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Vacuolar H+-ATPases (V-ATPases) acidify several organelles in all eukaryotic cells
and export protons across the plasma membrane in a subset of cell types.
V-ATPases are multisubunit enzymes consisting of a peripheral subcomplex,
V1, that is exposed to the cytosol and an integral membrane subcomplex, Vo,
that contains the proton pore. The Vo a-subunit is the largest membrane subunit
and consists of two domains. The N-terminal domain of the a-subunit (aNT)
interacts with several V1 and Vo subunits and serves to bridge the V1 and Vo

subcomplexes, while the C-terminal domain contains eight transmembrane
helices, two of which are directly involved in proton transport. Although there
can be multiple isoforms of several V-ATPase subunits, the a-subunit is encoded
by the largest number of isoforms in most organisms. For example, the human
genome encodes four a-subunit isoforms that exhibit a tissue- and organelle-
specific distribution. In the yeast S. cerevisiae, the two a-subunit isoforms, Golgi-
enriched Stv1 and vacuolar Vph1, are the only V-ATPase subunit isoforms. Current
structural information indicates that a-subunit isoforms adopt a similar backbone
structure but sequence variations allow for specific interactions during trafficking
and in response to cellular signals. V-ATPases are subject to several types of
environmental regulation that serve to tune their activity to their cellular location
and environmental demands. The position of the aNT domain in the complex
makes it an ideal target for modulating V1-Vo interactions and regulating enzyme
activity. The yeast a-subunit isoforms have served as a paradigm for dissecting
interactions of regulatory inputs with subunit isoforms. Importantly, structures of
yeast V-ATPases containing each a-subunit isoform are available. Chimeric
a-subunits combining elements of Stv1NT and Vph1NT have provided insights
into how regulatory inputs can be integrated to allow V-ATPases to support cell
growth under different stress conditions. Although the function and distribution of
the four mammalian a-subunit isoforms present additional complexity, it is clear
that the aNT domains of these isoforms are also subject to multiple regulatory
interactions. Regulatory mechanisms that target mammalian a-subunit isoforms,
and specifically the aNT domains, will be described. Altered V-ATPase function is
associated with multiple diseases in humans. The possibility of regulating
V-ATPase subpopulations via their isoform-specific regulatory interactions are
discussed.
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1 The Vo a-subunit in the context of
V-ATPase structure and function

Eukaryotic V-ATPases are both remarkably versatile and
remarkably conserved. Their versatility is evident in the wide
range of functions that they impact directly or indirectly. They
are present in virtually all eukaryotic cells where they drive
acidification of vacuoles/lysosomes, endosomes, the Golgi
apparatus, and regulated secretory vesicles (Forgac, 2007). In
these locations, the pH gradient helps to drive secondary
transport of ions, amino acids, and other metabolites. V-ATPases
create an environment within organelles that supports essential
functions; for example, hydrolytic enzymes are activated at the
low pH of the lysosome and only operate optimally at this pH.
In addition, V-ATPases are recruited to more specialized functions
in specific tissues. In neurons, they are essential for neurotransmitter
loading into synaptic vesicles; different neurotransmitters rely on
either the pH gradient or membrane potential generated by
electrogenic proton transport (Farsi et al., 2016). In kidney,
V-ATPases are localized at the plasma membrane of the distal
renal tubule, where they catalyze export of protons into the urine
and thus regulate pH in the blood (Breton and Brown, 2013). In
bone, they are recruited to a defined region of the plasma membrane
of osteoclasts where they export protons and catalyze bone
resorption (Chu et al., 2021). Each of these functions represents

variations on a basic mechanism of ATP-driven proton transport,
but both the tuning of organelle pH and the recruitment of
V-ATPases to the plasma membrane suggest there must be
multiple levels of information for localization and regulation
present.

In this context, the conservation of V-ATPase structure seems
almost paradoxical. Cryo-EM structures of human and yeast
V-ATPases support a very high degree of similarity in subunit
composition and organization (Figures 1A,B) (Khan et al., 2022;
L. Wang et al., 2020). Some subunit sequences have a high sequence
identity across evolutionarily distant organisms, but even those
subunits with less sequence conservation can be exchanged
between organisms and generate functional V-ATPase complexes
in many cases.

All V-ATPases are rotary motors comprised of two
subcomplexes, the peripheral V1 subcomplex containing the sites
of ATP hydrolysis and the integral membrane Vo subcomplex that
contains the proton pore. Unlike their evolutionary relatives, the A-
and F-type ATPases, eukaryotic V-ATPases generally operate as
dedicated ATP-driven proton pumps rather than ATP synthases.
ATP hydrolysis occurs primarily at sites in the V1 A catalytic
subunits. Three A-subunits alternate with three B-subunits in the
catalytic headgroup of V1. In eukaryotic V-ATPases, three
peripheral stalks act as stators, ensuring that conformational
changes generated by ATP hydrolysis can productively drive

FIGURE 1
Interactions of the V1 subunits with the a-subunit is conserved from yeast to human. The cryoEMmaps of V-ATPases from: (A) yeast (7FDA, 4.20 Å)
and (B) human (6WM2, 3.10 Å) e (Khan et al., 2022; L. Wang et al., 2020). The cytosolic NT domain of the a-subunit (marked in black box) harbors many
sets of interaction with subunits of V1 domain (V1-E and G subunits are marked in yellow and blue respectively, V1 H is marked in purple whereas green
represents the V1 C subunit. (C). The aNT (yeast) domain is zoomed in with the two globular ends defined.

Frontiers in Molecular Biosciences frontiersin.org02

Tuli and Kane 10.3389/fmolb.2023.1168680

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1168680


rotation of the central rotor and the ring of proteolipid subunits in
the Vo sector. The peripheral stalks consist of, EG subunit
heterodimers that extend along the full length of the catalytic
headgroup. At the bottom of the headgroup, the symmetry is
broken as the three EG heterodimers make distinct interactions
with V1 C and H subunits and the N-terminal domain of the Vo

a-subunit (aNT).
The Vo a-subunit is itself a two-domain protein. Its N-terminal half

is exposed to the cytosol and acts as part of the stator via multiple
interactions with the V1 E, G, C, and H-subunits. This aNT domain is
visualized in cryo-EM structures as a dumb-bell shape, with two
globular ends connected by a coiled-coil (Figure 1C). All a-subunits
are likely to adopt this basic shape. The two ends of the aNT domain
have been designated “proximal” and “distal”, and each end interacts
with one of the peripheral stalks in the assembled V-ATPase. These
interactions have been described in detail in yeast (Oot and Wilkens,
2012; Oot et al., 2017; Sharma et al., 2019), and structures of the
mammalian V-ATPases contain a similar structural arrangement. The
aCT domain consists of eight transmembrane helices, two of which are
longer and lie almost horizontally in the membrane (Mazhab-Jafari
et al., 2016; Stam andWilkens, 2017; Roh et al., 2018). The aCT domain
contributes to two hemichannels for entry of protons from the cytosol
and exit into the organelle lumen, respectively. The separation between
the two channels within aCT effectively allows gating of H+ transport.
Passive transport across the two hemichannels is blocked by
interactions between helix 7 and 8 and the c-ring (Roh et al., 2020).
Overall, the conservation in structure of a-subunits is not surprising,
given its many interactions with other V1 and Vo subunits and its
critical functional role in ATP-driven transport.

However, despite their conserved overall structures, a-subunits
of yeast and human show only about 35%–40% overall sequence
identity, and even a-subunit isoforms in a single organism usually
show only ~45–60% identity (Nishi and Forgac, 2000; Oka,
Toyomura, et al., 2001). Regions of the aCT involved directly in
proton transport are more highly conserved, as are certain other
regions involved in subunit-subunit interaction. However, there are
regions of rather poor similarity that may offer an opportunity for
distinct modes of regulation and V-ATPase localization in different
cellular locations and between organisms.

2 Isoforms of the Vo a-subunit

While many organisms encode multiple isoforms of V-ATPase
subunits, in most cases, the a-subunit has the largest number of
isoforms. Paramecium encodes an amazing 17 different a-subunit
isoform genes (Wassmer et al., 2006), mammals generally contain
4 a-subunit isoforms (Oka, et al., 2001), A. thaliana has 3 (Dettmer
et al., 2006), and S. cerevisiae has two (Manolson et al., 1994).
Consistent with the diverse physiological roles of V-ATPase, the
a-subunit isoforms are implicated in directing V-ATPases to distinct
intracellular locations, responding to different signals, and
supporting tissue-specific functions.

The current model is that all a-subunit isoforms are imported
into the ER, folded, and undergo initial steps of assembly with other
Vo, and possibly V1, subunits in the ER (Graham et al., 1998; Kane
et al., 1999; Malkus et al., 2004). In axons, the V1 and Vo domains are
transported separately at different rates. The assembly of the V1 and

Vo domains occur only when they arrive in torpedo nerve endings
(Morel et al., 1998). Dedicated V-ATPase assembly factors that
localize to the ER are conserved across yeast, plants, and humans
(Graham et al., 1998; Neubert et al., 2008). In yeast, loss of these
assembly factors abolishes all V-ATPase activity (Hill and Stevens,
1994; 1995). In humans, mutations in Vma21, one of these assembly
factors, compromises V-ATPase activity and causes X-linked
myopathy with excess autophagy (Ramachandran et al., 2013;
Cannata Serio et al., 2020). After exit from the ER, it is likely
that most newly synthesized V-ATPase complexes, either fully or
partially assembled, are transported from ER to Golgi. However,
some V-ATPases are transported directly from the ER to the vacuole
in plants (Viotti et al., 2013). From the Golgi, information in the
N-terminal domain of a-subunit isoforms appears to direct
distribution of V-ATPases among organelles and the plasma
membrane. As described below, targeting of the yeast Stv1 and
Vph1 a-subunit isoforms to the Golgi/endosome and vacuole,
respectively, is determined by information in the aNT domain
(Kawasaki-Nishi et al., 2001a). Recently, a signal necessary and
sufficient for Golgi/early endosome localization of the plant
a1 isoform was localized to an ~50 amino acid region in the
distal domain of the a1NT (Lupanga et al., 2020). However, the
aNT sequences dictating V-ATPase trafficking are known in only a
few cases (Finnigan et al., 2011).

Given the diversity of a-subunit isoforms in many organisms, it
is worth noting that some organisms survive and thrive with only
one a-subunit isoform. For example, although S. cerevisiae and a
number of other fungi have two a-subunit isoforms, the fission yeast
S. pombe and filamentous fungus N. crassa have only one (Chavez
et al., 2006). Even among multicellular plants, Lupanga et al. (2020)
showed that the liverwort, Marchantia, has only one a-subunit
isoform that localizes to the Golgi, early endosome and vacuole
(Lupanga et al., 2020). Finnigan et al. computationally predicted a
single evolutionary precursor for the two S. cerevisiae a-subunit
isoforms (Anc.a) and then expressed this sequence in yeast
(Finnigan et al., 2011). The Anc. a appears to support V-ATPase
function in the Golgi and vacuole, based on complementation of
growth phenotypes, and the authors speculated that slow transport
through the Golgi and endosome en route to the vacuole allow it to
provide sufficient acidification for both compartments. Lupanga
et al. proposed a similar model in Marchantia, and demonstrated
that the Golgi a1 isoform found in A. thaliana (which has three
isoforms) was only essential for a limited period of development
(Lupanga et al., 2020). The high level of a-subunit isoform diversity
in many organisms suggests there might be a cost in versatility or
regulatory capacity to having only one a-isoform, but this has not
been addressed in detail. It may be that other V-ATPase subunit
isoforms allow versatility of function in some organisms with a
single a-subunit isoform, or it may be that some a-subunit isoforms
are only essential under a limited number of conditions, as shown in
Arabidopsis (Lupanga et al., 2020).

2.1 Yeast (S. cerevisiae) Vph1 and Stv1 as a
paradigm for a-subunit isoform function

In S. cerevisiae, the only V-ATPase subunit with more than one
isoform is the a-subunit, which is encoded by two genes, VPH1 and
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STV1 (Table 1). Deletion of any of the other V-ATPase subunit
genes results in complete loss of V-ATPase activity and a conditional
lethality known as the Vma− phenotype (Kane, 2007). Specifically,
yeast cells lacking V-ATPase activity can grow at an extracellular
pH of 5, but fail to grow at pH 7.5 or in the presence of Ca2+ or
multiple metals. In contrast, deletion of VPH1 (vph1Δ mutant)
results in a partial Vma− phenotype under most conditions,
although vph1Δ mutants are completely unable to grow in the
presence of 4 mM Zn2+ because of the importance of vacuolar
acidification for zinc detoxification. A vph1Δstv1Δ double mutant
exhibits a full Vma− phenotype. Manolson et al. cloned both the
VPH1 and STV1 genes and showed that Vph1 localized to the
vacuole at steady state, while Stv1 localized to puncta later shown to
be primarily Golgi (Manolson et al., 1992; Manolson et al., 1994).
Because Vph1 transits to the vacuole through the Golgi, it can
provide some Golgi acidification during its passage, and as a result, a
stv1Δ mutant has very little growth defect. Overexpression of STV1
causes a portion of the Stv1 protein to mislocalize to the vacuole,
where it can partially compensate for loss of VPH1 (Manolson et al.,
1994). However, several studies indicate that Stv1 and Vph1 have
distinct catalytic and regulatory properties that can vary with their
membrane environment (Kawasaki-Nishi, 2001b; Qi and Forgac,
2007).

Chimeras swapping the NT and CT domains between Vph1 and
Stv1 provided important insights into where functional and
localization information resides in the two isoforms (Kawasaki-
Nishi, 2001a). These studies demonstrated that the NT domains of
Vph1 and Stv1 are responsible for targeting V-ATPases the vacuole
and Golgi, respectively. These experiments and others also suggested
differences in catalytic properties between Stv1-and Vph1-
containing V-ATPases; specifically, chimeras containing the
Vph1CT domain were reported to show better coupling of ATP
hydrolysis and proton transport (Kawasaki-Nishi et al., 2001;
Kawasaki-Nishi et al., 2001).

As described in more detail below, Vph1-and Stv1-containing
V-ATPases also have distinct regulatory properties, including
binding to different phosphoinositide lipids, susceptibility to
reversible disassembly, and dependence on the RAVE complex.
Similarly, other a-subunit isoforms have distinct regulatory
properties.

2.2 Human a-subunit isoforms

Human and other mammalian genomes generally contain four
different a-subunit isoform genes. Three of the isoforms are
ubiquitously expressed and one (a4) shows highly specific tissue
expression (Table 1). The four major a-subunit isoforms are
designated a1-a4 (encoded by the ATP6V0a1-ATP6V0a4 genes)
in humans. a1 and a2 reside in intracellular membranes, with
a1 occupying lysosomes and endosomes and a2 present in the
Golgi and early endosomes. a1 is also enriched in brain, where it
drives neurotransmitter uptake into synaptic vesicles and is found at
the presynaptic plasma membranes of nerve terminals (Morel et al.,
2003; Bodzeta et al., 2017). a2 appears to be a Golgi isoform but it
localizes to endosomes and can acidify both locations (Hurtado-
Lorenzo et al., 2006; Kornak et al., 2008; Zoncu et al., 2011).
Expression of a1 appears to increase in cells with reduced levels
of a2 and a3, suggesting there may be some compensation (McGuire
et al., 2019). Partial cross-complementation among these isoforms
has been observed previously (Matsumoto et al., 2018). a3 is
distributed to lysosomes, and particularly secretory lysosomes
that are capable of fusion with phagosomes or the plasma
membrane of osteoclasts (Toyomura et al., 2003; Sun-Wada
et al., 2009; Matsumoto et al., 2018). In undifferentiated
osteoclast progenitor cells, a3 localizes to late endosomes and
lysosomes, but these secretory lysosomes are trafficked to the
plasma membrane during osteoclast maturation (Toyomura et al.,
2003). Similarly, a3 appears to be responsible for both acidification
of cytotoxic granules in cytolytic T Cells and transport of these
granules to the immune synapse (Chitirala et al., 2020). Although a1,
a2, and a3 are expressed in a broad range of tissues, a4 expression is
restricted to the kidney, epididymis, and inner ear (Oka et al., 2001;
Pietrement et al., 2006). V-ATPases containing a4 are localized to
the apical plasma membrane of renal intercalated cells and
epididymal clear cells where they function in urinary acidification
and sperm maturation, respectively (Oka, Murata, et al., 2001;
Pietrement et al., 2006). V-ATPases containing a4 are also found
in the inner ear (Stover et al., 2002). Remarkably, all four a-subunit
isoforms are expressed at distinct localizations very early (pre-
gastrulation) in mouse embryos, suggesting that all four play a
role in early development (Sun-Wada and Wada, 2022).

TABLE 1 Distribution of human a-subunit isoforms. The isoform nomenclature, tissues where each isoform is expressed (along with tissues where expression may
be enriched), and the cellular localization are listed for the human and yeast a-subunit isoforms.

a-subunit
isoforms

Expression Localization References

Human a1 (ATP6V0a1) Ubiquitous (enriched in brain) Lysosomes, endosomes, and
synaptic vesicles

Morel et al. (2003), Hurtado-Lorenzo et al. (2006),
Bodzeta et al. (2017)

a2 (ATP6V0a2) Ubiquitous Golgi and early endosomes Hurtado-Lorenzo et al., 2006; Kornak et al., 2008; Zoncu
et al., 2011)

a3 (ATP6V0a3) Ubiquitous (enriched in osteoclasts) Secretory lysosomes Toyomura et al. (2003), Sun-Wada et al. (2009),
Matsumoto et al. (2018)

a4 (ATP6V0a4) Tissue-specific- Kidney, epididymis,
and inner ear

Plasma membrane and vesicles Oka et al. (2001), Pietrement et al. (2006)

Yeast Vph1 Constitutive Vacuole Manolson et al. (1992)

Stv1 Constitutive Golgi and endosomes Manolson et al. (1994)
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2.3 Human diseases associated with specific
a-subunit isoforms

Complete loss of V-ATPase activity is lethal very early in
development of mammals (Sun-Wada et al., 2003). However,
mutations in each of the human isoforms have been described,
with distinct clinical phenotypes. These phenotypes provide insights
into the essential roles of each isoform, as well as the extent of
redundancy and compensation between isoforms.

Mice containing a homozygous knockout of ATP6V0a1 die very
early in development, similar to mice lacking V-ATPase subunits
encoded by a single subunit isoform (Aoto et al., 2021) (Sun-Wada
et al., 2003). This indicates that a1 plays an essential role early in
mammalian development. However, humans heterozygous for de
novo variants expected to have a complete loss of function (R741Q)
or homozygous for mutant alleles expected to partially compromise
function have been identified (Aoto et al., 2021). Mutations that
seriously compromise the function of the a1 isoform result in
multiple neurological phenotypes, including seizures, severe
developmental delay, and encephalopathy (Bott et al., 2021).
Introduction of these mutations into model systems and cell lines
revealed multiple features that could contribute to the clinical
phenotypes, including loss of lysosomal acidification,
compromised autophagy, defects in synapse formation, and low
levels of neurotransmitters in synaptic vesicles (Aoto et al., 2021)
(Bott et al., 2021).

Loss of function mutations in ATP6V0a2 are associated with
autosomal recessive cutis laxa (ARCL) and Wrinkly Skin Syndrome
in humans. These relatively rare syndromes are characterized by
loose, inelastic skin, accompanied by a number of developmental
defects. Loss of V-ATPase function at the Golgi appears to account
for many of these phenotypes. Compromised Golgi acidification
arising from ATP6V0a2 mutations resulted in defective
glycosylation and a number of intracellular trafficking defects
(Hucthagowder et al., 2009; Fischer et al., 2012).

Loss of function mutations in ATP6V0a3 are associated with
autosomal recessive osteopetrosis, which is characterized by brittle,
overgrown bones and is generally fatal early in life. Most of the
responsible mutations either prevent expression or destabilize the
a3 protein (Chu et al., 2021).

Genetic loss of V-ATPase activity in distal renal tubule
acidosis was first associated with mutations in an isoform of
the V1 B-subunit (Karet et al., 1999), but was later shown to also
occur with mutations in ATP6V0a4 (Stover et al., 2002).
Mutations in either V-ATPase subunit can also cause
sensorineural deafness, although deafness is often exhibited
later in life than the acidosis.

3 Regulatory mechanisms involving
a-subunit isoforms

Subunit isoforms offer a regulatory plasticity to V-ATPase
function. This plasticity contributes to the versatility of
V-ATPase functions and allows subpopulations of V-ATPases to
respond to different stresses. A number of regulatory mechanisms
with direct relationship to the a-subunit and its isoforms are
addressed below.

3.1 Reversible disassembly

One of the unique features of eukaryotic V-ATPase is regulation
by reversible disassembly. In this process, the V1 and Vo domains of
the V-ATPase dissociate reversibly in response to stimuli.
Dissociation prevents both ATP hydrolysis and proton pumping,
effectively “turning off” the V-ATPases (Graf et al., 1996; Kane and
Parra, 2000; Parra et al., 2000; Couoh-Cardel et al., 2015). Reversible
dissociation was first discovered in the tobacco hornworm M. sexta
and in yeast (Kane, 1995; Sumner et al., 1995). In yeast, V1 and Vo

dissociate in response to glucose withdrawal, while in M. sexta
disassembly occurs with nutrient depletion at a specific
developmental stage. Disassembly and inactivation of V-ATPase
activity in these cases is believed to preserve ATP under conditions
of nutritional stress. In both cases, V1 and Vo remain intact as two
separate sub-complexes, except for the removal of subunit C from
both sectors (Kane, 1995; Tabke et al., 2014)). In yeast, after adding
back glucose to glucose starved cells, the RAVE complex (Regulator
of H+-ATPase of Vacuolar and Endosomal membranes) catalyzes
the reassembly of both V1 and C with Vo (Seol et al., 2001; Smardon
et al., 2002; Smardon and Kane, 2007). Significantly, reversible
disassembly exhibits a-isoform specificity in yeast (Smardon
et al., 2014). Vph1-containing V-ATPase complexes disassemble
more readily upon glucose deprivation than Stv1-containing
V-ATPases. However, some differences in disassembly were
dependent on membrane environment. Kawasaki-Nishi et al.
(Kawasaki-Nishi, 2001a) found that chimeras containing the
Vph1NT and Stv1CT showed more disassembly upon glucose
deprivation than those containing the Stv1NT and Vph1CT,
implicating the Vph1NT domain in the process. Subsequently,
the RAVE complex was shown to bind to Vph1NT but not
Stv1NT (Smardon et al., 2014; Smardon et al., 2015). Loss of
RAVE function results in almost complete loss of V-ATPase
activity in isolated vacuoles, but overexpression of STV1 allows
recovery of activity, further indicating that V-ATPases containing
Stv1 can assemble in the absence of RAVE (Smardon et al., 2014).
Regions of RAVE capable of binding to Vph1NT, V1 subunit C, and
V1 have been defined biochemically (Smardon et al., 2015). Later
work demonstrated that the interaction of RAVE with Vph1NT was
the central event in glucose-induced V-ATPase reassembly, as
glucose addition to deprived cells could induce recruitment of
RAVE to Vph1 at the vacuolar membrane even in the absence of
V1 or subunit C (Jaskolka and Kane, 2020). Significantly,
Rabconnectin-3 complexes present in higher eukaryotes share
structural and functional homology with yeast RAVE (Jaskolka
et al., 2021).

Reversible disassembly occurs in mammalian cells in response to
a diverse set of stimuli (Figure 2). Early studies in kidney showed
increased assembly of cell surface V-ATPases in response to high
extracellular glucose (Sautin et al., 2005), but in other cells,
lysosomal V-ATPases were shown to assemble at very low
glucose concentrations (McGuire and Forgac, 2018). In general,
V-ATPase assembly is often stimulated in mammalian cells in order
to augment the hydrolytic activity of the lysosome. In this context,
dendritic cells increase V-ATPase assembly as they mature in order
to decrease lysosomal pH, increase proteolysis, and favor antigen
presentation ((Trombetta et al., 2003). Amino acid deprivation
induces increased assembly of the V-ATPase and lysosomal
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acidification in order to support proteolysis and mobilize amino
acids from the lysosome (Stransky and Forgac, 2015). More recently,
fibroblasts undergoing starvation-induced macropinocytosis were
shown to increase V-ATPase assembly and decrease lysosomal
pH upon mTOR inhibition (Ratto et al., 2022). In this setting,
lysosomal protease activity was increased with V-ATPase assembly.
Increased V-ATPase activity supports the recycling capability of
lysosomes since degradation of macromolecules releases amino
acids and other nutrients. Epidermal growth factor (EGF)
stimulates V-ATPase assembly in endosomes and lysosomes; in
this setting, increased V-ATPase activity activates mTOR and may
help generate nutrients by lysosomal hydrolysis in anticipation of
increased cell growth (Xu et al., 2012). Ratto et al. (Ratto et al., 2022)
demonstrated involvement of the a3 isoform and the mammalian
Rabconnectin-3 complex in V-ATPase reassembly during
macropinocytosis. However, in most cases, the specific a-isoforms
involved in reversible disassembly at the late endosomes and
lysosomes have not been defined. Given the enrichment of the
a1 and a3 isoforms in the late endosome and lysosome, it is likely
that both could be involved in different settings.

Reversible disassembly is associated with less adaptive responses
to environmental challenges as well. In cardiomyocytes, V-ATPases
in the early endosome disassemble in response to lipid overload,
resulting in endosome alkalinization, relocalization of the fatty acid
transporter CD36 to the plasma membrane, and further uptake of
extracellular lipids (Liu et al., 2017). This process is highly
significant, as it appears to be an early step in insulin resistance
and ultimately cardiac contractile dysfunction (Liu et al., 2017)

(Wang et al., 2022). In cultured cells, promoting V-ATPase
reassembly restored endosomal CD36 localization and reduced
lipid uptake (Wang et al., 2021; S. Wang et al., 2020). In
cardiomyocytes, the V-ATPases involved in reversible
disassembly contain the a2 isoform (Liu et al., 2017). Therapeutic
manipulation of V-ATPase assembly has been proposed for
influenza A infection as well (Kohio and Adamson, 2013).
Acidification of the endosome is critical for release of the viral
genome, and at low glucose levels, where V-ATPases disassemble,
viral progression is compromised (Kohio and Adamson, 2013).

In neurons, reversible disassembly may play a critical and
constitutive role in synaptic vesicle loading, fusion, and recycling.
V-ATPase activity is critical for loading neurotransmitters into
synaptic vesicles. The synaptic vesicle V-ATPase contains the
a1 isoform (Poea-Guyon et al., 2013). Bodzeta et al. (Bodzeta
et al., 2017) showed that V-ATPases are assembled to drive
neurotransmitter uptake, followed by disassembly of the V1 from
the loaded vesicle in preparation for fusion (Morel, 2003). Upon
endocytosis from the plasmamembrane and reformation of synaptic
vesicles, V-ATPases reassembled to support the next round of the
synaptic vesicle cycle. V-ATPase assembly appears to respond to the
luminal pH of the vesicle in this context (Bodzeta et al., 2017).

While it is clear that reversible disassembly is a central
regulatory mechanism for V-ATPases in higher eukaryotes, the
signaling pathways involved are complex and only partially
elucidated (reviewed in (Collins and Forgac, 2020)). In addition,
the specific a-subunit isoforms involved have only been defined in a
few cases. Although Rabconnectin-3 complexes have been

FIGURE 2
Reversible disassembly of V-ATPases in mammalian cells. Diagram showing the assembled and active V-ATPase (left) and the disassembled and
inactive V-ATPase (right) are interconverted by reversible disassembly. Below the figure, conditions shown to cause reversible disassembly inmammalian
cells are listed, with the conditions favoring the assembly listed beneath the assembled structure and the conditions favoring disassembly listed beneath
the disassembled structure. The cell types in which each type of reversible disassembly was observed are listed at the right. References for each
reversible disassembly condition are cited in the text. The V-ATPase diagrams were created using Biorender. This figure is adapted from Jaskolka et al.,
2021.
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implicated in reversible disassembly in mammalian cells, it is not
known whether these complexes exhibit isoform specificity, as
shown for the RAVE complex and yeast V-ATPase. In addition,
there are multiple subunit isoforms in mammalian Rabconnectin-3
complexes (Jaskolka et al., 2021), suggesting rich potential for
a-isoform specificity.

3.2 Binding to glycolytic enzymes

The relationship between the V-ATPase and glycolysis is
complex and bidirectional (Hayek et al., 2019). Direct
interactions between V-ATPases and glycolytic enzymes have
been observed in multiple organisms (Hayek et al., 2019), and
many of these interactions involve the a-subunit. These
interactions have been suggested to provide a direct supply of
ATP from a glycolytic metabolon to the V-ATPase (Lu et al.,
2001). However, as described below, there is still much to be
learned about how these interactions actually affect the V-ATPase.

Phosphofructokinase (PFK) catalyzes the third step of glycolysis,
where it utilizes ATP to drive the conversion of fructose-6-
phosphate to fructose-1,6-bisphosphate. In human renal cells,
PFK-1 binds in last 45 amino acids of a4 (Su et al., 2003).
Significantly, two missense mutations in this region are
associated with recessive distal renal tubule acidosis, suggesting
that they may interfere with V-ATPase activity (Smith et al.,
2000; Stover et al., 2002). These two disease-associated mutations
are in highly conserved amino acids, and the mutations were
introduced at the corresponding location in yeast Vph1. The
mutations disrupted V-ATPase activity, supporting the functional
importance of the interaction between PFK-1 interaction and the
a4 isoform (Su et al., 2008). PFK-1 also binds to the V-ATPase in
yeast (Chan and Parra, 2014). Both the Pfk1 and Pfk2 subunits of
PFK-1 are able to bind, but the site of interaction on the V-ATPase
was not determined (Chan and Parra, 2014). Deletion of the
Pfk2 subunit of yeast PFK-1 reduces downstream glycolytic
intermediates significantly more than Pfk1p (Heinisch, 1986).
pfk2Δ mutants have defects in vacuolar acidification (Chan and
Parra, 2014) and exhibit a partial Vma− phenotype; pfk1Δ mutants
have milder effects. The pfk2Δ mutant showed reduced reassembly
of the V-ATPase after glucose readdition, suggesting a potential role
for Pfk2 in signaling carbon source availability to the V-ATPase.
Interestingly, increasing glycolytic flux by adding higher levels of
glucose reversed this reassembly defect (Chan and Parra, 2014).

The glycolytic enzyme aldolase has been reported to bind to
V-ATPases in yeast (Lu et al., 2007), plants (Konishi et al., 2004),
and mammals (Merkulova et al., 2011). Lu et al. reported that
aldolase binds directly to the yeast V1 subunits B and E and the a4NT
domain in vitro (Lu et al., 2004). Despite the presence of potential
binding sites in both the V1 and Vo sectors, aldolase bound only to
the intact V-ATPase in the presence of glucose, and failed to bind to
the separate V1 and Vo sectors in the absence of glucose (Lu et al.,
2004). Konishi et al. reported co-immunoprecipitation of aldolase
from rice roots with antibodies to the V-ATPase (Konishi et al.,
2004). Merkulova et al. reported an indirect interaction between
V-ATPases containing multiple a-subunit isoforms and aldolase via
the Arf6 GTP exchange factor, ARNO (Merkulova et al., 2011). The
functional effects of aldolase interaction with the V-ATPase are still

not clear. In yeast, V-ATPases are disassembled and inactive in
aldolase deletion mutants (Lu et al., 2001). However, interpretation
is complicated by the severe glycolytic defects of the aldolase mutant,
since failure to metabolize glucose would mimic glucose deprivation
and thus drive disassembly. Subsequent studies comparing effects of
overexpressing an inactive aldolase mutant and an active aldolase
mutant defective for binding to the V1B subunit suggested that
binding, but not aldolase activity, was important for V-ATPase
activity (Lu et al., 2007). At present, it is clear that aldolase binds to
V-ATPases across organisms, but further work is necessary to define
its functional role.

3.3 Lipid interactions

TheVo sector of the V-ATPase is embedded in the lipidmembrane,
but recent data indicate that interactions of the a-subunit with specific
lipid headgroups can have regulatory effects (Banerjee and Kane, 2020).
Specific phosphoinositide phospholipids (PIPs) are enriched in certain
organelles and membrane domains (Figure 3A). The Golgi apparatus is
generally enriched in PI4P. Reduction of PI4P levels in vivo causes Stv1-
containing V-ATPases to relocalize to the vacuole, implicating PI4P in
Golgi retention or recycling of Stv1 (Banerjee and Kane, 2017). The
N-terminal domain of Stv1 (Stv1NT) was shown to bind tightly to
PI4P-containing liposomes in vitro, and mutation of a sequence in the
proximal end of Stv1NT (W83KY) also abrogated PI4P binding in vitro
(Banerjee and Kane, 2017) (Figure 3B). Significantly, mutations in this
sequence were previously shown to alter Stv1 localization (Finnigan
et al., 2012). These data indicate that interaction of Stv1 with PI4P helps
to localize Stv1-containing V-ATPases to the Golgi. Later work
suggested that ATPase activity of solubilized V-ATPase complexes
containing Stv1 could also be activated by addition of PI4P lipids
(Vasanthakumar et al., 2019).

PI(3,5)P2 is a low level signaling lipid found primarily in late
endosomes and vacuoles (lysosomes in mammalian cells) where Vph1-
containingV-ATPases are localized (Gary et al., 1998; Jin et al., 2016). In
yeast mutants defective in PI(3,5)P2 synthesis, V-ATPases containing
the Vph1 isoform still localize to the vacuole, but have reduced activity
and assembly (Li et al., 2014b). PI(3,5)P2 levels are transiently increased
by up to 20-fold in response to osmotic stress (Dove et al., 1997; Duex
et al., 2006); V-ATPase activity is activated in a PI(3,5)P2 dependent
manner under these conditions (Li et al., 2014b). Unlike Stv1NT,
Vph1NT did not show significant binding to liposomes containing
PI(3,5)P2 in vitro (Tuli and Kane, 2023). However, addition of short
chain lipids with a PI(3,5)P2 headgroup to isolated vacuolar vesicles
activates V-ATPase activity and proton pumping (Banerjee et al., 2019).
Using this assay system, it was possible to identify mutations in
Vph1NT that compromise activation. Two sequences in a loop of
distal domain of Vph1NT prevented PI(3,5)P2-dependent activation
in vitro (Figure 3B), as well as tolerance of osmotic stress in vivo
(Banerjee et al., 2019).

These data in yeast suggest that PIP lipids can provide organelle-
specific regulation of V-ATPase. Although there is substantial
evidence linking PIPs to organelle acidification (Banerjee and
Kane, 2020), it is still not clear whether a-isoform-specific
binding to PIPs is conserved in higher eukaryotes. Finally, it is
also notable that PI(3,5)P2 plays a critical role in vacuolar
acidification in Arabidopsis, but acts on a chloride channel
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responsible for balancing electrogenic proton transport by the
V-ATPase, rather than the V-ATPase itself (Carpaneto et al.,
2017). In contrast, PI(3,5)P2 actually inhibits a chloride channel
in mammalian lysosomes, and loss of this inhibition results in
hyperacidification (Leray et al., 2022). Clearly, PIPs can exert
both direct and indirect effects on V-ATPase activity and
organelle acidification.

An entirely different type of lipid regulation of the a1 isoform
was observed in mouse models of the neurodegenerative disease
INCL (infantile neuronal ceroid lipofuscinosis). This disease arises
from loss of function of a palmitoyl transferase, CLN1, and mice
lacking CLN1 exhibited poor trafficking of the a1 isoform to
lysosomes and defective lysosomal acidification. Curiously, it was
found that CLN1 catalyzed covalent palmitoylation of cysteine 25 of
the a1 isoform. Loss of this modification perturbed the transport of
a1-containing V-ATPases to the lysosome, apparently by preventing
interactions with clathrin adaptor proteins (Bagh et al., 2017). One
puzzling aspect of this modification is that current structures of
mammalian V-ATPases containing the a1 isoform (Abbas et al.,
2020; L. Wang et al., 2020; R. Wang et al., 2020; S. Wang et al., 2020)
place cysteine 25 at some distance from the membrane. Further
work could address how palmitoylation affects V-ATPase structure
and function, as well as trafficking.

3.4 Interactions with trafficking components

As described above, different a-subunit isoforms play a major role
in directing V-ATPase complexes to their cellular destinations, so it is
not surprising that there is interplay between cellular trafficking
machinery and the V-ATPase. However, these interactions are not
simple and are still not completely understood in most cases.

V-ATPase interaction with the cytoskeleton was first reported in
1997 (Nakamura et al., 1997). Osteosclerotic mice harbor a mutation in
the a3-subunit (Scimeca et al., 2000), and V-ATPases in these mice did
not interact with cytoskeleton. As a result, the cells failed to recruit
V-ATPases to the ruffled border membrane. This finding suggested a
functional interaction between V-ATPases and the cytoskeleton. A
direct interaction between V-ATPase and microfilaments was detected
in osteoclasts and reconstituted using isolated kidney V-ATPases (Lee
et al., 1999). Later studies showed B-subunit of V-ATPases also contains
a high affinity microfilament binding site (Holliday et al., 2000),
suggesting that multiple subunits may support interactions with the
cytoskeleton. In cytolytic T Cells, knockdown of the a3 isoform reduced
interaction of cytotoxic granules with the microtubule network,
preventing their transport (Chitirala et al., 2020). In contrast to
examples of direct interaction with the actin or microtubule
cytoskeleton driving V-ATPase localization, recruitment of
V-ATPases containing the Vo a4 isoform to the plasma membrane
of epididymal clear cells appears to require depolymerization of the
actin cytoskeleton by gelsolin (Beaulieu et al., 2005). Significantly, in
each of the examples described above, the cytoskeleton is involved in
recruitment of V-ATPases to the plasma membrane. Less is known
about cytoskeletal interactions with V-ATPases in organelles such as
lysosomes and Golgi, but disassembly of V-ATPases in yeast has been
reported to require microtubules (Xu and Forgac, 2001).

The small GTPase Arf6 and its cognate GDP/GTP exchange
factor ARNO are involved in recognition of luminal pH in early
endosomes and regulation of endocytic traffic (D’Souza-Schorey
et al., 1995; Donaldson, 2003). Specifically, V-ATPase mediated
endosomal acidification is essential for the recruitment of the small
GTPase ARNO from cytosol to endosomal membranes (Maranda
et al., 2001; Marshansky et al., 2002). It was proposed that luminal
pH was sensed by the a2CT domain, generating conformational

FIGURE 3
Organelle-specific PIP lipids bind to yeast a-subunit isoforms. (A) Diagram showing organelle-specific distribution of PIP lipids PI(4)P and PI(3,5)P2 and
V-ATPases containing distinct a-subunit isoforms. (B) Stv1NT and Vph1NT structures showing binding sites for PI(4)P in the proximal end of Stv1NT (yellow) and
PI(3,5)P2 in the distal end of Vph1NT (pink).
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information that was passed through the a2NT domain to ARNO
(Hurtado-Lorenzo et al., 2006). ARNO binds to a2NT, and
Arf6 interacts with proteolipid c-subunits of the V-ATPase. Loss
of V-ATPase activity disrupts both endosomal acidification and
V-ATPase interaction with ARNO/Arf6 and ultimately, impairs
endocytic trafficking (Hurtado-Lorenzo et al., 2006). A later
study reported that the interaction between the a2-subunit of
V-ATPase and ARNO is complex, involving various binding sites
on both proteins (Merkulova et al., 2010). Homology modeling
revealed two ARNO binding sites located on the distal and proximal
lobes of a2NT. The Sec7-domain of ARNO has a major interaction
site on the proximal lobe of a2NT, whereas the PH-domain of
ARNO binds to the distal lobe of aNT. Structural studies suggest that
the two ARNO binding sites are in a close proximity to two, EG
binding sites on a-subunit but are not identical (Marshansky et al.,
2019). These ARNO binding sites are likely to be accessible in the
assembled enzyme and could help recruit ARNO to the intact
V-ATPase complex. In support of this, the intact S. cerevisiae
V-ATPase interacts with a truncated form of ARNO (Hosokawa
et al., 2013). However, the binding of ARNO to a2 may compromise
the stability of interaction between the a2-subunit and the, EG
peripheral stalks. Thus, the acidification-dependent recruitment of
ARNO to V-ATPase could be involved in regulating disassembly of
intact V-ATPase complex as suggested by the structural models
(Marshansky et al., 2019). This possibility has not been confirmed.
In addition to the a2 isoform, a1-, a3-and a4-isoforms have also been
shown to interact with ARNO in vitro (Merkulova et al., 2011),
suggesting that ARNO interactions could affect V-ATPases in
multiple cellular locales and may not be entirely isoform-specific.

The Vo domains of V-ATPases have also been implicated in
membrane fusion, and in this context, a-subunits have been reported
to interact with SNARE proteins. Initial studies (Peters et al., 2001)
indicated that Vo complexes containing Vph1, separate from V1,
could facilitate fusion between vacuoles. This initial work suggested
that Vo-mediated fusion occurred after SNARE pairing. However,
subsequent work in flies implicated a direct interaction between
SNARE proteins and the Vo a-subunit in synaptic vesicle
exocytosis (Hiesinger et al., 2005; Williamson et al., 2010). In
addition, the oc/oc mouse, which does not express the a3 isoform,
is able to load insulin-containing secretory granules, but cannot
secrete insulin from beta cells. This suggests an acidification-
independent function that could be related to vesicle fusion (Sun-
Wada et al., 2006). However, the role of Vo subcomplexes in fusion
has been questioned. Experiments in yeast showed that acidification of
vacuoles by another enzyme could support vacuole-vacuole fusion.
This indicated that acidification by the V-ATPase, not the Vo

structure itself, was important for fusion (Coonrod et al., 2013). A
later study identified an acidification-independent role of Vo a1 which
is regulated by Ca2+– calmodulin (Wang et al., 2014). In Drosophila,
calmodulin binds tightly to the aNT domain of a1 isoform in a
calcium-dependent manner; this interaction was found to be critical
for the regulation of the a1 subunit in neurons (Zhang et al., 2008).
Bodzeta et al. (Bodzeta et al., 2017) argued that the V-ATPases are
essential for neurotransmitter loading, but not for synaptic vesicle
fusion. Thus, there is substantial evidence that suggests that the Vo

subcomplex may be involved in certain membrane fusion events, but
it is clear that more work is required to confirm the mechanism and
the relationship to proton transport.

3.5 Defining the role of aNT domains in
isoform-specific stress responses

Because of the complexity of V-ATPase structure, regulatory
mechanisms have often been defined and investigated individually.
However, it is important to recognize that V-ATPase a-subunit
isoforms, and particularly the aNT domains, have the capacity to
respond to multiple different regulatory inputs. To narrow down the
regions of yeast Stv1NT and Vph1NT involved in different modes of
regulation, chimeras of Vph1NT and Stv1NT were constructed by
swapping the proximal and distal domains between the two isoforms
(Tuli and Kane, 2023). Biochemical characterization of these two aNT
chimeras in vitro indicated that RAVE binding is likely encoded in the
proximal end of Vph1NT. However, binding to phosphoinositide lipids
proved to be complex. Specifically, the SPVD (Stv1 proximal Vph1NT
distal) chimera bound more tightly to both PI4P and PI(3,5)P2 than
either Stv1NT or Vph1NT, suggesting that multiple aNT sequences can
be involved in phosphoinositide binding. When the chimeric aNTs
were expressed in yeast as part of full-length a-subunits containing
Vph1CT, the SPVD chimera supported wild-type activity in isolated
vacuoles, even though this chimera lacks RAVEbinding (Tuli andKane,
2023). In yeast, V-ATPases are regulated both in response to shifts in
carbon source, by reversible disassembly, and in response to high
extracellular pH, which requires PI(3,5)P2 binding (Kane, 1995; Li
et al., 2014a). The SPVD chimera proved to respond slowly to shifts in
carbon source, but after an initial lag, grew more rapidly than wild-type
cells after a shift to high extracellular pH (Tuli and Kane, 2023). These
results highlight the presence of multiple regulatory inputs targeting
a-subunit isoforms and the physiological importance of integrating
these inputs in response to different stress conditions.

The in vitro approaches used to identify regulatory features in
the two yeast aNT isoforms could help also define how human aNT
isoforms drive distinct modes of regulation. aNT isoforms of all
types are constrained by mechanistic demands of V-ATPase
function, including binding to two distinct peripheral stalks; this
likely accounts for the high degree of predicted structural similarity
in Figure 4A. However, the aNT isoforms also encode critical
isoform-specific regulatory information. The multisequence
alignment of the four human aNT isoforms (Figure 4B) reveals
regions of significant sequence divergence that can be mapped onto
the conserved backbone structure and ultimately linked to different
regulatory mechanisms. For example, two areas of sequence
variability are indicated in the alignment and the structure that
correspond to the regions where PIP lipids bind to Stv1 (proximal)
and Vph1 (distal) shown in Figure 3B. The four aNT isoforms could
be expressed in E. coli and tested for PIP-specific liposome binding,
as reported for Stv1 and Vph1. If differences in PIP binding are
observed for the aNT isoforms in vitro, these variable regions could
be targeted for mutagenesis to determine the amino acids involved.
Similarly, specificity for rabconnectin-3 subunit isoforms could be
assessed using expressed proteins or other techniques like the yeast
two-hybrid assay. As individual isoform-specific regulatory
interactions emerge, they could be further dissected by
construction of chimeric aNT domains. Through these
experiments, the hierarchy of regulatory interactions can be
mapped onto the structures of a-subunit isoforms and
informative tools for in vivo analysis of isoform regulation can be
made available.
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4 Future perspectives for a-subunit
isoforms

It has long been recognized that V-ATPase activity could be an
important therapeutic target. Beyond the genetic diseases arising
from loss of V-ATPase a-subunit isoforms described above, aberrant

V-ATPase activity is very important in cancer (Stransky et al., 2016;
Pamarthy et al., 2018). The a3 and a4 isoforms have been shown to
relocalize to the plasma membrane of breast cancer cell lines from
humans and mice, respectively (Capecci and Forgac, 2013; Cotter
et al., 2016; McGuire et al., 2019). The essential role of
a4 relocalization in tumor growth and metastasis was recently

FIGURE 4
Human aNT isoforms exhibit similar structures but variation in sequences. (A) An overlay of the cryo-EM structure of the a1NT (coral) and
Phyre2 generated homologymodels of the a2NT, a3NT, and a4NT (yellow, orchid and turquoise, respectively). a2NT, a3NT, and a4NT aremodeled on the
mammalian rat brain V-ATPase (Abbas et al., 2020). The proximal end, distal end, and the point at which aCT binds (to membrane) are indicated. Colored
circles indicate the membrane-oriented loops that would correspond to the loops containing PIP binding sites in yeast. (B) Multiple sequence
alignment of the human aNT isoforms. Sequences contributing to the proximal end are highlighted in light orange; the distal end sequences are in light
green. Regions of the sequence that would correspond the circled loops in (A) are underlined.

Frontiers in Molecular Biosciences frontiersin.org10

Tuli and Kane 10.3389/fmolb.2023.1168680

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1168680


reinforced by studies of breast cancer xenografts in mouse model (Su
et al., 2022). In ovarian cancer, the a2 isoform is particularly
important (Kulshrestha et al., 2015). These and other results
suggest that understanding why these a-subunit isoforms are
overexpressed in cancer cells and how they direct V-ATPases to
the plasma membrane could facilitate therapeutic targeting. In
addition, future therapeutic approaches could also target the
distinct regulatory features of V-ATPases containing these isoforms.

V-ATPase inhibitors are also very effective at blocking viral
replication (Muller et al., 2011; Yeganeh et al., 2015). Although the
toxicity of V-ATPase inhibitors has been viewed as a major
impediment to therapy, it was possible to block viral replication
in human lung epithelial cells with bafilomycin A1 at very low
concentrations where lysosomal acidification remained intact
(Yeganeh et al., 2015). Such studies suggest it may be possible to
target V-ATPase subpopulations, even with existing drugs that are
known to have broad specificity for V-ATPase isoforms, but there is
no doubt this will be difficult. Alternatively, it may also be possible to
target V-ATPase regulators that are particularly important for
certain subpopulations. For example, a recent CRISPR screen
demonstrated that knockout of the rabconnectin-3 subunit
WDR7 was highly effective in preventing influenza entry (Li
et al., 2020).

With the advent of V-ATPase structures and genomic studies
that identify the full set of V-ATPase isoforms, as well as a growing
collection of isoform-specific regulators, new opportunities will
emerge for therapeutic targeting of specific V-ATPase
subpopulations. Taking full advantage of these opportunities
requires further research into the distribution of V-ATPase
isoforms and their ability to functionally compensate for each
other. Given their diversity and established role in regulation,
a-subunit isoforms could directly provide a route to targeting
V-ATPase sub-populations responsible for disease processes.
However, if a-isoform localization varies significantly among
different cell types, there may well be unexpected side effects. In
addition, compensation among a-subunit isoforms has already been
observed and could confound effective inhibition aimed at
individual isoforms. Because there are isoforms of several
V-ATPase subunits in mammalian cells, it may also be possible
to target tissue- or cell-specific combinations of these isoforms. This
will require more detailed analysis of V-ATPase isoform

composition in distinct cell types and their localization within
those cell types. However, these data should be accessible with
current mass spectrometry techniques. Knowledge of isoform
composition in different locales could be complemented by
continued structural work to visualize V-ATPases with different
isoform composition at high resolution or in complex with different
regulators. Such studies will open additional opportunities for
structure-based drug design. In summary, highly isoform- or cell-
specific V-ATPase regulators could be therapeutic targets that would
avoid the toxicity of complete V-ATPase inhibition. These
directions represent the next Frontier in exploring the functional
versatility and therapeutic potential of V-ATPase a-subunits.
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