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Collectively, rare genetic disorders affect a substantial portion of the world’s
population. In most cases, those affected face difficulties in receiving a clinical
diagnosis and genetic characterization. The understanding of the molecular
mechanisms of these diseases and the development of therapeutic treatments
for patients are also challenging. However, the application of recent
advancements in genome sequencing/analysis technologies and computer-
aided tools for predicting phenotype-genotype associations can bring
significant benefits to this field. In this review, we highlight the most relevant
online resources and computational tools for genome interpretation that can
enhance the diagnosis, clinical management, and development of treatments for
rare disorders. Our focus is on resources for interpreting single nucleotide variants.
Additionally, we present use cases for interpreting genetic variants in clinical
settings and review the limitations of these results and prediction tools. Finally, we
have compiled a curated set of core resources and tools for analyzing rare disease
genomes. Such resources and tools can be utilized to develop standardized
protocols that will enhance the accuracy and effectiveness of rare disease
diagnosis.
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1 Introduction

The recent major advances in genome sequencing and analysis technology have opened
the road to exome and genome sequencing (ES/GS) as a common diagnostic tool for
individual patients (Turro et al., 2020; 100,000 Genomes Project Pilot Investigators et al.,
2021). Especially in the field of rare genetic diseases, the use of ES/GS has brought
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unprecedented progress, and holds the potential for further large-
scale impact in the clinical setting, allowing early diagnosis and early,
precisely tuned, treatment (Pogue et al., 2018; Liu et al., 2019;
Claussnitzer et al., 2020; Bonne, 2021). Presently, the definition
of a rare disease (RD) varies among different regions. In Europe, it is
defined as a condition affecting not more than 1 person per 2,000 in
the European population (Regulation Orphan Medicinal Product,
2000). In the United States, it is defined as a condition that affects
less than 200,000 people in the country (U.S. Food and Drug
Administration, 2022), while in Japan it is defined as affecting
fewer than 50,000 people, or one in 2,500 (Hayashi and Umeda,
2008). Collectively, RDs represent a significant burden to health and
society, as their estimated prevalence is approximately 3.5%–5.9% of
the worldwide population, resulting in about 30 million people
affected in Europe and 300 million worldwide (Nguengang
Wakap et al., 2020). Approximately 7,000 different RDs have
been identified to date, even though the exact number is debated
(Hartley et al., 2018; Ferreira, 2019; Haendel et al., 2020), of which an
estimated 70% are genetic (with 4,418 involved genes identified so
far, November 2022), whilst the remaining are the results of
infections, allergies and environmental causes. Most likely, the
number of involved genes is bound to increase, as rapidly
increasing quantities of exomic data are analyzed in the clinic
(Boycott et al., 2018; 2019). From 2010 to 2020, the diagnosis of
RDs saw a remarkable increase, with 886 new RDs being identified.
During this period, the total number of genes associated with RDs
grew from approximately 2,400 to over 4,000, and the number of
new orphan drugs approved by the US and/or the European Union
rose to 438 (Monaco et al., 2022).

Due to the very status of being rare, knowledge, research,
medical expertise, and therapeutic opportunities for each
particular RD are often extremely limited, and geographically
sparse. Along with technological advances, the public and
scientific awareness has been growing, and the knowledge on
RDs is going to massively benefit from large scale data collection,
integration, and sharing (Hartley et al., 2020). Many international
initiatives and consortia (Gainotti et al., 2018; Azzariti and Hamosh,
2020; Bonne, 2021; Baxter et al., 2022; Laurie et al., 2022; Monaco
et al., 2022) aim to significantly increase the overall percentage of RD
patients with a confirmed (molecular) diagnosis, estimating that
thousands of RD genes and disease mechanisms still remain
undiscovered (Frésard and Montgomery, 2018; Boycott et al.,
2019; Hartin et al., 2020). Exome Sequencing (ES) has been the
most significant technology driving progress in the discovery and
diagnosis of RDs over the past decade. While some RD diagnoses
may require the integration of multiple omics data (Frésard and
Montgomery, 2018; Marwaha et al., 2022), it is expected that ES will
continue to play a crucial role in future efforts (Boycott et al., 2019).

The sheer re-analysis of exomic data after 1–3 years updating of
the major disease variants and disease-gene association databases is
reported to have increased the diagnosed cases by over 10% (Wenger
et al., 2017; Setty et al., 2022). Remarkably, a further improvement in
the yields could be obtained by reanalysing the data in collaboration
with the clinician who made the diagnosis (Basel-Salmon et al.,
2019). The contribution of research laboratories has provided an
additional increase, aided by the application of novel computational
and analysis tools (Eldomery et al., 2017). Thus, the fundamental
step in ES data processing is the interpretation of the identified

variations, i.e., the estimate of their likelihood of having a causative
role in contributing to the disease. Indeed, RD-affected individuals
often carry multiple variations in the gene(s) associated with the
disease, with only a fraction of them being actually pathogenic
(Summers, 1996). Criteria for the objective classification of variants
into a five-tier system (pathogenic/likely pathogenic/uncertain
significance/likely benign/benign) have been provided to the
biomedical community, together with scoring rules that weight
each criterion used to classify the variants. In this context,
computational tools have a role in supporting the evidence
framework for a benign or a pathogenic assertion (Richards
et al., 2015).

This paper aims to provide an updated overview of the most
frequently adopted and publicly accessible online resources and
computational tools for predicting genotype-phenotype associations
in RDs. In the first part of this review, we focus on the main
databases collecting genes and variants associated with RDs. In
addition, we describe the most popular computational methods for
gene and variant prioritization, showing how information derived
from molecular databases and tools can improve the diagnosis of
RDs in clinical settings. Finally, we discuss the central role of FAIR
data sharing in boosting research and diagnosis in the field and
provide future perspectives.

2 Online resources and databases for
rare diseases

Large-scale sequencing efforts on healthy individuals and
patients allowed the collection of large databases of genetic
variants and their association with human phenotypes. Based on
their content and purposes, two groups of online resources for RDs
can be identified: one group includes databases that define
phenotype ontologies and controlled vocabularies for the
description and classification of human diseases and phenotypes;
the second group includes databases collecting the frequency of
variants in the human population and their relationship with genetic
disorders. Here, we summarize the most popular resources for
medical diagnosis, focusing specifically on those related to RDs.

2.1 Disease and phenotype classification
databases and ontologies

Nowadays, different resources for the classification of RDs are
available. In particular, specific ontologies based on controlled
vocabularies are defined for the description of human disorders.
This enables a standardized description and classification of RDs,
thereby enhancing and supporting data sharing. A standardized
medical terminology was defined for developing the Medical Subject
Headings (MeSH), an organized collection of hierarchical trees with
increasing specificity of the downstream terms (Rogers, 1963). Later,
ontologies based on diagnostic terms were created. Among them, the
International Classification of Diseases (ICD), which represents the
healthcare classification system maintained by the World Health
Organization (World Health Organization, 2019), and the
Systematized Nomenclature of Medicine (SNOMED), which
implements a directed acyclic graph architecture for the
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automatic exploration of relationships among terms. In the 80s, the
US National Library of Medicine created the Unified Medical
Language System (UMLS) to harmonize the various classification
systems (Bodenreider, 2004). ULMS, with its well-defined semantic
relationships, is widely recognized as one of the most comprehensive
resources for determining disease similarity and for the
harmonization of RD data (Zhu et al., 2020). The increasing
popularity of controlled vocabularies for the classification of
human disorders further stimulated the creation of disease- and
phenotype-oriented ontologies. The Human Phenotype Ontology
(HPO) is a standardized vocabulary describing phenotypic
abnormalities (Robinson et al., 2008). It is structured as a
directed acyclic graph, in which a child node corresponds to a
more specialized term with respect to its parent. Currently, HPO
contains over 13,000 terms and over 156,000 annotations to
hereditary diseases. The Disease Ontology (DO) is an open
source ontology for the integration of biomedical data associated
with human disease. The DO integrates concept terms from
SNOMED, ICD, MeSH, and UMLS, using various semantic
similarity measures (Schriml et al., 2012). The current version of
DO (August 2022) collects more than 11,000 disease terms divided
in 6 major classes. Mondo is the disease ontology of the Monarch
Initiative (Shefchek et al., 2020) which integrates genotype-
phenotype data across different species. The Mondo ontology is
an open, community-driven resource which currently collects
~44,650 terms divided in three main categories (disease
characteristic, disease or disorder, disease susceptibility). In
Mondo, human diseases are grouped in 36 classes. Biomedical
ontologies serve various purposes, such as: 1) systematizing the
description of biomedical concepts for literature and clinical data
recording (e.g., MeSH), 2) capturing individual clinical phenotypes,
even in the absence of a recognized disease, and providing a
corresponding classification in animal models (e.g., HPO), and 3)
categorizing nosological entities for epidemiological and clinical
management purposes (e.g., ICD). There is often overlap between

these classifications, with some incorporating features from others.
These ontologies of concepts are also utilized to annotate molecular
data databases for the purpose of storing, analyzing, and exploring
genotype-phenotype relationships.

The Online Mendelian Inheritance in Man (OMIM) database was
created in the 60s byMcKusick to systematically identify the relationship
between disease and genetic components (Amberger et al., 2009). In
November 2022, OMIM collected 7,301 phenotypes, ~85% of which
were associated with at least one of the 4,674 listed genes. Focusing on
the classification of rare human disorders, Orphanet is a unique resource
that provides high-quality information for defining a specific
nomenclature for RD (Rath et al., 2012). The description of RDs in
Orphanet is based on the Orphanet Rare Disease Ontology (ORDO), a
structured vocabulary capturing relationships between diseases, genes,
and other relevant features. TheNovember 2022 version of theOrphanet
database collects 6,918 RDs classified in 33 major groups. All groups
include genetic-caused RD, except for the “toxic effects” group. The
fraction of rare genetic diseases across the remaining 32 major classes
ranges from 99.6% of the “rare inborn errors of metabolism” to the lowest
percentage of “infectious” diseases. The most abundant types of rare
genetic disorders are those having “developmental” and “neurologic”
effects (Figure 1A). Overall, RDs with genetic origin represent ~73% of
the total (Figure 1A, inset). In terms of RD-associated genes, Orphanet
collects more than 4,400 genes. Several of those genes are found to be
associated with more than one RD class. An index of similarity (Jaccard
index), based on the fraction of shared genes, has been calculated
between each pair of RD groups, and is plotted in Figure 1B. The
groups of “neurological” and “developmental” RD are sharing the
highest number of disease-associated genes, with a Jaccard index
~0.37. The full list of the fraction of genetic RD and associated genes
is reported in Supplementary Table S1.

In terms of enzymatic function, out of 5,057 genetic RDs reported
in Orphanet (Supplementary Table S1), 1,596 (31.6%) are associated
with enzymes, distributed among all the seven major enzyme classes
(Table 1). The most represented enzyme classes are Transferases,

FIGURE 1
Analysis of the Orphanet database composition. (A) Fraction of genetic and nongenetic RDs in the different classes. (B) Plot showing the fraction of
genes shared by each RD-class pair. Genes and Orphanet codes can be found to be associated with multiple RD classes.
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Hydrolases, and Oxidoreductases. Orphanet RDs can be linked to their
corresponding enzyme metabolic pathways through the Reactome
database, a comprehensive resource that catalogs all human
metabolic reactions in 2,580 hierarchically organized pathways, with
27 main roots. Table 1 shows, for each enzyme class, the number of
enzymes involved in Orphanet RDs, the number of Orphanet diseases
that involve those enzymes, their Reactome roots and pathways.

The Disease And Reactome (DAR) database (Savojardo et al.,
2022) provides a wealth of information on enzymes, including their
relationships with Reactome pathways, molecular interactions
within the pathways, and tissue expression levels as recorded in
the Human Protein Atlas (Uhlén et al., 2015).

In general, the evaluation of the evidence supporting gene-
disease relationships is a critical factor for an accurate diagnosis
(Strande et al., 2017). To prevent mistakes in the diagnostic process,
the curators of the Clinical Genome Resource (ClinGen) (Rehm
et al., 2015) defined evidence-based Standard Operating Procedures
for the classification of clinically relevant genes based on the
presence of pathogenic variants (Section 1.3). Gene-disease
relationships are classified in six groups that qualitatively
describe the strength of the supporting evidence. The default
class assigned to genes without any detected disease-causing
variants is “No Reported Evidence”. Supporting evidence for gene-
disease relationships is classified into four categories: “Limited”,
“Moderate”, “Strong” and “Definitive”. When both supporting and
conflicting evidence are present, the gene-disease relationship is
classified as “Contradictory”. Within the ClinGen framework, the
systematic review of genetic, clinical and experimental evidence,
reported in databases such as OMIM and Orphanet, is used to assign
one of the categories mentioned above to the reported gene-disease
relationship.

2.2 Gene and protein network databases

A single gene defect is the most common origin of rare genetic
diseases collected in the databases mentioned above. However, to
investigate the molecular mechanisms underlying a RD, it is
fundamental to understand and contextualize the resulting

phenotype. At the protein level, defining the macromolecular
complexes and pathways perturbed by the defective gene can be
a useful strategy to understand the pathology itself and to intervene
to restore the healthy phenotype.

A genetic variant can impact protein function and, depending
on the central or marginal role of the mutated node inside a protein-
protein interactions network, also the capability of the network to
find alternative paths in the edges map. Changes in specific
interactions can drastically perturb cellular networks and
generate disease phenotypes (Barabasi et al., 2011; Menche et al.,
2015).

Molecular interactions, mostly protein-protein interactions
(PPIs), are annotated and archived, in structured formats, into
several public resources. The major public databases collecting
molecular interaction data can be divided into primary,
predictive and meta-databases. Primary databases collect only
manually curated molecular interactions, extracted from peer-
reviewed journals, such as the IMEx Consortium resources
(MINT (Calderone et al., 2020), IntAct (Del Toro et al., 2022),
DIP (Salwinski et al., 2004), MatrixDB (Clerc et al., 2019)), and
BioGRID (Oughtred et al., 2021). Meta-databases integrate data
coming from primary databases, such as HiPPIE (Alanis-Lobato
et al., 2017) and mentha (Calderone et al., 2013). Predictive
databases use computational methods to predict PPIs (De Las
Rivas and Fontanillo, 2012), such as STRING (Szklarczyk et al.,
2021), IID (Pastrello et al., 2020) or ProfPPIdb (Tran et al., 2018).

In the panorama of molecular interaction resources, only the
IMEx Consortium databases annotate interaction associated
features, such as binding sites involved in the interaction or
mutation effects (Porras et al., 2020). In particular, the IMEx
mutation dataset contains annotations of experimental evidence
where mutations have been shown to affect a protein interaction
(~75,000 records) (IMEx Consortium Curators et al., 2019). The
dataset can be used to map selected pathogenic variants to manually
curated PPIs and to understand the effect of a specific variant on the
interactions at protein-protein interface. Moreover, from the IntAct
datasets, it is possible to download a RD specific dataset of molecular
interactions extracted from literature. The dataset is enriched with
experimentally proven impact of clinical mutations on interactions,

TABLE 1 For each enzyme class, the table lists the number of enzymes associated with Orphanet RDs, the number of the corresponding Orphanet diseases, and the
number of the corresponding Reactome roots and pathways. The data were derived from DAR database (Savojardo et al., 2022) that integrates gene-disease
associations reported in UniProt, Monarch, and ClinVar.

Enzyme class Enzymesa Orphanet diseasesb Reactome roots Reactome pathways

All classes 1,218 1,596 27 1,098

EC 1: Oxidoreductases 186 259 20 209

EC 2: Transferases 474 738 26 799

EC 3: Hydrolases 401 611 27 592

EC 4: Lyases 63 81 15 93

EC 5: Isomerases 40 62 17 78

EC 6: Ligases 58 76 7 28

EC 7: Translocases 44 77 11 36

aIn the distribution among classes, multiclass enzymes are counted multiple times.
bIn the distribution among classes, diseases associated with enzymes from different classes are counted multiple times.
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and also with the non-clinical mutations which are found to impact
protein functionality. So far, the dataset contains over
7,900 interactions involving about 2,500 interactors. The dataset
can be visualized and filtered in the IntAct result page, or in
Cytoscape (Shannon et al., 2003), using the IntAct App
(Ragueneau et al., 2021).

Disease specific biological networks can also be constructed or
integrated with data coming from signaling pathways databases such
as Signor (Lo Surdo et al., 2023), WIKIPathway (Martens et al.,
2021) or OmniPath (Türei et al., 2016). They can then be imported
into Cytoscape by using resource specific CytoscapeApps (Kutmon
et al., 2014; Ceccarelli et al., 2020; De Marinis et al., 2021), to gain
more insight into the molecular mechanisms involved in the disease.
Moreover, pathway resources such as KEGG (Kanehisa et al., 2017)
and Reactome (Jassal et al., 2020) databases are very important to
discover whether some disease-associated subnetworks are enriched
for a particular functional pathway.

By the combination of PPI with genotype-phenotype
relationships, functional similarities have been used to generate
specific disease networks defining similarity across different
human disorders (Goh et al., 2007; Menche et al., 2015;
Buphamalai et al., 2021). Such networks have been shown to be
useful for studying the biological mechanisms of diseases and for the
development of gene prioritization tools (Zhang and Itan, 2019).
Some examples of gene prioritization tools, specific for RDs, will be
discussed in Section 2.2.

2.3 Databases of variants

The Human Genome Variation Society (HGVS) maintains
comprehensive lists of databases focused on variations, from
locus-specific mutation databases to SNP databases, to
chromosomal variations, to other mutation databases, including
nonhuman and artificial mutations. However, given the high
number of resources, it is nearly impossible to perform an
exhaustive description of all those that are available. We will
therefore focus on selected, curated and widely used resources.
None of them is specifically dedicated to RDs; however, it is
possible to collect data and information on RD-associated
variations.

In general, variant databases can be divided into two groups,
according to whether they focus on the variant’s frequency across
the human populations or on their pathogenic effect.

The variant’s frequency can be derived from sequencing
experiments on a large set of individuals. For example, the
1,000 Genome project, started in 2008, collected and sequenced
the genomes of 2,504 individuals from 26 populations worldwide,
characterizing more than 88 million variants, including >99% of
SNP variants with a frequency higher than 1% (1000 Genomes
Project Consortium et al., 2015). The datasets and the related
analyses have been freely shared with the scientific community
by setting up the International Genome Sample Resource (IGSR)
(Fairley et al., 2020) to ensure their future usability and accessibility.
Data about these variants can be explored through the Ensembl
Variation database (Hunt et al., 2018), a project aimed at
automatically annotating the genomes, integrating biological data
and making all information accessible via a website. Those variants

were grouped into subsets, based on the origin of the individual and
on the frequency of occurrence. In the same period, the UK10K
project (UK10K Consortium et al., 2015) sequenced the whole
genomes of about 10,000 individuals, characterizing over
24 million novel sequence variants. That information was made
available via a dedicated website and via the European Genome-
phenome Archive (EGA) (Freeberg et al., 2022), a resource for
permanently archiving and sharing personally identified genetic,
phenotypic and clinical data, obtained by biomedical research
projects. Another analogous study is the “All of Us’’ research
program, funded by NIH, sequencing 100,000 genomes from
ethnic groups underrepresented in previous projects (All of Us
Research Program Investigators et al., 2019). While the “All of
Us” project was of broader scope, the 100,000 Genomes Project,
focused on patients with an RD (161 disorders covering a broad
spectrum of RDs were present) or with one among 20 different
common cancer types (Turnbull et al., 2018). A pilot study,
conducted on the genomes of 4,660 people, increased the
diagnosis number for 25% of participants. Among them, 14% of
the cases were new diagnoses based on variants found in regions
usually missed in conventional, non-whole genomic tests
(100,000 Genomes Project Pilot Investigators et al., 2021).

A widely used database collecting variant frequency data is
the Genome Aggregation Database (gnomAD). The gnomeAD is
the successor to the Exome Aggregation Consortium (ExAC), a
project that was launched to aggregate and harmonize exome and
genome sequencing data from a variety of large-scale sequencing
projects (Karczewski et al., 2020). The National Center for
Biotechnology Information (NCBI) at the NIH hosts several
resources for investigating and understanding human
variations. dbSNP and dbVar are two freely available
databases, the former hosting a broad collection of small
genetic polymorphisms (SNP, deletion/insertion
polymorphisms, etc.), and the latter hosting a broad collection
of large variants (>50 bp) (Lappalainen et al., 2013).

The second class of variant databases collect information
about their clinical significance and their association with
human disorders. To this purpose, the American College of
Medical Genetics and Genomics and the Association for
Molecular Pathology (ACMG/AMP), developed specific
guidelines, where variants are classified into five types:
“pathogenic”, “likely pathogenic”, “uncertain significance”,
“likely benign”, and “benign” (Richards et al., 2015). On the
one hand, “pathogenic” and “likely pathogenic”, variants are
classified by using multiple criteria grouped in four weighted
categories: “very strong”, “strong”, “moderate”, and “supporting”.
On the other hand, “likely benign”, and “benign” variants are
classified using a combination of rules grouped in three weighted
categories: “stand-alone”, “strong” and “supporting”. All previous
criteria are based on eight categories of information, including
among them data from population studies and computational
predictions. If a variant does not meet any criteria or the evidence
for benign and pathogenic is conflicting, the class assigned by
default is “uncertain significance”. As recently shown (Tavtigian
et al., 2020), the ACMG/AMP guidelines are compatible with a
quantitative Bayesian formulation, whose scaling as odd of
pathogenicity allows an empirical calibration of the strength of
the reported evidence.
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A reference database, collecting annotated genetic variants by
adopting the ACMG/AMP guidelines, is ClinVar (Landrum et al.,
2020) which represents one of the main sources of information for
gene classification in the ClinGen database (Section 1.1). ClinVar is a
freely accessible, public archive, collecting reports of variants found
in patient samples, assertions about their clinical significance, and
other data, including the availability of supporting evidence. ClinVar
thus allows users to infer relationships between human variations
and the health status of the patients. Each variation has its own
accession number, and, if multiple submitted records about the same
variation/condition pair are present, they are aggregated under a
single accession number. The adoption of a single variant identifier
allows users to review all data submitted for a single variant,
regardless of the condition for which it was interpreted. In fact,
ClinVar neither curates content nor modifies interpretations
associated with a single record. The alleles are reported according
to the HGVS standards. Focusing on protein variants, the UniProt
consortium is releasing a curated file reporting a list of protein
variants, grouped in 3 classes: “Disease”, “Polymorphism” and
“Unclassified” (humsavar UniProt, 2023). In the humsavar file, an
OMIM identifier is associated with each pathogenic variant.
Alternatively, the Human Gene Mutation Database (HGMD) is a
proprietary database of mutations in human genes, associated with
inherited diseases, which contains both inherited and somatic
mutations (Stenson et al., 2020). The GWAS Catalog, supported
by a collaborative initiative between the National Human Genome
Research Institute and the EMBL-EBI, is another popular freely
available database of SNP-trait associations, which can be easily
integrated with other resources (Sollis et al., 2023).

The collection and curation of several variant databases is
supported by ELIXIR, an intergovernmental organization that
brings together bioinformatics resources for life sciences from
across Europe (https://elixir-europe.org/). For example, the
European Variation Archive (EVA) (Cezard et al., 2022) is an
open-access database of all types of genetic variations (SNP, large
structural variants, observed in germline or somatic sources) from
all species. Submitted variants (in Variant Call Format, VCF) are
merged, normalized and annotated for functional consequences and
to determine allele frequency values in a study-specific manner.
Human variants are also exchanged with dbSNP and other NCBI
resources. DisGeNet (Piñero et al., 2020) is another database that
integrates information on human gene-disease associations and
variant-disease associations from different repositories. The data
are annotated with controlled vocabularies and community-driven
ontologies, and several original metrics are provided to assist the
prioritization of genotype–phenotype relationships. Another
ELIXIR core resource collecting information about variation is
Ensembl Variation (Hunt et al., 2018), a resource linked to the
Ensembl Genome Browser. It stores variants found in many species
(including human) and, where available, associated diseases and
phenotype information. Variant data are imported from a variety of
sources (e.g., dbSNP) and subjected to a quality control process.
They are then classified and their consequences predicted.
Moreover, variant sets are created to help people retrieve a
specific group of variants from a particular dataset. For human
data, the linkage disequilibrium is also calculated for each variant, by
population. A list of resources and databases for RD cited in this
paragraph is reported in Supplementary Table S2.

3 Tools for rare disease genome
interpretation

3.1 Automatic variant calling pipelines

The analysis of next-generation sequencing (NGS) experiments
requires substantial bioinformatics resources. During the last years,
a variety of analytical tools have been developed for the detection of
genetic variants. Such tools assist all steps of the variant calling
process, including quality control and trimming, alignment to the
reference genome, identification, and annotation of SNVs and short
indels. Although the Genome Analysis ToolKit (GATK) Best
Practices guidelines define standard procedures for setting up a
variant analysis pipeline, selecting the best approach among the
variety of tools for NGS data processing can still be challenging. To
overcome the issue and simplify the variant calling process, several
“ready-to-use” bioinformatics pipelines to process ES and GS data
have been made available. Some of them include: fastq2vcf (Gao
et al., 2015), SeqMule (Guo et al., 2015), ExScalibur (Bao et al., 2015),
Appreci8 (Sandmann et al., 2018), JWES (Ahmed et al., 2021),
OVarFlow (Bathke and Lühken, 2021) and the recent DeepVariant
(Poplin et al., 2018) that integrates a deep-learning-based variant
caller. Most of those pipelines integrate many variant calling tools to
increase sensitivity, but they are command-line applications to be
installed on local servers. Alternatively, web-based options are
available, e.g., Maser (Kinjo et al., 2018), CSI NGS Portal (An
et al., 2020), and the most popular Galaxy (Afgan et al., 2018).
Recently, seqr, a web tool for the analysis of rare disease genomes,
has been made available by the Broad Institute (Pais et al., 2022).
They are open-source platforms that provide a user-friendly
graphical interface, improving the accessibility to computation
analyses of genomic data. In particular, Galaxy users can freely
create custom workflows or find already existing workflows,
available on Galaxy Toolshed (Blankenberg et al., 2014), which
can be run on public Galaxy servers. The disadvantages of using the
web-based options are the limited amount of data that can be
uploaded, the CPUs time, and the limitations on some tools on
the public Galaxy platforms. However, Galaxy pipelines can also be
run on a local Galaxy installation, or on a paid cloud infrastructure,
e.g., Amazon cloud (AWS), using CloudMan (Afgan et al., 2010).
Terra is another example of a web- and cloud-based platform,
providing a compute environment to run optimized pipelines on
Google Cloud. Galaxy, Terra, and other analysis components are
integrated in a unified environment for data analysis and
management, AnVIL (Schatz et al., 2022), designed to manage
and store genomics data, enable population-scale analysis, and
facilitate collaborative large-scale research projects. Nevertheless,
“best practices” for variant calling in clinical settings, should be
considered before choosing the most appropriate sequencing
strategy, and the most reliable combination of tools for read
alignment/preprocessing, variant calling and filtering (Koboldt,
2020).

Furthermore, to ensure the reproducibility of complex
bioinformatics analysis, different workflow languages have been
used to develop specific data analysis pipelines. The NextFlow
core community (Ewels et al., 2020) collected a curated set of
optimized procedures for the analysis of genomic data specific
for rare disease. Similar projects include Dockstore (O’Connor
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et al., 2017), which provides containerized tools and workflows,
currently supporting 4 different languages: the Workflow
Description Language (WDL), Common Workflow Language
(CWL), Nextflow, and Galaxy Workflows (GWs). Moreover,
several workflows accessible on Dockstore can be easily launched
in web-based platforms, such as Terra. These workflow languages
are designed to handle some aspects of computational workflows,
such as resources, software, and execution of analysis steps. Among
those, Snakemake (Köster and Rahmann, 2012) and Nextflow (Di
Tommaso et al., 2017) are commonly used for developing new
research pipelines, while WDL and CWL workflows are preferred
for large-scale projects (Reiter et al., 2021). Recently, a specific
pipeline for the analysis of rare disease genome has been made
available in NextFlow (Ewels et al., 2020).

Most of the above semi-automatic pipelines help streamline the
generation of variant lists (in vcf format), but lack the downstream
annotation and filtering steps that are necessary to identify disease-
causing variants. To this end, different data-warehousing solutions
to store genomic variants, along with the relevant genomic
annotations, were deployed to allow a flexible and efficient data
exploration. An example is GEMINI (Paila et al., 2013) and
OpenCGA that supply the platform and the analysis framework
to build customized genomic databases, to efficiently store data to be
queried and visualized. A list of tools for variant calling and
annotation is reported in Supplementary Table S3.

3.2 Gene prioritization tools

The objective of gene prioritization is to rank a large list of
potential candidate genes based on their relevance for a disease. The
prioritization algorithms identify the most promising genes, as to
their association to the molecular basis of a given disease and/or a
specific phenotype, for defining a therapeutic and/or diagnostic
procedure. From the experimental point of view, the high-
throughput techniques reduced the costs for generating a high
amount of information about gene mutations. On the other
hand, the identification of real links between genes and diseases
is still a time- and money-consuming task. Therefore, the help of
computational tools to reduce the number of genes to be investigated
is strongly needed. Beyond the assumption that one gene codes for
one function, the possibility that defects of one gene may be related
to multiple diseases is now taken into account. At the same time,
more genes can be involved in a given disease. In fact, a given
metabolic pathway is composed of several protein functions, a defect
in any of which may result in the pathway failure. Computational
tools for gene prioritization use different sources of information to
rank the candidate genes. Possible features are direct experimental
data on gene sequences, mutations, expression (co-expression),
gene-gene and protein-protein interactions, as well as more
indirect evidence as ontologies, literature, information derived by
model organisms. Different types of tools may differ by the focusing
level (e.g., disease-specific or not), by the applied methodology (e.g.,
text-mining, similarity profiling, network analysis), by the approach
to select the best candidate genes (e.g., ranking or filtering into
smaller subsets), by the assumptions (i.e., genes may be directly or
indirectly associated with a disease), or simply by the type of
experimental evidence used for the analysis. Several works list the

available tools on the basis of the state-of-the-art and classification
applied (Moreau and Tranchevent, 2012; Piro and Di Cunto, 2012;
Gill et al., 2014; Zolotareva and Kleine, 2019; Cabrera-Andrade et al.,
2020; Jacobsen et al., 2022; Yuan et al., 2022). For instance, Jacobsen
et al. applied phenotype-driven methods to improve diagnostic
yields for RD, and listed 16 freely available tools (Jacobsen et al.,
2022). Zolotareva and Kleine listed 14 tools, classifying them
according to strategies, approach types, interfaces, input, and the
types of evidence sources (Zolotareva and Kleine, 2019). Smedley
and Robinson compared 7 tools and summarized their features in
terms of exome input, types of variants analyzed, and approach
(Smedley and Robinson, 2015). Problems related to long-term
maintenance of academic software are very common (Jacobsen
et al., 2022) and solutions have been proposed (Rother et al.,
2012). A list of tools from the cited literature is reported in
Supplementary Table S4. Among all gene prioritization methods,
for instance, VarElect and ToppGene are part of standard diagnostic
pipelines in the clinical settings. In particular, VarElect (Stelzer et al.,
2016a) is a comprehensive, phenotype-dependent, variant/gene
prioritization tool, based on the GeneCards suite (Stelzer et al.,
2016b). The input of VarElect is a gene list together with a free-text
phenotype description, such as disease and symptom terms, which
represents a useful interface for non-skilled users. The tool
prioritizes the genes on the basis of scores for the associated
terms, computed on the appearance frequency in the entire
GeneCards knowledgebase. The latter includes also the human
disease database MalaCards (Rappaport et al., 2017), the human
biological pathways of Pathcards (Belinky et al., 2015), and the gene
expression information in cells and tissues of LifeMap Discovery
(Edgar et al., 2013), for a total of 120 sources. The results of VarElect
are displayed as a table of genes with decreasing phenotype relation
scores. Alternatively, the gene prioritization task can be performed
by ToppGene (Chen et al., 2007; Chen et al., 2009a; Chen et al.,
2009b), a suite including tools for gene list functional enrichment,
candidate gene prioritization, and identification and prioritization of
novel disease candidate genes in the interactome. ToppGene selects
genes in the training set on the basis of their association with disease,
pathway, GO term, phenotype. The test set can be given by
candidate genes from linkage analysis studies, differential
expression in a particular disease or phenotype, interactome
knowledge. The enrichment step is based on a variety of data
sources that cover 14 types of annotation. For each type of
annotation of each test gene, a similarity score is generated, by
comparison to the enriched terms in the training set. The prioritized
gene list is ranked on the aggregated values of the 14 similarity
scores.

Finally, specific algorithms for the prioritization of RD-associated
genes were recently developed (Zhu et al., 2012; Liu et al., 2017;
Buphamalai et al., 2021; de la Fuente et al., 2023). Among them, for
instance, an algorithm was developed, based on the calculation of a
vertex-similarity score between each pair of genes, that was tested on a
set of ~1,600 known orphan disease-causing genes associated with
172 RDs (Zhu et al., 2012). Another method, which computes the
topological similarity between genes connected in a PPI network, ranks
the candidate genes combining two scores reflecting the local and global
connectivity of the network (Liu et al., 2017). The success rate of this
method can reach 50%–75% on a set of ~1,200 genes collected from the
Orphanet database. A more comprehensive approach evaluates the
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impact of rare gene defects, building a multiplex network with more
than 20 million gene relationships organized into 46 network layers
(Buphamalai et al., 2021). The analysis of 3,771 RDs reveals distinct
phenotypic modules that can be used to accurately predict RD gene
candidates. A recent tool (GLOWgenes), based on 33 functional
networks classified in 13 knowledge categories, was able to recover
genes associated with 91 genetic diseases classified into 20 families (de la
Fuente et al., 2023). When applied to 15 unsolved cases, GLOWgenes
was able to identify three new genes potentially associated with
syndromic inherited retinal dystrophies.

3.3 Variant interpretation methods

Variant interpretation tools are in silico predictive programs that
can help researchers in establishing the pathogenicity of the
variations identified in the gene(s) of interest. Many approaches
have been developed to perform these predictions, and their number
has grown very rapidly in the last years. They mainly focus on
predicting the impact of a missense variation on the structure and
function of the associated protein, or on predicting effects on RNA
splicing.

More recently, programs addressing more general noncoding
variants have also been developed (Özkan et al., 2021). Researchers
and clinicians tend to use variant interpretation tools in
combination, as also suggested by the ACMG/AMP guidelines
(Section 1.3). Nevertheless, their concordance in asserting the
variant effects (especially of the predicted benign ones) has been
rather low until present. More recently, however, newly developed
algorithms have shown good performance in many types of genes
and mutation mechanisms. Furthermore, by using gene-specific
algorithms, and by calibrating them with well-characterized sets
of benign and pathogenic variants, better results may be reached,
than with general use algorithms (Ghosh et al., 2017).

In the last two decades, an impressive number of methods and
algorithms for single amino acid substitution (SAS) have been
devised to predict the variant effect on protein structure, function
and interactions, to eventually identify those involved in molecular
pathogenicity. As a matter of fact, SASs represent more than 40% of
the unique variants found in the Exome Aggregation Consortium
(Lek et al., 2016). Those methods are obviously not specific to RDs
and have a broad range of applications (Capriotti et al., 2019;
Katsonis et al., 2022; Pancotti et al., 2022). A selection of the
most recent methods and resources is reported in Supplementary
Table S5. Many of the early methods were based on the prediction of
the effect of a single mutation on the protein thermodynamic
stability, as destabilization is one of the key factors in
pathogenesis (Capriotti et al., 2008; Dehouck et al., 2011; Worth
et al., 2011; Fariselli et al., 2015; Laimer et al., 2015; Quan et al., 2016;
Savojardo et al., 2016; Yang et al., 2018; Marabotti et al., 2020; Pires
et al., 2020; Montanucci et al., 2022). Subsequent efforts and
developments in the field produced last-generation methods,
using one of three general strategies: i) prediction of the
likelihood of a missense mutation for causing pathogenic changes
in a protein (Sim et al., 2012; Adzhubei et al., 2013; Carter et al.,
2013; Katsonis et al., 2014; Niroula et al., 2015; Capriotti et al., 2017;
Raimondi et al., 2017; Rentzsch et al., 2019; Pejaver et al., 2020;
Manfredi et al., 2022; Quinodoz et al., 2022); ii) evolutionary

conservation analysis of the mutated sites; iii) methods
combining different strategies (Stein et al., 2019; Petrosino et al.,
2021). More recently, several methods have been developed to also
predict the impact of variants in noncoding regions (Rojano et al.,
2019; Katsonis et al., 2022; Tabarini et al., 2022). These methods
include generic tools, which predict single-nucleotide pathogenic
variants across the entire genome (Quang et al., 2015; Shihab et al.,
2015; Zhou and Troyanskaya, 2015; Capriotti and Fariselli, 2017;
Rentzsch et al., 2019) and more specific algorithms, which predict
the impact of splicing variants (Desmet et al., 2009; Cheng et al.,
2019; Jaganathan et al., 2019; Rentzsch et al., 2021). In particular,
splicing-affecting variants are established contributors to RD, of
which they may modulate the phenotypic outcome (Li et al., 2016;
Scotti and Swanson, 2016).

To assess the performance of the available variant interpretation
algorithms on the variants specifically associated with RDs, we
collected a dataset of SAS from ClinVar (March 2022). Such a
dataset (sas-rd-202203 in Supplementary Materials) is composed of
~27,600 SAS in genes associated with rare genetic disorders from
different RD classes. From RD-associated ClinVar genes, we selected
16,012 variants classified as Pathogenic and 11,633 Benign. The
results of our analysis, scoring the performance of 4 state-of-the-art
variant interpretation tools (CADD, FATHMM, PhD-SNPg and
VEST4), show that the selected methods reach on average 83%
overall accuracy (Q2), 0.65 Matthews correlation coefficient (MCC),
and >0.90 area under the ROC curve (AUC) (Supplementary Table
S6). These results are in the same range of those reported in previous
works, not limited to RDs (Capriotti and Fariselli, 2017; Benevenuta
et al., 2021). A chromatic representation of the performance of the
methods (Figure 2) reveals that VEST4 reaches the highest AUC
(0.96) while FATHMM the lowest (0.83). Taking into account some
possible data overfitting, we expect that the resulting measures of
performance might be overestimated by no more than 2%–5%
(Capriotti and Fariselli, 2017). The results of the four tools in
predicting the effect of different RD classes exhibit some
variation. Specifically, for the Ophthalmic RD class, with
7,889 variants (28.5%), the performance of the methods is
slightly higher than average, reaching 85% overall accuracy,
0.69 Matthews correlation coefficient and 0.92 AUC. Conversely,
the lowest performance was observed in predicting the impact of
2,152 variants associated with the Cardiac RD class (~7.8%), with an
overall accuracy below 80%, a Matthews correlation coefficient of
0.58, and an AUC of 0.87. Although our analysis shows that state-of-
the-art methods for the prioritization of causative variants in RD-
associated genes result in a high-performance level, further work is
needed for improving the tools’ reliability, in view of the residual
~10% of misclassified variants. In this regard, it appears that an
important aspect to be considered for improving the predictions
reliability is the conservation level at the variation site (Capriotti and
Fariselli, 2022).

3.4 Genotype/phenotype association
methods

Despite the progress in our capacity to prioritize disease-causing
genotypes in clinical exomes and genomes, the large number of
variants that remain to be evaluated for the diagnosis-making
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process is still a challenge. Computational analysis of phenotypes, in
addition to genotypes, has proven powerful to improve the
standardization and automation of NGS diagnostic pipelines
from raw sequences to prioritized variants. The general principle,
followed by such analyses, is to compute measures of similarity
between the clinical manifestation in a patient and the description of
disease(s) linked to a gene. Gene and/or variant prioritization tools
measure ontological similarity between a set of query terms,
representing the compendium of the patient’s clinical
phenotypes, and the set of terms that are associated with any
disease-gene (Smedley and Robinson, 2015). Algorithms
underlying such tools have been developed, exploiting
standardized collections of clinical terminologies, the most widely
adopted of which is the Human Phenotype Ontology (HPO). The
latter is used to assist clinical scientists and researchers in clustering
and comparing phenotypes of patients with shared molecular
background, with the aim to improve genetic diagnosis and
genotype-to-phenotype correlations. Many tools that exploit the
knowledge of known phenotypes of disease genes in humans and
animal models have been developed. Such tools can be broadly
categorized into two groups: those that take both phenotype and
genotype data (VCF + HPO) as input, and those that only accept
phenotype data (HPO only). These tools have been thoroughly
reviewed and evaluated in a recent publication (Yuan et al., 2022). As
an example, one of the earliest and most used tools is Exomiser

(Robinson et al., 2014). Exomiser combines the most popular
strategies for variant filtration with HPO to prioritize data in a
VCF file. Despite its name, the Exomiser analysis framework is not
limited to the exome but incorporates the Regulatory Mendelian
Mutation (ReMM) score for relevance prediction of non-coding
variations (SNVs and small InDels) (Smedley et al., 2016). In their
review, Yuan et al. (2022) identified the two best performers in
HPO-based gene prioritization to be LIRICAL (Robinson et al.,
2020) and AMELIE (Birgmeier et al., 2020). Both of those recently
published tools propose innovative and interesting analysis
approaches. LIRICAL aims to overcome simple gene or variant
ranking based on semantic similarity as a prioritization scheme, by
introducing a likelihood-ratio test to provide an estimate of the post-
test probability of candidate diagnoses. AMELIE, conversely,
consists in an end-to-end machine learning approach with web
interface, that finds relevant literature supporting the disease
causality of genetic variants and their association with different
clinical presentations. In the benchmark from Yuan et al. (2022), the
two methods often resulted in quite different predictions of highly
ranked causal genes, and such a complementarity suggests a possible
integrative approach to further enhance the diagnostic efficiency. In
a recent work, genotype/phenotype association methods were tested
on a set of 4,877 molecularly diagnosed cases, affected by RDs, from
the 100,000 Genome Project (Jacobsen et al., 2022). On this set,
Exomiser was able to recall 82% and 92% of the diagnosed cases as

FIGURE 2
Performance of four state-of-the-art methods (CADD, FATHMM, PhD-SNPg and VEST4) on a dataset of RD-associated variants from ClinVar
database, featuring at least one annotation as Pathogenic or Benign. The scores are calculated for the different classes of RDs. All 27,648 variants
(16,012 Pathogenic and 11,633 Benign) in our dataset are in the Genetic class. According to the Clinvar annotation, each variant can be classified in
multiple RD groups. Performance parameters shown are: Q2, Overall Accuracy; MCC, Matthews Correlation Coefficient; AUC, Area Under the
receiver operator characteristic Curve. DB indicates the fraction of each RD group in the dataset. The performance of CADDwas calculated considering a
Phred-like score threshold of 20. The color darkness in the drawing is proportional to the numerical values, which are reported in Supplementary Table
S6. The predictions of the four methods are reported in Supplementary Materials.
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the top hit, and within the top 5 scores, respectively. These positive
results are going to render phenotype-genotype association tools
essential for RD diagnosis in the clinical routine.

4 Use cases on rare disease genome
interpretation

The diagnostic workflow of NGS genetic testing is composed of
three levels of data analysis: i) quality control of raw data, ii) variant
annotation, and iii) variant filtering. On the basis of the annotation
level of the variants detected after the variant calling procedure, we
can identify three main steps of analysis. In Figure 3 we summarized
the main filtering steps, including the approximate number of
unique variants that can be identified in a single subject after a
clinical exome. In order to efficiently prioritize clinically relevant
variations among all types of captured variants described in Figure 4,
we need to adopt different analytical strategies. Several resources,
including databases of genomic variation and phenotypes,
population frequency data and in silico prediction approaches,
can be used for the interpretation of each type of variant
(Supplementary Table S5).

According to the variant types, distinguished by their gene
location and the currently available resources for variant
interpretation, we can define the three following possible cases.

4.1 Identification of pathogenic variants
associated with RD phenotypes

In this case, the analysis workflow is well-defined and relatively
easy. In the hypothetical case shown in Figure 4, after the application
of the filters of variant allele frequency (VAF) and phenotyping (see
below), known clinically relevant variants in disease genes that fit
with the phenotype are selected to be reported.

TheVAF is retrieved frompopulation databases (Section 1.3), using
resources that aggregate exome and genome sequencing data from a
variety of large-scale sequencing projects, and make summary data
available for the wider scientific community. They include sequencing
data of both affected and unaffected subjects or different populations
(Gudmundsson et al., 2022). In current diagnostic settings, ultra-rare
and rare variants (VAF < 0.001 and VAF < 0.01, respectively), as well as
private variants (not annotated in population databases) are selected. Of
course, this primary filter can be modified according to the prevalence
in the population of a specific disorder. Thus, in some diagnostic
settings, also low-frequency variants (VAF < 0.05) can be selected
(Andolfo et al., 2021).

The exact characterization of the phenotype (“phenotyping”) is
one of the most relevant aspects of NGS genetic testing, and it is
often considered a major challenge for the NGS-based genetic
diagnosis. Generally, phenotyping is obtained using a
standardized vocabulary of phenotypic abnormalities encountered

FIGURE 3
Exome analysis flowchart. A diagram of themain steps of NGS data analysis is shown. On the left, the progressive reduction by filtering in the number
of likely disease-causing variants is shown, for a general patient case. The reported numbers are from a typical single patient case. On the right, the
filtering process is detailed. Based on the identified variants, we can recognize three different diagnostic situations: (1, green dot) identification of P/LP
variants with well-established association to RD phenotype; (2, yellow dot) identification of new P/LP variants in genes with known association to the
phenotype; (3, red dot) identification of functional variants in genes with unknown association with the phenotype. A fourth case should be considered,
i.e., the identification of VUS variants in genes with unknown association with the phenotype. In this case, complementing different approaches, such as
short-read genome sequencing with RNA sequencing, and methyl profiling, should be considered to elucidate the molecular mechanism of the disease
and improve the diagnostic yield.
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in human disease, such as that provided by HPO database (Section
2.4). Clinically relevant variants can be prioritized using public
repositories reporting correlation between genetic variants and
phenotypes, such as ClinVar and HGMD (Section 1.3;
Supplementary Table S2).

4.2 Identification of pathogenic variants in
RD associated genes

Herein, after the application of the aforementioned filters of
variant frequency, phenotyping, and clinically relevant variants in
disease genes, no variants are prioritized. In this case, to prioritize
pathogenic/likely pathogenic (PLP) variants associated with the
phenotype, ACMG/AMP guidelines for variant interpretation
(Section 1.3) are used.

According to those guidelines, the pathogenicity of each variant is
evaluated by gathering evidence from various sources: population data,
computational and predictive data, functional data, and segregation
data. Computational and predictive data are obtained by using several
in silico prediction programs described in Section 2.3. Those tools are
mainly devoted to the evaluation of the missense variants, which
constitute a major set of VUS (Variant of Unknown Significance).
The ACMG/AMP guidelines recommend complete concordance of
predictions among all in silico algorithms used, without specifying the
number or types of algorithms. However, many studies have provided
rules for the classification of non-synonymous variants based on the
integration of different prediction tools (Ghosh et al., 2017; Li et al.,
2019; Nicora et al., 2022).

For phenotype characterization, the analysis of splicing variants
is also relevant. The prioritization of splice site variants can be
performed by web server tools, such as Human Splicing Finder
(Desmet et al., 2009), MMSplice (Cheng et al., 2019), SpliceAI
(Jaganathan et al., 2019) and CADD-splice (Rentzsch et al.,
2021), that can highlight potential splicing-affecting variants
outside the canonical splicing sites. ACMG/AMP variant
classification can be achieved in such cases by using InterVar or
wInterVar (Li and Wang, 2017), a web server that enables user-
friendly variant interpretation with both an automated
interpretation step and a manual adjustment step. Functional
data that supports the pathogenic effect of newly discovered
variants is not typically included in the standard diagnostic
process of NGS genetic testing. Nevertheless, laboratories with an
extensive experience in a specific disease area, can provide additional
functional evaluation for new variants as part of their diagnostic
protocols (Thouvenot et al., 2016; Ellingford et al., 2022).

Finally, segregation and allele data are fundamental to correctly
assess the pathogenicity of variants. For this reason, in diagnostic
settings the trio analysis, i.e., the combined genomic analysis of
patient and parents, is strongly recommended (Alfares et al., 2020;
French et al., 2022; Gabriel et al., 2022).

4.3 Identification of functional variants in
genes with unknown RD association

Currently, the diagnostic process reaches a definitive
diagnosis only in about 50% of the cases, leaving many

FIGURE 4
Schematic view of the clinical variant interpretation process. In a human protein-coding gene, a variant in the exons of an open reading frame can
result in synonymous or nonsynonymous changes, while a variant in other areas (splice or intronic regions) can impact on splicing regulation. Changes
within regulatory sequences (yellow and blue) can affect transcription and translation regulation of gene expression. On the right column, a selection of
the most commonly used resources for variant interpretation is reported, distinguished by their gene location. Several methods are currently
available to predict the effect of coding variants, however the interpretation of variants in deep-intronic regions or in regulatory elements is still
challenging, due to the limited number of in silico prediction approaches. Such shortcomings can be overcome by parallel sequence analysis of thewhole
exome/genome together withmulti-omics technologies, including RNA sequencing (transcriptome analysis), ChIP-seq (chromatin immunoprecipitation
assay) and HiC (high-throughput chromosome conformation capture).
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patients with strongly-suspected genetic diseases without
molecular explanations. In such cases, all variants with
potential functional effects on any gene must be considered,
under the hypothesis that the pathogenic role of the causative
gene is still unknown. The initial filtering steps, similar to the
previous scenarios, consist of removing all variants unlikely to be
implicated in the disease, either because of low quality in exome
or high frequency in population. Very stringent frequency
thresholds are used, since it is likely that the considered
disease is extremely rare. Then, the pedigree is analyzed to
maintain only the variants that co-segregate with the
phenotype according to any Mendelian transmission model.
The variant-affected genes are prioritized to remove those that
show a high grade of variability in the general population and to
highlight those with a plausible biological role in the disease
phenotype. The resulting set of genes with functional variants,
poor population variability and biological compatibility is
released in gene matching tools to search for other patients
who are affected by alterations in the same genes (Section 2.2).
Once a ‘match’ occurs, the researchers are connected through the
system and can share molecular and clinical details of the
patients, potentially concluding that they are both affected by
the same disease, caused by the matched genes.

An example of successful gene-matching regards a 19-years-
old girl seen at Federico II University Hospital, Naples, Italy. The
girl was affected by a severe clinical picture, composed of complex
brain malformations, extraocular muscle anomalies, severe
intellectual disability, and drug-refractory epilepsy. Despite the
presentation strongly suggesting an underlying genetic cause,
thorough molecular and metabolic investigation failed to yield
any plausible explanation. The patient was, then, enrolled in the
Telethon Undiagnosed Diseases Program (TUDP) and
underwent patient-parent trio ES. Variant filtering and manual
revision did not find causative variants but highlighted those in
four non-disease genes (PLEKHN1, NR5A2, TMEM89, DHX37).
The patient’s clinical and molecular descriptions were released in
PhenomeCentral for gene-matching (Buske et al., 2015; Sobreira
et al., 2017; Osmond et al., 2022), where only for DHX37 a
consistent match with other patients with syndromic
intellectual disability was found (Paine et al., 2019).

However, depending on disease type and patient selection,
exome sequencing has been estimated to lead to a diagnosis in
30%–50% of rare Mendelian diseases (Frésard and Montgomery,
2018). A recent analysis shows that 14% of the recent diagnoses
could be successfully performed by the combination of automatic
and research approaches, looking for variants occurring in
genomic regions poorly covered by exome sequencing
(100,000 Genomes Project Pilot Investigators et al., 2021).
Thus, the whole genome sequencing approach is becoming
more relevant for the diagnosis of rare disorders (Turro et al.,
2020). Accordingly, a large variety of computational approaches
have been recently developed to score the impact of variants in
noncoding regions (Shihab et al., 2015; Zhou and Troyanskaya,
2015; Ioannidis et al., 2016; Ionita-Laza et al., 2016; Capriotti and
Fariselli, 2017; Rentzsch et al., 2019; Wells et al., 2019). In
addition, for the interpretation of these potentially regulatory
variants, the simultaneous and integrated use of multiple layers of
omics technologies, such as whole-genome and transcriptome

sequencing, is also increasingly being considered (Hasin et al.,
2017; Kerr et al., 2020).

We expect that such methods will soon become the reference
diagnostic tools in clinical settings. In this direction, a recent work
describes approaches and discusses strategies for the diagnosis of
rare and undiagnosed diseases, based on the analysis of the whole
genome (Marwaha et al., 2022).

5 Data sharing and FAIRification

In the context of RDs, data sharing between institutions and
across countries is crucial for maximising the potential of the
generated genomic data (Saunders et al., 2019). It allows for the
recruitment of larger cohorts of patients, thereby increasing
statistical, and diagnostic, power. Sensitive RD patient data are
collected by multiple institutions, whose registries are always
difficult to aggregate. Sharing such data is essential for the
development and maintenance of large databases, which are
essential for federated analysis and discovery. In this context,
the guiding principles of Findable, Accessible, Interoperable and
Reusable (FAIR) data for humans and computers (Wilkinson
et al., 2016) were developed, to ensure responsible sharing of
health data and safeguarding of subjects. Since 2014, when
“FAIR” acronym was first coined, and, because of their
potential, FAIR principles have been widely endorsed by the
RD community, the International Rare Diseases Research
Consortium (IRDiRC) and the ELIXIR research infrastructure.
In fact, adopting FAIR principles allows researchers and
clinicians to integrate data from different resources in
compliance with the restrictions of data accessibility, and thus
answer questions involving multiple resources. For example,
many types of genomic data, including features linked to the
genomic coordinates of a reference genome, are always difficult to
locate and access. A recent application of the FAIR principles to
genomic data allowed the development of a track search service,
which integrates metadata from various hubs, by adopting a set of
recommendations for genomic data sharing (Gundersen et al.,
2021). In addition, tools and pipelines developed for the analysis
of genomic data, such as those described in this review,
undoubtedly fall in the category of “research software”, which
is now considered part of FAIR by the European Commission.
Indeed, FAIR principles can be applied not only to data, but to
research software as well (Jiménez et al., 2017; Lamprecht et al.,
2020).

A recent initiative, aiming at making FAIR (‘FAIRification’)
24 ERN (European Reference Networks) registries of RD patients,
allowed collecting ninety-eight critical FAIRification challenges
and proposing solutions to address them (Dos Santos Vieira et al.,
2022). Awareness of the FAIRification challenges learned from
initiatives like this one, which are strongly supported by the
ELIXIR community, plays an important role in identifying
solutions aimed at harmonizing RD data. Nevertheless, most
resources collect unique data and there are wide differences in
content, format, and language across them. This heterogeneity
makes it virtually impossible to harmonize data from different
resources, wasting the time and effort of data analysts and
compromising any large-scale project aimed at improving RD
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research and supporting RD patients. It is therefore critical to put
effort in the FAIRification process, both for humans and
machines, so that data (including registries) can be queried in
an unambiguous, global and federated way.

Inline with this need, the ELIXIR bio. tools portal (Ison et al.,
2019) provides a comprehensive registry of software and
databases that facilitates the search, understanding, use, and
recognition of biomedical scientific resources. Among the
27,471 tools available on the portal, we identified 303 tools
that are part of the “Rare Diseases” collection, domain, or
topic and refer to a total of 165 functions described with the
semantic terms of the EDAM ontology (Ison et al., 2013). After
reviewing a list of 303 RD tools, we integrated them with other
bio. tools methods, to develop a curated set of core resources for
analyzing rare disease genomes.

The resources and tools collected in Supplementary Tables
S2–S5 have been evaluated according to five criteria, related to
their accessibility, update status, number of citations, and
development stage (reported with “mature” tag in bio. tools).
This type of evaluation, which assigns a score ranging from 1 to
5, represents a step toward the establishment of a standardized
protocol for their clinical application.

6 Conclusions and future directions

Quick and accurate diagnosis are key issues for public health
in general and for RDs in particular. The diagnostic delay for
many RDs may at present reach up to decades (Molster et al.,
2016; Heuyer et al., 2017), with an average time of about
4–5 years (Yan et al., 2020). In the journey towards diagnosis
(also named the “diagnostic odyssey”) patients may receive
misdiagnosis and consequent inappropriate treatments and
care. Diagnostic delay and misdiagnosis are due to many
factors: RDs are infrequent, thus it is difficult to achieve a
critical mass of data; data are sensitive, heterogeneous
(clinical data, patient registries, variants, etc.) and usually
fragmented (different communities and efforts collect data
on specific RDs of interest using different formats, schemas,
etc.) with poor interoperability, and a single, comprehensive
repository for RDs does not exist.

In recent years, the development of new tools and resources, and
the advances in data sharing practices and integrated analyses have
allowed to reach an appropriate diagnosis for a sizable proportion of
patients (Marwaha et al., 2022). Indeed, combining data from
different sources, and using computational tools to analyze them
in an integrated manner, is crucial to validate candidate variants,
identify disease causative genes, perform genotype-phenotype
associations, and elucidate the underlying molecular mechanism
of a disease.

However, RD patients and expertise are still very scattered
from each other, and knowledge and data sparsity, fragmentation,
heterogeneity and poor interoperability often make integration
and sharing of information extremely difficult if not impossible.
Moreover, RD data are sensitive and recent technologies and
practices gave rise to the further challenge of reconciling the
benefits of data sharing and integration with privacy protection
and ethical issues. Indeed, one of the major challenges nowadays

consist in the implementation of reliable procedures for
improving data sharing and the development of standardized
tools and pipelines to enable reproducible research, while at the
same time guaranteeing privacy rights.

To address these challenges, many international consortia have
been established to create and integrate global infrastructure for RD
research. At the European level, Solve-RD (solving the unsolved
RDs, (Zurek et al., 2021), and RD-Connect (Lochmüller et al., 2018)
enabled the creation of interdisciplinary teams to actively share and
jointly analyze existing patient’s data. These initiatives leverage
existing computational infrastructures to share registries and
standardize data among clinicians and scientists. In particular,
the RD-Connect consortium promoted the development of the
Genome-Phenome Analysis Platform (GPAP) (Laurie et al.,
2022), and its integration with the PhenomeCentral (Osmond
et al., 2022) and DECIPHER (Foreman et al., 2022). The GPAP
platform facilitates the collation, discovery, sharing, and analysis of
standardized genome-phenome data within a collaborative
environment.

In this context, the implementation of a FAIR ecosystem of
federated resources is essential for boosting research and
diagnosis by decreasing RD data fragmentation and increasing
data quality, with great advantages also in terms of time saving
and sustainability. Although the developers and maintainers of
the major RD resources and tools are already moving in the
direction of FAIR data and software sharing, much still remains
to be done to achieve the systematic application of FAIR
principles by all players of the ecosystem, including data
providers, data stewards and managers, software developers,
researchers and clinicians, patients associations, research
institutions, hospitals, and infrastructures. The transparent
access to data and tools by the scientific community is
recognized nowadays as one of the major challenges for
improving RD diagnosis.
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