus, access to biofluids containing exosomes
with pathogenic protein aggregates may be capable of profiling the
heterogeneity of neurological diseases and disorders via simple and
non-invasive liquid biopsy (Lai and Breakefield, 2012; Hornung
et al., 2020; Younas et al., 2022).

Researchers have investigated the associations between
exosomes and progression of neurodegenerative diseases,
including both synucleinopathies (Kunadt et al., 2015; Stuendl
et al., 2016) and tauopathies (Saman et al., 2012; Guix et al.,
2018), and prion diseases (Bellingham et al., 2012; Chiasserini
et al., 2014). Exosomes derived from neurons and glia constitute
a sophisticated and interconnected network that influences
physiological functions of the CNS (Holm et al., 2018; Fan et al.,
2022). This makes them an indispensable component in a series of
protective mechanisms of the CNS including angiogenesis (van
Balkom et al., 2013; Liang et al., 2016), inhibition of the neural
apoptosis (Song et al., 2019), neuroimmune regulation (Kolios and
Moodley, 2013; Doeppner et al., 2015), formation of myelin sheath
(Boecker et al., 2018; Madison and Robinson, 2019; Yin et al., 2021),
growth of axon (Li et al., 2018b; Delpech et al., 2019; Guo et al., 2019;
Fan et al., 2022). Nevertheless, in tumor microenvironment or
during progression of neurodegenerative diseases, exosomes are
linked to distribution of amyloid-β peptides and α-synuclein and
tumor metastasis (El Andaloussi et al., 2013; Kalluri and LeBleu,
2020; Fan et al., 2022).

2.3 Viruses

The viruses must also be considered as a subset of the vast EVP
canopy (Ghosh et al., 2020; Dogra et al., 2021). Many viruses follow the
late lysosome or multivesicular body (MVB) followed by exocytosis
mechanism for egress (Alem et al., 2021; Dogra et al., 2021; Elmore et al.,
2021). As shown by Dogra et al. (2021) the biogenesis of SARS-coV-
2 have an egress pathway identical to the exosomes. While, other
viruses, such as HIV, pinch off the plasma membrane (Brügger et al.,
2006). As a result, all viruses fall under the classification of either
microvesicles/ectosomes (pinching off the plasma membrane),
exosomes (exocytosis), or other pathways EVP release.
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2.4 Mitochondrial derived-extracellular
vesicles

The mitochondria may function as a communication channel
between neurons and provide neuroprotective and neurorecovery
functions (Hayakawa et al., 2016). However, it is unknown whether
communication is achieved through the secretion of whole
mitochondria, mitochondria-encapsulated microvesicles, or EVPs
packed with mitochondrial cargo. Researchers have identified
vesicles carrying cargo of mitochondrial proteins, lipids, and
mtDNA (Miller et al., 2022; Popov, 2022). These vesicles have
been potentially misinterpreted as exosomes. Recent studies have
identified that these vesicles are not exosomes but rather, a subtype
of EVs called mitochondrial derived-vesicles (MDV) (D’Acunzo
et al., 2021; Nakamya et al., 2022). It has been described that
neurological diseases, including Alzheimer’s, Parkinson’s,
substance use disorder and down syndrome, can affect
mitochondrial structure and function (D’Acunzo et al., 2023).

Two types of MDVs have been described–mitochondrial
derived-intracellular vesicles (MDIV) and mitochondrial derived-
extracellular vesicles (MDEV), also known as mitovesicles
(D’Acunzo et al., 2021; Nakamya et al., 2022; Heyn et al., 2023).
MDIVs are single-layer vesicles that originated from the outer
membrane, whereas the MDEVs are bilayer vesicles due to its
origin from both the inner and outer membrane (Sugiura et al.,
2014; Heyn et al., 2023). Given their difference in biogenesis,
electron microscopy is frequently employed to distinguish
between MDIV and MDEV (Sugiura et al., 2014; Heyn et al.,
2023). Likewise, differences in lipid content that stems from
varying EVP biogenesis processes can also distinguish MDVs
from other EVPs (D’Acunzo et al., 2021). For example, MDIVs
are TOMM20-positive, PDH-negative and MDEVs are TOMM20-
negative, PDH-positive (Heyn et al., 2023). Furthermore, MDEVs
and MDIVs do not express exosome or microvesicle markers (e.g.,
Annexin A1, Annexin A2, Alix, TSG101, CD63), thus, implying they
belong to their own subtype. Furthermore, recent research has
revealed that MDEVs transport distinct cargo in healthy versus
diseased states, as observed in both humans and rodents with Down
Syndrome and Cocaine Use Disorder (D’Acunzo et al., 2021;
D’Acunzo et al., 2023). Although the field of MDEVs is still
emerging, further research is necessary to comprehend the role of
these subtypes in the etiology and diagnosis of mitochondrial
abnormalities (D’Acunzo et al., 2021; D’Acunzo et al., 2023).
Nevertheless, the current research confirms previous findings of
the association between physiological disorders and mitochondrial
abnormalities (D’Acunzo et al., 2021; Nakamya et al., 2022;
D’Acunzo et al., 2023).

2.5 Exomeres

First considered as cellular debris, exomeres (<50 nm), unlike
other EVs are non-membranous nanoparticles (Zhang et al., 2018;
Zhang et al., 2019b). Since these vesicles are lacking a lipid bilayer
and expression of ESCRT, it is suggested that they do not originate
from the plasma membrane or endocytic pathway like the other
subtypes (Zhang et al., 2019b). Regardless of their small size, they
have been detected to contain proteins, lipids, and nucleic acids

(Zhang et al., 2018). It is suggested from their protein enrichment
that their cargo is closely associated with the endoplasmic reticulum,
mitochondria, and cytoskeletal microtubules (Zhang et al., 2019b).
In vitro studies have shown that exomeres can contain functional
cargo that can alter recipient cells (Zhang et al., 2019b). Yet, the
biogenesis and the exact function of exomeres remain unknown.
Given the ambiguity in their biogenesis, several questions are being
raised regarding the formation of additional particles during their
rigorous isolation process.

2.6 Supermeres

A recent study conducted by Zhang et al., reported the discovery
of a new distinct nanoparticle named supermeres (Zhang et al.,
2019b; Zhang et al., 2021a). While ultracentrifugation of the
supernatant of exomeres at 376,000 × g for 16 h the authors
discovered a small pellet (Zhang et al., 2019b). After analyzing
this pellet authors found that these nanoparticles were distinct from
exosomes in size, morphology, composition, and cellular
interactions. As a result, the authors termed the subcategory of
nanoparticles supermeres–supernatant of exomeres. These
nanoparticles are suggested to have a functional application since
they are potentially enriched in clinically relevant proteins that were
previously reported in exosomes (e.g., amyloid precursor protein
(APP), cellular-mesenchymal-epithelial transition factor (MET),
glypican 1 (GPC1), argonaute-2 (AGO2), TGFβ-induced
(TGFBI), numerous glycolytic enzymes) and extracellular RNA
(exRNA; miR-1246)) (Zhang et al., 2021a). Further studies
verifying the existence of these particles are required since there
is no clear understanding of how supermeres are formed and what is
their function. Ultracentrifugation could lead to the formation of
additional particles, and it is not clear whether supermeres are
formed during ultracentrifugation or not.

2.7 High and low density lipoproteins

Cholesterol containing particles have been comprehensibly studied
for their size, biogenesis, and disease pathology, mainly related to
cardiovascular (Ishibashi et al., 1993) and Alzheimer’s diseases (Tcw
et al., 2022).These particles are classified as very low density lipoproteins
(VLDL) (35–200 nm), low-density lipoproteins (LDL) (20–26 nm), and
high-density lipoproteins (HDL) (5–8 nm) and other subtypes of them
(Claude, 1970; Liangsupree et al., 2021). In a recent study Murillo et al.
investigated the exRNA of variable particles and it was shown that HDL
and LDL carry distinct RNA, while argonaute proteins and vesicles of
different density cargo unique RNA signatures (Murillo et al., 2019).
Furthermore, It is important to note that LDL is up taken and released
by cells through receptor-mediated endocytosis, a similar process to
exosomes secretion (Tcw et al., 2022).

3 Advances in isolation technologies for
EVPs

Common sources of EVPs include tissue, cell supernatant, and a
wide variety of biofluids including blood, saliva, urine, breast milk,
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etc. (Valadi et al., 2007; Keller et al., 2011; Lässer et al., 2011;
Crescitelli et al., 2021). In contrast to tissue and cell supernatant
samples, biofluids are more accessible and less invasive. However,
samples of bodily fluid generally have larger starting volumes,
resulting in challenges associated with dilution or low EVP yield
and purity (Ramirez et al., 2018). This issue is further exacerbated
when attempting to isolate cell-type specific EVPs or specific EVP
subpopulations from biofluids (Su et al., 2017; Antes et al., 2018; van
Niel et al., 2018). Therefore, the key feature of a clinically applicable
and reliable EVP isolation method would need to address: 1)
sensitivity to individual subpopulations of EVPs; 2) purity and
throughput of isolated EVPs; 3) reproducibility, standardization,
and scalability; 4) external validity when considering various clinical
settings and samples used (Younas et al., 2022). Currently, the
established isolation methods include differential
ultracentrifugation (UC), density gradient ultracentrifugation
(UC-DG), size exclusion chromatography (SEC),
immunoprecipitation via beads, field-flow fractionation (FFF),
tangential flow filtration (TFF), nanofluidic deterministic lateral
displacement (nanoDLD), and acoustic trapping technology
(Wunsch et al., 2016; Kim et al., 2017; Smith et al., 2018;
Liangsupree et al., 2021).

3.1 Differential centrifugation (UC), density
gradient ultracentrifugation (UC-DG)

UC and UC-DG remain the most frequently implemented
method due to its high EVP yields (Royo et al., 2020;
Liangsupree et al., 2021). UC utilizes a series of gradually
increasing centrifugation to sequentially pellet, remove debris and
isolate EVPs in a stepwise manner, allowing for efficient isolation
even given a large starting volume (Carnino et al., 2019; Brennan
et al., 2020). This method also does not require any additional
chemical reagents ensuring the functionality of the EVPs isolated
(Liangsupree et al., 2021). Nevertheless, the resulting pellet from UC
are expected to cause EVP aggregations and would include a mixture
of all EVPs, suggesting lower purity for selected subtypes (Szatanek
et al., 2015; Carnino et al., 2019). Individual biofluids’ inherent
biochemical compositions also interfere with this isolation process
(Ramirez et al., 2018); the polymeric-Tam Horsfall protein,
frequently found in urine, tends to bind to EVPs which causes
the complex to pellet at lower centrifugation speed, decreasing the
overall EVP yield and purity (Wachalska et al., 2016); EVP pellet
isolated from breast milk via UC appears to solidify due to higher
concentration of whey and casein protein, thus posing great
difficulty for EVP resuspension (Ramirez et al., 2018).

In contrast, UC-DG implements sucrose, iohexol, or iodixanol-
based density gradient on top of the UC protocol. (Cvjetkovic et al.,
2014). This allows for further segregation of the UC isolated EVP
pellet based on the individual buoyant density of the subpopulations
found within the pellet (Konoshenko et al., 2018; Carnino et al.,
2019). Nonetheless, in exchange for the improved segregation, the
set up for UC-DG are exceedingly sophisticated and time
consuming, requiring up to 2 days for completion (Théry et al.,
2009; Konoshenko et al., 2018). Additionally, studies have reported
EVP throughput of both UC and UC-DG is significantly dependent
on the centrifuge and rotors used (Théry et al., 2006; Momen-Heravi

et al., 2013; Witwer et al., 2013; Cvjetkovic et al., 2014; Gardiner
et al., 2016; Konoshenko et al., 2018).

3.2 Size exclusion chromatography (SEC)

To further simplify the EVP isolation process, SEC-based
methods are developed. SEC employs a column filled with
porous resin of pre-determined diameter to effectively drain and
isolate all EVP and its subpopulations based on their hydrodynamic
radius found within the loaded biofluid (Barth et al., 1994). Isolated
EVP subtypes are then eluted as separated fractions in the order of
decreasing diameters. This mechanism prevents EVP aggregates and
preserves their functionality (Gámez-Valero et al., 2016). Most
importantly, SEC minimizes the amount of time and effort
needed considerably for EVP isolation (Gámez-Valero et al.,
2016). This can make or break the clinical applicability of EVP
based liquid biopsy. Despite the rigorous segregation by size, SEC
offers limited separation of EVP given the overlapping diameters of
various subgroups (Carnino et al., 2019; Brennan et al., 2020). In
addition, the eluting solutions used for SEC would further dilute the
concentration of each EVP fractions (Brennan et al., 2020;
Liangsupree et al., 2021).

3.3 Immunoprecipitation (IP)

Immunoprecipitation is a fast and simple affinity-based method
that targets the surface protein markers of the EVPs via magnetic
beads to isolate the selected EVP population. This method is
frequently used in conjunction with other isolation methods as a
purification step (Carnino et al., 2019). The specificity of the method
could be adjusted by attaching specific antibodies to the magnetic
beads in correspondence to EVP subtypes or different cell types, thus
providing high purity sample output (Tauro et al., 2012).
Consequently, the high selectivity of this method is highly
contingent on presence of sufficient number of beads and proper
optimization of the ligands to allow for maximal binding (Carnino
et al., 2019). Thus, this suggests immunoprecipitation would be less
efficient in biofluids with complex compositions of varying enzymes
and molecules, for instance, plasma, due to binding competition
(Hage et al., 1993; Carnino et al., 2019). There is also the need to
account for the high cost of beads with specific ligands and
difficulties with detachment of antibodies from EVPs for
preservation of integrity (Heath et al., 2018).

3.4 Field-flow fractionation (FFF) and
as.ymmetrical flow field-flow
fractionation (AF4)

FFF is a term used to describe a plethora of flow-based
separation technique that applies an external perpendicular force
on the flow direction of the sample causing accumulation of particles
along the bottom wall of the narrow channel (Schallinger et al.,
1985). Correspondingly, the counteracting Brownian motion of the
particles within the fluid would diffuse, separating the particles into
layers based on their diffusion coefficient and allowing for elution at
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different time point (Zhang and Lyden, 2019). The smaller particles
with higher diffusion coefficient would be near the upper layer thus
eluting faster than larger particles near the bottom (Sitar et al., 2015).
The most frequently used FFF for the purpose of EVP isolation is the
asymmetrical flow field-flow fractionation (AF4) that utilizes cross-
flow as the external force and replaced the bottom wall with a pre-
determined pore size permeable (Zhang and Lyden, 2019). The
biggest advantage of AF4 relative to other size-based isolation
techniques is its flexibility; the cross-flow could be adjusted
between runs to accommodate for fluid samples of varying
degrees of particle heterogeneity (Sitar et al., 2015). Likewise, the
solvent used in AF4 could also be replaced with PBS or the original
EV formulation buffer to preserve EV integrity for functionality
experiments. However, similar to SEC, AF4 has the tendency to
dilute the samples post isolation. Additionally, AF4 is not catered
towards large volume sample isolation as this could likely result in
self-association and overloading effects (Liangsupree et al., 2021).

3.5 Tangential flow filtration (TFF)

TFF, otherwise known as cross-flow filtration, is an improved
size-based filtration technique that implements solvent flowing in
the direction tangent to the semi-permeable membrane, effectively
preventing the buildup of larger particles and filter cake formation
(Busatto et al., 2018; McNamara et al., 2018). The particles smaller
than the pores would then travel across the membrane due to the
transmembrane pressure (Kim et al., 2021). A combination of
multiple membranes of different pore sizes could achieve proper
EVP isolation and effectively segregate the subpopulations.
Additionally, utilization of TFF is often coupled with other
methods to further concentrate the resulting isolated EVPs,
providing stronger signals for downstream analysis. This suggests
TFF is highly efficient in isolation of EVPs in large volume of diluted
samples (Liangsupree et al., 2021). The isolation process also
effectively preserves the integrity and biological activity of the
EVPs (Jia et al., 2022). Nevertheless, similar to other size-based
isolation techniques, TFF has limited separation of EVP
subpopulations given overlapping diameters of the subtypes.

3.6 Nanofluidic deterministic lateral
displacement (nanoDLD)

The nanofluidic device nanoDLD (Smith et al., 2018), is a size-
based isolation method that use asymmetric pillar arrays to deflect
particles in specific trajectories in accordance with their size (Kim
et al., 2017). Smaller particles would exhibit less disruption and
would flow through the pillars in a “zigzag” pattern (Kim et al.,
2017). Meanwhile, larger particles would likely be disrupted by the
pillars, thus, would typically travel in a “bumping” pattern (Wunsch
et al., 2016; Kim et al., 2017; Smith et al., 2018). The displacement in
the larger particles allows for effective segregation between EVPs of
varying hydrodynamic diameter (Wunsch et al., 2016; Kim et al.,
2017; Smith et al., 2018; Liangsupree et al., 2021). This mechanism
makes high purity particle isolation via nanoDLD extremely efficient
and reproducible. However, it requires the use of a silicon chip
which significantly limits the amount of sample it could process in a

single run (Wunsch et al., 2016). Correspondingly, similar to
filtration-based methods, nanoDLD is prone to clogging,
therefore, prefiltration of larger particles is required (Liangsupree
et al., 2021).

3.7 Acoustic trapping

Acoustic trapping technology, on the other hand, heavily relies
on ultrasonic wave scattering to effectively cluster and separate EVPs
based on their size, density, and compressibility (Rezeli et al., 2016;
Bryl-Górecka et al., 2018; Ku et al., 2018; Ku et al., 2019). This
method requires addition and retainment of seeding particles, most
commonly polystyrene beads, using the acoustic standing wave prior
to loading the samples. Once the sample is loaded, the particles
within would aspirate and cluster with the seeding particles using the
secondary acoustic wave through particle-particle interactions. To
retrieve the isolated EVP subtypes, the clusters are washed and
released from the beads once the acoustic wave is turned off (Ku
et al., 2018). Acoustic trapping has demonstrated high efficacy and
strong enrichment performances for sample volume as low as 12.5 ul
(Bryl-Górecka et al., 2018; Liangsupree et al., 2021). Nevertheless,
the set up and maintenance requires large amount of funding and
the device itself are only functional when high power inputs are
available (Hammarström et al., 2021).

4 Extracellular vesicles and particles in
the healthy central nervous system

While many publications have exclusively used the terms
“exosomes” or “ectosomes” etc., the isolation methods used in
the respective studies do not exclusively separate such particles,
but a heterogenous population. For the purpose of inclusion of all
particles, in this review, we have used the term EVPs as defined by
the International Society of Extracellular Vesicles (ISEV) (Thery
et al., 2018).

4.1 Oligodendrocytes and neurons

Oligodendrocytes are specialized glial cells that wrap around the
axons of neurons forming myelin sheaths in the CNS (Pegtel et al.,
2014). The myelination of axons is crucial for proper conduction of
impulses (Xiao et al., 2021). During the myelination process axons
and oligodendrocytes intercommunicate in order to maintain axon
integrity and survival (Pegtel et al., 2014). The relationship is evident
in demyelinating diseases where myelin damage is strongly
associated with neuronal and axonal degeneration (Xiao et al.,
2021). Research suggests that oligodendrocyte-derived EVPs
mediate signaling between oligodendrocytes and neurons
(Frühbeis et al., 2013; Pegtel et al., 2014; Delpech et al., 2019;
Pistono et al., 2021).

Studies suggest that oligo-EVPs are released as a result of neuron
activation starting a cascade of events (Delpech et al., 2019). First,
glutamatergic signaling from neurons occurs (Delpech et al., 2019).
This results in glutamate inducing a Ca2+ influx in
oligodendrocytes, which causes the activation of GTPase
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Rab35 that in turn leads to the release of oligo-EVPs (Lachenal et al.,
2011; Delpech et al., 2019) Neurons exposed to oligo-EVPs display
increased firing rates as well as altered gene expression. Therefore,
the increased activation of neurons increases the release of oligo-
EVPs, which then enhances the activation of the neuron, fueling a
cyclical relationship (Krämer-Albers, 2020). Hyperactivation of
neurons has been associated with neurodegenerative disorders
(Xiao et al., 2021). Yet, oligo-EVPs cause an enhancement of
neuronal firing without causing excitotoxicity in healthy brains
(Krämer-Albers, 2020). In fact, oligo-EVPs may have a
neuroprotective role (Krämer-Albers, 2020; Oyarce et al., 2022).
A study found that neurons exposed to oligo-EVPs under conditions
of oxidative stress and nutrient deprivation had higher metabolic
activity than neurons exposed to HEK293T-derived exosomes or
artificial liposomes (Frühbeis et al., 2013). Thus, suggesting that
oligo-EVPs uniquely aid neuronal health. Further research should be
done to understand how the release of oligo-EVPs affects the
signaling of other neurotransmitters and its role in regulation
and possible clinical application.

The purpose of oligo-EVP uptake may be different between cell
types. In vitro oligo-EVPs were seen to be taken up by neurons and
microglia, and infrequently by astrocytes or oligodendrocytes
(Figure 2) (Krämer-Albers, 2020). In order to validate these
findings an in vivo study was done using transgenic mice and
oligo-EVPs carrying Cre-recombinase (Frühbeis et al., 2013).
Given the activation of the reporter by Cre-recombinase requires
the release of Cre from the endosome and translocation to the
nucleus, any expression of Cre would directly correlate to oligo-EVP
uptake; increased levels of Cre expression were observed in neurons
correspondingly (Frühbeis et al., 2013). However, in the earlier
studies microglia were also seen to take up oligo-EVPs by
macropinocytosis. (Krämer-Albers, 2020). It is believed that these
EVPs are then trafficked to lysosomes for degradation in order to
clear oligodendroglial myelin membrane debris through their EVP
uptake (Delpech et al., 2019). Therefore, the lack of visualization
using the Cre reporter, is most likely due to the degradation of EVP-
cargo in the endo-lysosomal system. In neurons, Cre was expressed
to demonstrate that oligo-EVPs can be internalized in vivo (Frühbeis
et al., 2013). Additionally, the number of recombined neurons did
not change due to uptake at axonal and soma-dentric sites,
indicating both sites may be used (Frühbeis et al., 2013). As a
result, it is clear that the cargo of oligo-EVPs can alter gene
expression of neurons (Frühbeis et al., 2013). However, since
both uptake sites contain receptors that regulate neuronal
signaling, research is needed to investigate whether oligo-EVPs
alter the membrane of these sites and can activate these receptors.

4.2 Microglia and neurons

Microglia are the immune cells of the CNS (Williams et al., 1994;
Sousa et al., 2017). To ensure homeostasis is maintained they
produce soluble factors that mediate inflammatory responses
(e.g., chemokines, cytokines, and free radicals) (Kettenmann
et al., 2011; Paolicelli et al., 2019). These biomolecules can be
exchanged between cells through the use of microglia-derived
extracellular vesicles (microglia-EVPs) in order to communicate
support for infection and brain damage (Paolicelli et al., 2019).

Additionally, microglia-EVPs can signal neuronal activation
through surface components (Ceccarelli et al., 2021; Picciolini
et al., 2021). While neuroinflammation aims to solve an injury
and restore brain homeostasis, the dysregulation of such responses
can become unfavorable and even neurotoxic (Brites and Fernandes,
2015). Through the study of microglia-EVPs we can gain a deeper
understanding of how healthy conditions are maintained.

Microglia-EVPs have also been suggested to play a role in
neurite outgrowth, modulating neuronal activity, and
orchestrating innate immunity (Delpech et al., 2019). The surface
components of microglia-EVPs, rather than their cargo content,
have been found to have a direct effect on neurotransmission,
causing an increase in miniature excitatory postsynaptic current
(mEPSC) (Delpech et al., 2019; Ceccarelli et al., 2021). Specifically,
microglia-EVPs enrich ceramide and sphingosine production in
neurons and increase synaptic activity by facilitating SNARE and
synaptic vesicle release (Delpech et al., 2019; Aires et al., 2021).
Further research is needed to understand how microglia-EVPs
supportive role in synaptic vesicle release may be dysregulated in
psychiatric chemical imbalances. Microglia-EVPs have also been
shown to alter neurotransmission by transporting hydrophobic
ligands on their surface (Paolicelli et al., 2019; Ceccarelli et al.,
2021). For example, it was found that microglia-EVPs carry
endocannabinoid N-arachidonoylethanolamine (AEA) on their
surface which can be used to activate type-1 cannabinoid
receptors (CB1) (Gabrielli et al., 2015a; Gabrielli et al., 2015b;
Paolicelli et al., 2019). The activation of CB1 receptors on
GABAergic neurons leads to the inhibition of presynaptic
transmission (Manzoni and Bockaert, 2001; Mackie, 2006). A
variety of neurological activities, such as mood, memory, and
cognition, are mediated by CB1 receptors (Kendall and
Yudowski, 2016; Franzen et al., 2022). Thus, altered expressions
of the CB1 receptors have been observed in various
neurodegenerative diseases, such as Alzheimer’s disease,
Parkinson’s disease, and Huntington’s disease (Bisogno and Di
Marzo, 2010; Vasincu et al., 2022). These alterations may be
associated with microglia-EVPs (Aires et al., 2021).
Correspondingly, the communication between microglia-EVPs
and neurons are bidirectional; microglia-EVPs are capable of
being able to activate neurons and vice versa (Figure 2)
(Albertini et al., 2020). When serotonergic signaling occurs, 5-HT
is released from neurons, binding to 5-HT receptors on microglia,
and releasing EVPs (Glebov et al., 2015; Albertini et al., 2020).
Depression which has been associated with low levels of serotonin
has also been associated with neuroinflammation (Brites and
Fernandes, 2015; Cowen and Browning, 2015). A deficiency of
serotonin may lead to modification of microglia-EVPs, which in
turn suppresses the neuroimmune system. However, this association
needs to be further investigated.

4.3 Astrocytes and neurons

Astrocytes are known to play important roles in various
neurological processes, including the support and maintenance of
neurons, the regulation of brain blood flow, and the formation and
repair of the blood-brain barrier (Sidoryk-Wegrzynowicz et al.,
2011; Gharbi et al., 2020). There is increasing evidence that
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astrocyte-derived EVPs (astro-EVPs) may be involved in a number
of neurological processes, including the modulation of
inflammation, the promotion of neurogenesis, and the repair of
damaged tissue (Figure 2) (Gharbi et al., 2020; Upadhya et al., 2020).
In addition, astro-EVPs appear to regulate the concentration of
neurotransmitters (Upadhya et al., 2020; You et al., 2020). Astro-
EVPs’ cargo could be further investigated to understand better their
neuroprotective mechanisms.

Upon changes in the environment, astrocytes increase EVP
release and modify EVP cargo in order to maintain homeostasis
(Gharbi et al., 2020). Jovicic et al. suggests that miRNAs contained in
EVPs secreted by mouse astrocytes differed from those present in
the cell of origin (Jovicic and Gitler, 2017). According to these
findings, astrocytes select specific miRNAs for EVP transport in
correspondence to varying functions (Upadhya et al., 2020). For
example, when in an environment with cytokines IL-1β and TNF-α,
astro-EVPs will contain miRNAs that support neuronal function
(Upadhya et al., 2020). Like miR-125a-5p and miR-16-5p which
activate the kinase receptor for neurotrophin 3 thereby promoting
neuronal survival and differentiation (Upadhya et al., 2020). In
stressful conditions, astro-EVPs have been found to carry
cytoprotective heat shock protein 70 (HSP70) (Guha et al.,
2019a; Upadhya et al., 2020). Whereas, in conditions of hypoxia
and hypoglycemia, astro-EVPs have been found to carry functional
prion proteins (Guitart et al., 2016; Upadhya et al., 2020). According
to this study, these EVPs are involved in activating specific signaling
pathways that enhance neuronal protection (Upadhya et al., 2020).

Neurotransmitter regulation is a complex process that is
essential for maintaining normal brain function (Borodinsky
et al., 2014). In order to regulate the concentration of glutamate,
astrocytes utilize excitatory amino-acid transporter (EAATs)
proteins on their surface (Murphy-Royal et al., 2017; Mahmoud
et al., 2019; Todd and Hardingham, 2020). These transporter
proteins have also been found in astro-EVPs indicating they may
maintain neuronal homeostasis by reducing excitotoxicity in the
brain, often associated with numerous neuropathological conditions
(Upadhya et al., 2020). Further research is needed for therapeutic
applications of astro-EVPs containing EAAT.

5 Extracellular particles in the
pathological central nervous system

5.1 Neurodegenerative diseases and aging

There is evidence that EVPs may play a role in the development
and progression of neurodegenerative diseases, which are conditions
characterized by the progressive loss of function and death of
neurons in the brain and nervous system (Thompson et al.,
2016). These diseases include conditions such as Alzheimer’s
disease (AD), and Parkinson’s disease (PD). Aging is a major risk
factor for the development of neurodegenerative diseases, and it has
been suggested that the aging process itself may be influenced by
EVPs (Robbins, 2017; Hou et al., 2019).

Since accelerated aging may lead to neurodegeneration and
other physical declines (Hou et al., 2019), biomarkers may offer a
means to monitor aging and ensure that preventative care is
provided. It is suggested that mitochondrial abnormalities occur

with age and neurodegeneration (Lazo et al., 2021). Scientists
analyzed EVP mtDNA from individuals aged 30–64 using both
cross-sectional and longitudinal methods to determine whether
human mtDNA levels vary with age (Lazo et al., 2021). They
discovered the inverse relationship between the levels of EVP-
associated mtDNA and aging (Chomyn and Attardi, 2003; Lazo
et al., 2021). Thus, monitoring the aging process may be possible
through the decline in mtDNA levels. Likewise, both AD and PD are
associated with mitochondrial abnormalities, making mtDNA in
EVPs a valuable insight into these diseases (Bose and Beal, 2016;
Perez Ortiz and Swerdlow, 2019; Nakamya et al., 2022). In PD,
mitochondrial dysfunction can increase oxidative stress, disrupt
cellular material trafficking, impair electron transport chain
function, cause calcium imbalances, and disrupt mitophagy
(Nakamya et al., 2022). There is interesting evidence suggesting
mitophagy is initiated through the PINK1–Parkin pathway,
mutations of which are linked to the early onset of recessive
Parkinson’s disease (Nakamya et al., 2022). In AD, toxicity
associated with Aβ aggregates has been reported to damage
mitochondria and cause mitochondrial dysfunction (Reddy and
Beal, 2008; Kim et al., 2020). Isolated brain EVPs exposed to Aβ
aggregates and H2O2 have been found to contain mitochondrial
structures, RNA and proteins (Kim et al., 2020). This suggests that
EVPs may deliver toxic mitochondrial components from damaged
mitochondria, promoting cellular pathologies and AD (Kim et al.,
2020). A comparison of mitochondrial cargo within EVPs derived
from neurodegenerative patients with healthy samples is necessary
to determine whether these abnormalities can serve as biomarkers.
Further, the mitochondrial cargo of EVPs from aging individuals
should also be examined for neurodegenerative-associated
components.

Changes in the microenvironment have been linked to
neurodegeneration (Delpech et al., 2019; Aires et al., 2021). For
example, whenmidbrain cultures are incubated with IFN-γ and LPS,
there is an increase in EVP release and activation of microglia
inducing dopaminergic degeneration associated with PD (Aires
et al., 2021). It has been suggested that miR-34a carried by astro-
EVPsmay enter dopaminergic neurons and target the anti-apoptotic
Bcl-2 protein, which may also aid the progression of PD (Upadhya
et al., 2020). Both microglia-EVPs and astro-EVPs have also been
implicated in the pathogenesis of AD (Upadhya et al., 2020; Aires
et al., 2021). The activation of P2X7R in microglial cells has been
linked to the release of EVPs (Ruan et al., 2020). There is both
cognitive improvement and EVP release hindrance when P2X7R is
inhibited, emphasizing that EVPs are involved in the promotion of
AD (Ruan et al., 2020). Astro-EVPs have been identified as carriers
of aggregated proteins such as amyloid beta oligomers (AβO) and
protofibrils (Aβ) in AD (Upadhya et al., 2020; Gomes et al., 2022).
EVPs isolated from the CSF and blood of patients with AD and PD
have been found to contain protein aggregates of Aβ, tau, and α-
synuclein (Joshi et al., 2014; Guix et al., 2018; Cicognola et al., 2019;
Niu et al., 2020; Upadhya et al., 2020; Li et al., 2022). Thus, it has
been suggested that the release of neurotoxic proteins in EVPs allows
cells to deliver the protein aggregates to other cells with a higher
degradation capacity (Upadhya et al., 2020).

The presence of neurodegenerative proteins in EVPs has led
researchers to consider their use as liquid biopsy (Abdel-Haq, 2020).
A number of small-scale studies have been conducted, but in order
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for the results to be valid, larger studies are needed (Kapogiannis
et al., 2015). In order to meet this need researchers collected
887 plasma samples from 128 individuals who eventually
developed AD and 222 matched healthy controls (Kapogiannis
et al., 2019a). They used neuron-EVP biomarker data from these
samples which were collected up to 9 years before the onset of AD
symptoms, to build a model that could accurately predict future AD
diagnoses (Kapogiannis et al., 2019a). Surprisingly, the study found
that levels of Aβ42, previously linked to neurotoxicity and
neurodegeneration (Upadhya et al., 2020), were not significantly
different between individuals with future AD and healthy controls
(Kapogiannis et al., 2019a). Validating earlier findings the model did
include tau biomarkers (Upadhya et al., 2020) and insulin-receptor-
substrate-1 (IRS-1) phosphorylation as predictors, with pSer312-
IRS-1 and pY-IRS-1 being powerful individual predictors (Bomfim
et al., 2012; Kapogiannis et al., 2015; Mullins et al., 2017;
Kapogiannis et al., 2019a; Akhtar and Sah, 2020). These findings
support the use of neuron-derived EVP biomarkers as a potential
tool for early diagnosis and treatment of AD, and further
development as a clinical blood test for the disease is warranted.

5.2 Drug addiction

The cycle of substance abuse refers to the repeating pattern of
drug use and negative consequences that often occurs in individuals
with substance (Feltenstein and See, 2008; Koob and Volkow, 2016).
This initial use can then lead to a dependence on the drug, which can
cause physical and psychological symptoms of withdrawal when the
drug is not taken, reenforcing the need for the drug (Baker et al.,
2004; Koob and Volkow, 2016). EVPs have been used to understand
the physiological conditions at each stage of the cycle (Chivero et al.,
2021).

New insights emphasis that EVP modulated astroglia
dysfunction and activation of CB1 enhance dopamine release,
thereby contributing to cocaine addiction (Nakamura et al., 2019;
Jarvis et al., 2020). In an in vivo cocaine addiction model, it was
discovered that cocaine reduced the internalization of neuron-EVPs
into astrocytes, resulting in less miR-124-3p delivered and decreased
glutamate transporter-1 (GLT1) and GFAP levels (Jarvis et al.,
2020). A decrease in GLT1 expression may inhibit glutamate
reuptake, resulting in greater excitatory response and an increase
in dopamine release, furthering addiction (Scofield and Kalivas,
2014; Jarvis et al., 2020). Additionally, the reduced expression of
GLT1 and GFAP has also been implicated in several psychiatric
disorders, such as anxiety (Jarvis et al., 2020; Jia et al., 2020). This
change in EVP cargo may explain the correlation between
withdrawal and psychological symptoms. Likewise, both in
cocaine treated mice and cells, it has been seen that there is a
stimulation of EVP release in the ventral tegmental area (VTA)
(Nakamura et al., 2019). These EVPs are suggested to carry 2-
Arachidonoylglycerol (2-AG) that binds to CB1, inhibiting GABA
release and enhancing dopamine release to promote cocaine
dependence (Covey et al., 2016; Nakamura et al., 2019).

As a result of tolerance to opioids, larger doses of the drug may
be needed to achieve the same effects, increasing the likelihood of
overdose (Chang et al., 2007; Boyer, 2012). Drug resistance and
morphine tolerance appear to be linked to upregulation of sonic

hedgehog (SHH) proteins in morphine-stimulated astro-EVPs
activating SHH signaling in astrocytes via primary cilia (Huang,
2021; Ma et al., 2021; Luxmi and King, 2022). Researchers found that
inhibiting either EVP release or primary cilia decreased morphine
tolerance indicating its potential therapeutic role (Ma et al., 2021).
The choroid plexus (ChP) and CSF has been associated with SHH
(Huang et al., 2009; Li et al., 2016; Yang et al., 2021). Since astrocytes
can take up ChP-EVPs, this mechanism may also have a role in
mediating drug tolerance (Su and Pasternak, 2013; Pauwels et al.,
2022). The relationship between neurological and psychiatric
disorders with ChP is currently being studied including its role
in opioid tolerance and nicotine addiction (Su and Pasternak, 2013;
Ochoa et al., 2015; Lallai et al., 2019; Kenny et al., 2022).
Additionally, the intercommunication between the ChP and
astrocytes mediated by EVPs may contribute to the widespread
ChP contamination in the sampling and profiling of brain tissue
(Olney et al., 2022).

Research has shown that EVPs can serve as an effective tool for
both screening and monitoring individuals with substance abuse
disorders (Nakamura et al., 2019; Doncheck et al., 2020; Odegaard
et al., 2020; Zhang et al., 2021b; Chen et al., 2022b; Odegaard et al.,
2022). For example, a human study utilized plasma EVPs to monitor
withdrawal syndrome of heroin and methamphetamine users at 3-
month and 12-month stages (Chand et al., 2021; Chen et al., 2022b).
Recent studies have found that the expression of EVP miRNA
signatures reflects the differences in time point (Li et al., 2018c;
Chen et al., 2022b). These EVP miRNAs may be revealed to
contribute to psychiatric symptoms if validated by future studies
(Chand et al., 2021; Sil et al., 2021; Chen et al., 2022b). Additionally,
this data was used to predict the substance patients were using (Chen
et al., 2022b). For example, miRNA signature hsa-mia-451a can be
used to identify heroin-dependent patients, whereas hsa-mir-21a
can be used to identify methamphetamine-dependent patients
(Chen et al., 2022b). Another recent and comprehensive study
aimed to delineate the role of an extracellular vesicle-associated
microRNA-29a in chronic methamphetamine use disorder (Chand
et al., 2021). Similarly, using serum EVPs, a team of researchers has
successfully distinguished rats dependent onmethamphetamine and
from those dependent on ketamine (Li et al., 2018c). The unique
miRNA profiles of each group could potentially be strongly linked to
drug addiction and may help to elucidate the distinct addiction
processes involved (Li et al., 2018c). Moreover, another recent study
demonstrated the successful use of EVPs to monitor the synaptic
genesis of fetuses that were exposed to oxycodone in utero in a
rodent model (Odegaard et al., 2022). These results underscore the
potential use of EVs as a tool for both screening and monitoring in
the future.

It has been shown in postmortem studies that high levels of
hyperphosphorylated tau correlate with the activation of microglia
in opiate abusers, suggesting an accelerated AD progression (Kovacs
et al., 2015). An investigation of morphine-dependent rhesus
macaques provided insight into how EVPs may play a role in
mediating this effect (Sil et al., 2021). In the presence of
morphine, HIF-1α is seen as a regulator of BACE1 expression–an
enzyme essential for the generation of β-amyloid–leading to
neuroinflammation (Sil et al., 2021). This inflammation causes
the release of amyloid cargo via astro-EVPs, which can lead to
the production of Tau (Sil et al., 2021; Gomes et al., 2022). As an
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indication of the link between neurodegeneration and long-term
oxycodone abuse, EVPs isolated from the plasma of non-human
primates exposed to the drug were found to contain
neurodegenerative and pro-inflammatory biomarkers (Kumar
et al., 2021). These biomarkers have a potential clinical
application as a risk monitoring tool (Kumar et al., 2021).
Furthermore, a study using astro-derived EVPs from morphine-
stimulated rodents found that miR-138 activates toll-like receptor 7
(TLR7) leading to neuroinflammation through microglia activation
(Liao et al., 2020a). Since neuroinflammation is associated with the
risk of developing AD, those who need to take pain relievers long-
term may find benefit from silencing TLR7 through EVPs (Liao
et al., 2020a).

In conclusion, EVPs have emerged as promising tools for
understanding the complex mechanisms of substance abuse and
addiction. The cargo of these EVPs, including miRNAs and other
biomarkers, have been found to play a critical role in various stages
of drug addiction, from initiation to withdrawal symptoms and the
risk of developing neurodegenerative disorders (Nakamura et al.,
2019; Doncheck et al., 2020; Odegaard et al., 2020; Zhang et al.,
2021b; Chen et al., 2022b; Odegaard et al., 2022). Moreover, the use
of EVs as a screening and monitoring tool may offer significant
clinical benefits, for instance early identification of drug dependence
and personalized therapeutic interventions. As further research is
conducted in this area, the potential of EVPs to contribute to a better
understanding of substance abuse and addiction continues to
expand.

5.3 Major depression disorder

The most common neuropsychiatric disorder in the general
population is Major Depressive Disorder (MDD) which is associated
with functional impairment, morbidity, and low quality of life
(Ferrari et al., 2013). It is currently being explored whether EVPs
can detect drug response for MDD. A larger study was done with
60 participant to investigate miRNA cargo of MDD neuron-EVPs
for drug response, indicating that they are reflective of the
performance of antidepressant drug post treatment (Saeedi et al.,
2021). Further research is need to determine whether miRNA
signatures can forecast drug response prior to prescription.
Additionally, miR-139-5p found in blood EVPs may play a role
in the pathogenesis of depression, as demonstrated by the
depressive-like behavior exhibited by mice following the
transplantation of blood exosomes from MDD patients (Wei
et al., 2020). Therefore, emphasizing its promising use in the
diagnosis and treatment of MDD. A study discovered that MDD
patients have higher levels of Neuron-EVPs compared to healthy
controls (Nasca et al., 2021). The release of these EVPs has been
linked to an increase in glutamate levels, which emphasizes the
relationship between MDD and abnormal glutamatergic
neurotransmission (Frye et al., 2007; Deschwanden et al., 2011;
Lachenal et al., 2011; Lee et al., 2013). The study also found that
Neuron-EVPs have a higher concentration of insulin receptor
substrate-1 (IRS-1) associated with suicidality and anhedonia,
confirming previous research linking MDD to insulin resistance,
which also impacts glutamate levels (Grillo et al., 2011; Al-Hakeim
et al., 2018; Hamer et al., 2019; Nasca et al., 2021). Further research is

needed to understand how EVPs modulate glutamate levels in MDD
patients, as well as how this knowledge can relate to new treatment
methods targeting glutamate pathways like ketamine (Lener et al.,
2017; Murrough et al., 2017). In addition to neuron-EVPs, astro-
EVPs are also being studied in relation to MDD (Xie et al., 2022). A
study found that MDD patients have an increase of inflammatory
markers in Astro-EVPs when compared to healthy controls,
supporting previous research linking depression to
neuroinflammation (Brites and Fernandes, 2015; Troubat et al.,
2021; Xie et al., 2022). These studies highlights the potential of
EVPs to provide new understanding of the living brain and MDD.

5.4 Bipolar disorder

Bipolar disorder (BD) is a mental illness that affects about 1%–5%
of the population that involves recurrent episodes ofmania, hypomania,
and depression and is also associated with a high risk of sucide (Dome
et al., 2019). Selective serotonin reuptake inhibitors (SSRIs) often
triggering a manic episode (Gitlin, 2019) in patients suffering from
BD-related depression, indicating the need for alternative treatment.
Through analyzing the content of neuron-EVPs, researchers have
proven that infliximab (TNF blocker) can treat BD anhedonia by
reducing neuroinflammation (Lee et al., 2021; Mansur et al., 2021).
In addition to reducing anhedonia, infliximab treated patient derived-
EVPs are associated with insulin cascades in neurons, indicating insulin
as a relevant potential target for BD intervention (Mansur et al., 2021).
Likewise, by analyzing blood-derived neuron-EVP metabolites a study
found a connection between glucose metabolism dysfunction and BD
(Du et al., 2022). These metabolites can potentially be used to classify
samples from patients with BD, SCZ, MDD and healthy subjects,
improving current psychotic diagnosis (Singh and Rajput, 2006).
Similarly, research is being done on using miRNA signatures as
biomarkers for BD diagnosis (Ceylan et al., 2020). For example,
plasma EVPs were used to compare patients in depressive, manic,
and euthymic states against a healthy control (Ceylan et al., 2020).
13 miRNAs showed significant differences between patients with BD
and healthy individuals, with no significant alterations among different
states of BD (Ceylan et al., 2020). Additional studies focusing on
neuron-EVPs are necessary to identify potential biomarkers for
detecting the transition from a depressive episode to a manic
episode and vice versa, which can lead to improved treatment options.

5.5 Schizophrenia

Schizophrenia (SCZ) is a chronic incurable mental disorder
characterized by abnormal thought processes and behaviors, such as
delusions and hallucinations (Du et al., 2019). In order to better
understand the epistemology, potential biomarkers, and treatments
of SCZ, EVPs are employed in SCZ research (Oraki Kohshour et al.,
2022). Previously, insulin sensitization was believed to be a side effect of
SCZ prescriptions, but recent studies suggest this may be due to
excitotoxicity caused by the disorder (Plitman et al., 2014;
Kapogiannis et al., 2019b; Pomytkin et al., 2019). As a result of
studying peripheral blood neuron-EVPs, scientists were able to
determine that insulin resistance exists in vivo, even in the absence
of drug treatment, emphasizing its role in the dysfunction of brain
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development and maturation in SCZ (Kapogiannis et al., 2019b;
Wijtenburg et al., 2019). To understand the pathophysiology of SCZ
and identify potential biomarkers, the first genome-wide miRNA
expression profiling in serum-derived EVPs from SCZ patients was
performed (Du et al., 2019). The signatures were found to be enriched
for genes associated with protein glycosylation, neurotransmitter
receptors, and dendrite spine development (Du et al., 2019).
Furthermore, hsa-miR-206, a regulator of neutrophic factor
expression, was found to be upregulated in blood EVPs of SCZ
patients (Du et al., 2019). This data was used to find 11 miRNA
signatures that were highly accurate in predicting SCZ and could serve
as biomarkers (Du et al., 2019). A follow-up study identified
25 metabolites from neuron-EVPs that can be used to classify
samples from patients and controls accurately (Du et al., 2021).
These metabolites were enriched in SCZ pathways, such as
glycerophospholipid metabolism (Du et al., 2021). These findings
point to an important role for EVP metabolite dysregulation in SCZ
pathophysiology and indicate a strong potential for their use in SCZ
diagnosis. EVPs have also demonstrated treatment potentials. In one
study, mesenchymal stem cell-derived EVPs were administered to a
rodent model of SCZ, reducing SCZ-like behaviors and neurotoxic
levels of glutamate (Tsivion-Visbord et al., 2020). Overall, research
focusing on EVPs has contributed to our comprehension of the
pathophysiology, potential biomarkers, and treatments of
schizophrenia, underscoring the need for follow up studies to
enhance diagnosis and management.

5.6 Viral infections

There is evidence that EVPs may play a role in the infection and
replication of neuronal viruses (Kutchy et al., 2020). For example,
research has shown that EVPs can transfer viral particles and genetic
material to target cells, potentially contributing to the spread of infection
(Kutchy et al., 2020). The role of EVPs in the infection process is greater
emphasized in research being done onHIV (Hu et al., 2016; Dagur et al.,
2020; Hu et al., 2020). HIV-associated neurocognitive disorders
(HAND) are a group of conditions that can affect the nervous, even
if there is no detectable viral load (Campbell and Mocchetti, 2021).
While neurons are less susceptible to direct infection, infected microglia
can contribute to neuronal damage through the release of EVPs
(Kannan et al., 2022) One study demonstrates that HIV protein Tat
can cause the release of EVPs from microglia, which carry
proinflammatory protein NLRP3 cargo (Kannan et al., 2022). When
these microglia-EVPs are taken up by neurons, they can lead to
synaptodendritic injury and functional impairment, as indicated by
decreased mEPSCs (Campbell and Mocchetti, 2021; Kannan et al.,
2022). Additionally, Tat has been found to alter the EVP cargo from
astrocytes, resulting in impairment of the synaptic architecture of
neurons (Kannan et al., 2022). These findings suggest that EVPs
may play a mediating role in the microenvironment in the
development of HAND (Guha et al., 2019b; Kannan et al., 2022).

5.7 Brain tumors

There are various types of brain cancers including glioma,
meningioma, astrocytoma, and metastatic brain cancer (Passiglia

et al., 2018; Boire et al., 2020). The most well studied of these
cancers is a type of glioma referred to as glioblastoma (GBM)
(Tominaga et al., 2015; Hallal et al., 2020; Ricklefs et al., 2020;
Rana et al., 2021a; Rana et al., 2021b; Ricklefs et al., 2022). GBM is
a type of brain cancer that is aggressive and treatment-resistant
(Simon et al., 2020). It is characterized by the presence of cancer
stem cells (CSCs) and a complex and dynamic microenvironment
that includes endothelial cells, astrocytes, and immune cells
(Yekula et al., 2020). In the context of GBM, EVPs have been
shown to contribute to the maintenance and survival of CSCs and
promote GBM recurrence (Simon et al., 2020). Understanding
the mechanisms by which EVPs are secreted and target recipient
cells in the GBM microenvironment may provide new insights
into the disease. For example, GBM-EVPs have been shown to
alter the phenotype of normal astrocytes to acquire tumor-
supporting capabilities (Zeng et al., 2020; Nieland et al., 2021;
Zhou et al., 2022). One study found that EVPs containing miR-
19a, delivered from astrocytes to tumor cells, could downregulate
PTEN expression, thus upregulating brain metastasis (Simon
et al., 2020). Similarly, GBM-EVPs are suggested to stimulate
tumor-promoting M2 phenotypes in microglia, as opposed to
immune-supporting M1 phenotypes (Simon et al., 2020). GBM-
EVPs may also serve as biomarkers for diagnosis, prognosis, and
therapeutic response and may be used as a means of drug delivery
to the target site (Hallal et al., 2019). For example, a study using
serum-derived EVPs found that 7 miRNA signatures can
distinguish GBM samples from healthy controls
(Ebrahimkhani et al., 2018). Furthermore, miRNA signature
miR-9 was found to be upregulated in Temozolomide drug-
resistant cells (Simon et al., 2020). In order to reverse this
effect, scientists delivered anti-miR-9 to cells via EVP delivery
(Simon et al., 2020). As a result of their study, anti-miRNA
appears to be a promising therapeutic to counteract these
outcomes (Simon et al., 2020). While EVP application for
GBM has been extensively researched, EVPs are also showing
potential as diagnostic tools for other brain cancers and could aid
as a medium to better understand their etiology (Tominaga et al.,
2015; Hallal et al., 2020; Ricklefs et al., 2020; Rana et al., 2021a;
Rana et al., 2021b; Ricklefs et al., 2022). For example, a study
examining brain metastatic cancer has indicated that EVPs
containing miRNA-181-c might have the ability to disrupt the
blood brain barrier (BBB), thereby facilitating cancer metastasis
(Tominaga et al., 2015). Likewise, Graziano et al. has detected
varying levels of miR-1, miR-206, miR-663 in the blood EVs of
meningioma grade II patients in accordance to patient conditions
pre- and post-surgery (Graziano et al., 2021). By conducting
research on all types of brain cancer using EVPs, we can gain a
deeper understanding of cancer’s underlying mechanisms and
develop more effective treatment strategies.

5.8 Prion disorders

Prions are misfolded proteins that are transmissible and
causative agents for neurodegenerative diseases (Prusiner et al.,
1998). Prions are found on the surface of many cells and have
been discovered to be associated with EVPs (Bellingham et al., 2012;
Cheng et al., 2018). The precise mechanism of prion infections
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remain a matter of intense debate and EVPs are implicated to have a
role in prion infection (Fevrier et al., 2004).

6 Clinical application

6.1 Liquid biopsy

Cerebrospinal fluid (CSF) biomarkers have been used for the
diagnosis of neurodegenerative diseases, but the invasive nature
of lumbar puncture collection makes it an impractical choice for
routine screening (Wright et al., 2012). Instead, blood is the
preferred biofluid for these tests because it can be easily and
routinely obtained from patients. However, blood is in contact
with the entire body, making it difficult to isolate brain-derived
EVPs from those of other tissues (Monteiro-Reis et al., 2021).
This introduce the need for CSF biomarkers that can be found in
blood (Alawode et al., 2021; Mankhong et al., 2022). Blood-based
EVP biomarkers have several advantages as diagnostic tools
(Wang et al., 2017). They can be collected using a minimally-
invasive procedure and can be repeatedly sampled to monitor
changes in the molecular landscape of a disease or treatment
outcome (Wang et al., 2017). In addition, this approach may
uncover underlying pathological mechanisms that were
previously unnoticed (Monteiro-Reis et al., 2021). There are
some limitations to this approach, including issues with the
isolation and purification of EVPs and the fact that some
biomarkers, including miRNA, may change throughout
different stages of a disease (Abdel-Haq, 2020). These
problems, however, may be alleviated by further research.
Many studies have investigated miRNAs, proteins, and
metabolites that are useful in diagnosing psychiatric and
neurodegenerative disorders (see Table 1). The use of blood-
based EVP biomarkers as diagnostic tools in neurological
diseases has the potential to enable early detection and
treatment, as well as to allow for the monitoring of treatment
outcomes and disease progression (Abdel-Haq, 2020).

6.2 Therapeutics

Currently, the treatment options for psychiatric and
neurological disorders are often limited and may not be
effective for all individuals (Howes et al., 2022; Miller and
Raison, 2023). In fact, the only approved disease-modifying
medication for AD, Aducanumab, has faced controversy in its
approval and the minimal data they do have on its effectiveness is
limited to those with early onset AD (Howard and Liu, 2020;
Beshir et al., 2022). In addition, some therapies can have
significant side effects, which potentially reduce significantly
quality of life (McCammon and Sive, 2015; Miller and Raison,
2023). For example, many of those with schizophrenia, bipolar
disorder, and personality disorders are prescribed antipsychotics
which have severe, unpleasant and even lethal side effects
including tardive dyskinesia, neuroleptic malignant syndrome,
weight gain, diabetes, sedation, emotional blunting and even
sudden cardiac death (Moncrieff et al., 2020). It is due to the
mental and behavioral changes that many people do not feel like

themselves on their medications and avoid taking them
(Moncrieff et al., 2020). This highlights the need for therapies
with higher sensitivity, higher accuracy, and with no or fewer side
effects.

When developing new therapeutics it is important that the drug
is selective, does not create an immune response or cause toxicity,
and is effective (Strovel et al., 2004; Huggins et al., 2012; Elsharkasy
et al., 2020). Recent research has shown that EVPs may be cable of
meeting these criteria. The emerging role of EVPs as a therapeutic
has been greater understood through studies done on routes of
administration, types of cargo that can be delivered, and their
inherent nature (Mulcahy et al., 2014; Escude Martinez de
Castilla et al., 2021).

According to studies conducted on ways of administration,
EVPs enable molecules to cross the BBB, which would not have
been possible without them (Qu et al., 2018). Due to the fact that
dopamine cannot cross the BBB, scientist examined the effects of
intravenously administered dopamine-loaded blood EVPs versus
administration of free-dopamine on mice (Cestelli et al., 2001). In
comparison with those given free-dopamine after 6 h, those given
dopamine-loaded blood EVPs had a 15-fold higher distribution
of dopamine in the brain (Qu et al., 2018). Additionally, there was
no sign of toxicity in the hippocampus, liver, spleen, and lung and
there was a minimal immune response (Qu et al., 2018). Other
routes of administration have also been investigated. It has been
found that intrathecal administration leads to the highest
concentration of the drug reaching the brain; however, this
route is invasive and not practical for drugs that need multiple
doses (Gratpain et al., 2021). Accordingly, researchers are
investigating the intranasal route as a second-best route
(Gratpain et al., 2021). Since this route goes directly to the
brain it has been considered efficient (Liao et al., 2020b;
Gratpain et al., 2021). For example, a study administering
IFNγ-dendrictic cell-EVPs found the intranasal route targeted
the CNS better than the intravenous route and also lead to less
accumulation in the liver (Pusic et al., 2021). Additionally, the
EVPs have been found to protect the drug from being
metabolized by nasal mucosa enzymes (Gratpain et al., 2021).
Yet, there is a limitation of how much fluid can be administered
before it is drained into the esophagu (Gratpain et al., 2021).

Due to the fact that EVPs are selectively absorbed, they have
the potential to be used as targeted drugs. For example, research
done on administering IFNγ-dendrictic cell-EVPs intranasally
suggest that these EVPs were preferentially taken up by
oligodendrocytes, indicating that dendritic cell-EVPs maybe
used to target oligodendrocytes (Pusic et al., 2021). It is
suggested that the selectivity of EVPs is due to proteins on
their surface (Liu et al., 2015). Accordingly, researchers are
investigating how these membranes can be edited to be more
target (Liu et al., 2015). For example, scientists found that EVPs
expressing the neuron-specific rabies viral glycoprotein (RVG)
peptide on the membrane could successfully enter cells
expressing the acetylcholine receptor on their membranes and
not those without it (Liu et al., 2015). Thus, suggesting ways to
target specific neurons within the CNS. Likewise, scientists have
been striving to develop glioma-targeting EVPs to transport
therapeutics exclusively to cancerous cells (Jia et al., 2018;
Lino et al., 2021). For example, one study demonstrated how

Frontiers in Molecular Biosciences frontiersin.org16

Soleymani et al. 10.3389/fmolb.2023.1156821

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1156821


engineered EVPs, containing therapeutic siRNA, could target
glioma cells by expressing a protein that binds to neuropilin-1
(NRP-1), which is recognized for its overexpression on the
surface of these cells (Jia et al., 2018). This marks a significant
shift in cancer therapy from the conventional use of
chemotherapy that tends to target all cells (Rébé and
Ghiringhelli, 2015). In spite of this, damage to the structure
can occur during membrane modification, making large-scale use
of these techniques difficult (Herrmann et al., 2021). Therefore,
finding EVPs that naturally target specific cells may be a more
practical solution.

Although EVPs can be used to administer a variety of cargo
including miRNA, proteins, and molecules, a myriad studies have
been focusing on their delivery of siRNA. One study
administering mu-opioid receptor (MOR) siRNA-loaded EVPs
to mice have uncover its ability to prevent morphine relapse (Liu
et al., 2015). In another study, EVPs loaded with siRNA targeting
Huntingtin mRNA were effectively internalized by mouse
primary cortical neurons and significantly silenced Huntingtin
mRNA and proteins, further emphasizing the use of siRNA-
loaded EVPs for knockdowns (Didiot et al., 2016). Neurological
research often employs stereotaxic surgery to infect rodents with
viruses that will lead to gene knockdowns. (Nectow and Nestler,
2020). However, this approach is not translational in the human
model due to its invasiveness and potential immune response to
the virus (Cetin et al., 2006; Sack and Herzog, 2009). It is clear
from these earlier studies, that through the use of EVP-loaded
siRNA, these knockdowns can still be achieved while also having
the potential for therapeutic application in the future.

7 Conclusion and future directions

Collectively, in this review we describe the Universe of EVPs,
while providing evidence that neuroregulatory EVPs convey
neuroprotective and neurodegenerative effects. The diversity
of EVP populations reflects their origin, complexity, and roles
in multiple neurological processes. While an unprecedented
amount of scientific work has propelled the development of
cell-based strategies to protect and repair the injured brain.
Current clinical outcomes from treatments in patients’
psychiatric and neurodegenerative disorders such as
Alzheimer’s, Parkinson’s disease or schizophrenia, have not
reached the anticipated and strong success of preclinical trials.
Patient heterogeneity and lack of standardized procedures might
have contributed to this adverse scenario. Immune response,
immune compatibility, dosing, and administration route may
help explain the limited translatability of current therapies. EVPs
have brought excitement to new diagnostics and therapeutical
alternatives due the incremental evidence of their role in signal
transmission and amplification as vehicles of cell
communication, healthy phenotypes, aging and pathological
states and diseases.

Therefore, there is a critical need to further characterize the
function of the neurosecretome with the aim to characterize
mechanisms that allow to sustain recovery in psychiatric and

neurodegenerative disorders. In the clinical and preclinical
settings, it is essential to identify the vesicles, particles and
their subpopulations carrying novel and key molecules or
group of molecules responsible for the known therapeutic
effects, define the relationship between cells and their secreted
factors, and elucidate the temporal window of application and
dynamics of release.

A major argument in the field is whether there are biomarkers
associated with brain derived EVPs and if so then how is one to
evaluate their presence in the biofluids. In this context, we
evaluated over ~20 different studies that have isolated brain-
derived EVPs from various biofluids (blood, serum, plasma, CSF,
tissue, and in-vitro tissue cultures) using different EVP isolation
methods. A detailed list of brain-derived biomarkers that are
being studied in EVPs is provided on Table 1. This
comprehensive and cumulative study allowed us to envision
brain derived EVPs with a global view. Primarily, Aβ42 (Li
et al., 2022), P-tau (Palmqvist et al., 2020), APOE4 (for AD)
(Palmqvist et al., 2023), α-synuclein (for PD) (Niu et al., 2020),
many miRNAs (for AD (Wiedrick et al., 2019), addiction (Chand
et al., 2021), SCZ (Du et al., 2019), GBM (Ebrahimkhani et al.,
2018)) were discovered in the isolated EVPs. Although most
published studies on Table 1 suggested the presence of brain-derived
biomarkers in the systemic circulation, it was not entirely clear if there is
a linear correlation between the biomarkers and the disease. However,
given the diversity of the isolationmethods and biofluids it is difficult to
come to concrete conclusion. Overall, emerging evidence suggest that
brain derived biomarkers are present in the various EVPs and we’re
embarking on the journey of reproducible detection and direct
correlation of EVPs with brain cancers, psychiatric,
neurodegenerative diseases. The incremental knowledge derived
from neurosecretome studies will help to design improved liquid-
biopsy assays and therapies either using EVPs or their
bioengineering analogs to deliver efficiently beneficial molecules for
repairing the injured brain. Innovative and groundbreaking research
has unveiled the immense potential of EVPs in treating
psychopathological phenotypes, paving the way for an exciting new
era of clinical benefits for patients.
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