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Background: Intervertebral disc degeneration (IDD) is the leading cause of lower
back pain, and an overall understanding of the molecular mechanisms related to
IDD is still lacking. The purpose of this study was to explore gene signatures and
immune cell infiltration related to IDD via bioinformatics analysis.

Methods: A total of five expression profiles of mRNA and non-coding RNA were
downloaded from the Gene Expression Omnibus (GEO) database. The potentially
involved lncRNA/circRNA–miRNA–mRNA networks and protein-protein
interaction networks were constructed by miRNet, circBank, STRING, and the
Cytoscape database. Gene ontology, Kyoto Encyclopaedia of Genes and
Genomes Analysis, Gene Set Enrichment Analysis, Gene Set Variation Analysis,
Immune Infiltration Analysis, and Drug-Gene Interaction were used to analyse the
top 20 hub genes. RT-qPCR was conducted to confirm the 12 differential
expressions of genes both in the nucleus pulposus and annulus fibrosus tissues

Results: There were 346 differentially expressed mRNAs, 12 differentially expressed
miRNAs, 883 differentially expressed lncRNAs, and 916 differentially expressed
circRNAs in the GEO database. Functional and enrichment analyses revealed hub
genes associated with platelet activation, immune responses, focal adhesion, and
PI3K-Akt signalling. The apoptotic pathway, the reactive oxygen species pathway, and
oxidative phosphorylation play an essential role in IDD. Immune infiltration analysis
demonstrated that the Treg cells had significant infiltration, and three levels of
immune cells, including dendritic cells, Th2 cells, and tumour-infiltrating
lymphocytes, were inhibited in IDD. Drug-gene interaction analysis showed that
COL1A1 and COL1A2 were targeted by collagenase clostridium histolyticum,
ocriplasmin, and PDGFRA was targeted by 66 drugs or molecular compounds.
Finally, 24 cases of IDD tissues and 12 cases of normal disc tissues were collected,
and the results of RT-qPCR were consistent with the bioinformatics results.

Conclusion:Our data indicated that the 20 hub genes and immune cell infiltration
were involved in the pathological process of IDD. In addition, the PDGFRA and two
potential drugs were found to be significant in IDD development.
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Introduction

Low back pain (LBP) is the most common musculoskeletal
condition affecting adults worldwide (Wu et al., 2021).
Intervertebral disc degeneration (IDD) has been regarded as the
primary cause of LBP (Fontana et al., 2015). In the case of IDD,
various etiologies have been implicated, like mechanical stress,
injury, aging, and genetic factors (Guo H. Y. et al., 2020). At
present, the clinical interventions for IDD mainly include drug
therapy and surgery. However, these treatments only provide
temporary painful relief and cannot provide permanent treatment
(Liu Y. et al., 2019).

Recent research has shown that immunological infiltration plays
a crucial role in the development and progression of IDD (Wang
et al., 2021; Li et al., 2022; Zhao et al., 2022). Immune cells
involvement with released inflammatory mediators and increased
oxidative stress accelerate the inflammatory cascade (Lan et al.,
2022). Besides, accumulated evidence reveals that mitochondrial-
related genes are strictly linked to cell functioning and modulate cell
immune activity in response to damaged associated signals from
nucleus pulposus cells (NPCs). So, finding genes linked to
mitochondria could lead to new ways to diagnose and treat IDD
(Guo et al., 2023).

The targeted hub genes for potential drugs have been explored in
the procession of IDD (Chen et al., 2020). IDD is protected from by
the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is
linked to an increase in extracellular matrix (ECM) content
(Ouyang et al., 2017). According to a disease-gene interaction
network, some medicines may have curative benefits on IDD
(Zhan et al., 2021). However, there are currently few targeted
IDD medications.

The study compared hub gene expression in nucleus pulposus
(NP) and annulus fibrosus (AF) tissues between healthy individuals
and IDD patients from the Gene Expression Omnibus (GEO)
datasets. The protein-protein interaction (PPI) and lncrna/
circrNA-miRNA-mRNA regulatory networks were constructed
using public datasets. Hub genes’ roles in IDD were explored
through Gene Ontologies (GOs), Kyoto Encyclopedia of Genes
and Genomes (KEGG), immune infiltration analysis, and hub
gene-drug interaction network. The study aimed to elucidate
IDD pathophysiology, identify biomarkers and determine the role
of immune infiltration in IDD.

Materials and methods

Gene expression data collection

The gene expression profiles of IDD, including GSE15227,
GSE23130, GSE19943, GSE116726, and GSE153761, were
downloaded from GEO databases (http://www.ncbi.nlm.nih.gov/
geo). Three unhealthy disc tissues and twelve healthy discs were
included in the GSE15227 dataset. Eight degenerative disc tissues
and fifteen controls were included in the GSE23130 dataset. Three

controls and three degenerative NPCs were included in the
GSE19943 dataset. The GSE116726 dataset included three NP
tissues from IDD patients and three controls from fresh
traumatic lumbar fracture patients. The GSE153761 dataset
included three degenerative cervical cartilage endplates and three
controls (Supplementary Table S1).

Differentially expressed genes

First, we performed data normalisation. The lists of differentially
expressed genes (DEGs), including differentially expressed mRNAs
(DE mRNAs), miRNAs (DE miRNAs), lncRNAs (DE lncRNAs),
and circRNAs (DE cirRNAs) between control and IDD group, were
created using the “limma” algorithm (Ritchie et al., 2015). The
thresholds were absolute value of log2 (fold change) (log2FC) >
1 and p < 0.05. The genes with log2FC > 1 with an adjusted p <
0.05 were upregulated, and the genes with log2FC < −1 with an
adjusted p < 0.05 were downregulated. p values under 0.05 and false
discovery rates (FDR) p-value of less than 0.20 were considered
significant. The ggplot2 program in the R software was then used to
draw the heatmap and volcano plot. The Venn diagram was
generated with a publicly available online tool (http://
bioinformatics.psb.ugent.be/webtools/Venn/).

Construct the ceRNA regulatory network

We obtained the DE miRNAs related mRNAs and lncRNAs
from the miRNet database (Fan and Xia, 2018) and the DE miRNAs
related mRNAs and cirRNAs from circbank database (Liu M. et al.,
2019) and visualized the lncRNA/circRNA-miRNA–mRNA
regulatory network using Cytoscape software (Shannon et al., 2003).

PPI network construction

The Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database (Szklarczyk et al., 2019) searches for
interactions between verified and predicted proteins. The PPI
network was built using the STRING database. The top 20 genes
in the PPI network with the highest molecular complex detection
(MCODE) scores (Bandettini et al., 2012) were designated as hub
genes.

Functional enrichment analyses of DEGs

GO analysis is a common method for large-scale functional
enrichment studies. GO may be categorized into three categories:
biological process (BP), molecular function (MF), and cellular
component (CC) (Yu, 2020). The KEGG is an extensive database
that combines data on genomic, chemical, and system functional
information (Kanehisa and Goto, 2000). The role of DEGs was
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examined using the “cluster Profiler” of the R package (Yu et al.,
2012).

The biological process of the GO was enriched using the Gene
Set Enrichment Analysis (GSEA) tool (Subramanian et al., 2005).
According to the grading of the phenotypic correlation degree, the
mRNAs in all datasets were separated into high- and low expression
groups. All DEGs in the two groups were then enriched and
evaluated using the cluster Profiler package. Reference gene sets
from the Molecular Signatures Database of c2 (c2. cp.v7.2. symbols)
(Liberzon et al., 2015). p values under 0.05 and false discovery rates
(FDR) p -value of less than 0.20 were considered significant.

The R package Gene Set Variation Analysis (GSVA) was used to
investigate BP and KEGG pathways of DEGs between different
groups (Hänzelmann et al., 2013). The enrichment scores were
computed for each sample in each gene set, with the lowest gene set
being 5 and the highest gene set being 5,000. The final enrichment
score matrix was obtained. The limma software was used to compare
the variations in GSVA scores between the hub genes in the two data
sets. p values under 0.05 and an FDR p-value of less than 0.20 were
regarded as significant.

Immune infiltration related analysis

In order to assess the immune infiltration microenvironment,
the single-sample gene-set enrichment analysis (ssGSEA) method
was used to compare the relative abundance of 16 types of immune
cells and 13 immune-related pathways in IDD patients and controls.
The relative abundance of each immune cell infiltration in each
sample was shown by the enrichment scores determined by the
ssGSEA analysis (Barbie et al., 2009; Charoentong et al., 2017). The
ggplot2 software was used to show the association between immune
cell expression differences in the mRNA dataset.

Construct mRNA-RBP, mRNA-TF, mRNA-
drugs interaction networks

The targeting connection between mRNA and RNA-binding
protein was predicted using the Starbase v2.0 database for RNA-
binding protein (RBP) (http://starbase.sysu.edu.cn/). Predictions of
potential drugs or small molecule compounds that interact with hub
genes were made using the DGidb database (https://www.dgidb.org)
(Freshour et al., 2021). Transcriptional factors (TFs) associated with
hub genes were found in the transcriptional regulatory relationships
unraveled by sentence-based text mining (TRRUST) database
(https://www.grnpedia.org/trrust/). The mRNA-RBP, mRNA-
drugs, and mRNA-TF interaction networks were shown using
Cytoscape.

Random forest and receiver operating
characteristic curve analysis

The Random forest (RF) an ensemble-learning approach for
classification that employs a number of decision trees, each of which
is composed of a random selection of data (Gruber et al., 2012). We
used the “randomForest” R package (Liu and Zhao, 2017) to

perform random forest analysis on the expression levels of hub
genes in the GSE15227 and GSE23130 datasets. The parameters
were set as set. seed (234) and ntree = 1000. Then, we screened the
specific analysis results of hub genes using increase in node purity
(IncNodePurity) > 0.1 as the criterion.

Receiver operating characteristic (ROC) is a graphical analysis
tool that can be used to select the best model, discard the second-best
model, or set the best threshold in the same model (Mandrekar,
2010). The ROC curve is a comprehensive indicator of continuous
variables reflecting sensitivity and specificity, and the correlation
between sensitivity and specificity is reflected by the composition
method. The R “pROC” package was used to draw the ROC curves of
hub genes between different groups in the GSE15227 and
GSE23130 dataset, and the area under curve (AUC) was
calculated to evaluate the diagnostic effect of hub genes on IDD.

Extraction and culture of primary
intervertebral disc cells

NP and AF tissues were digested at 37°C with 2 mg/ml type II
collagenase (Gibco, United States). After washing with phosphate
buffered saline (PBS), the digested tissues were placed in an
incubator at 5% CO2 and 37°C with Dulbecco’s Modified Eagle
Medium (DMEM) (Gibco, United States) containing 10% fetal
bovine serum (Gibco, United States) and 1% penicillin/
streptomycin (Gibco, United States). The cells at the confluent
stage were passaged following digestion with 0.25% trypsin-
ethylene diamine tetraacetic acid (EDTA) (Gibco, United States).
Cells after the three passages were used in the following experiments.

Patients and ethics

The ethics permissions were supplied by the institutional review
board of the Seventh Affiliated Hospital of Sun Yat-sen University
(KY-2021-030-01). Each patient who participated in the study gave
their informed written permission. Magnetic resonance imaging
(MRI) was used in accordance with the Pfirrmann classification to
assess the severity of IDD (Pfirrmann et al., 2001). All MRI were
performed with a 3.0-T magnetic resonance scanner (General
Electric Company, PHILIPS Ingenia Elition). T1-weighted images
are helpful in identifying the anatomy of the lumbar spine and
differentiating between different tissues such as bones, muscles, and
discs. T2-weighted images are highly sensitive to water content and
can help identify a herniated disc by showing the abnormal
protrusion of the disc material into the spinal canal. Pfirrmann
I-II tissue samples were utilized as controls. Human lumbar disc
tissues were acquired from patients who had spinal canal
decompression therapy.

Real-time quantitative polymerase chain
reaction (RT-qPCR)

RNA was directly extracted from tissues after separating the NP
and AF tissues in accordance with a prior methodology (Caprez
et al., 2018). In brief, a sample weighing 150 mg was divided,
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digested at 37 °C with 2 mg/ml pronase, flash-frozen, pulverized in
liquid nitrogen, and homogenized with a tissue lyser (Qiagen/
Retsch®, Germany). A TRI Reagent (Invitrogen, United States)
was used to extract the total RNA, and 400 ng of RNA was
converted to cDNA using a cDNA synthesis kit (Takara, Japan).
For reverse transcription: we first measured the sample RNA
concentration in a spectrophotometer (NanoDrop™ One/2000,
United States) and calculated the required volume of 400 ng
RNA. Then 400 ng of RNA, 4 μL of mix, and DEPC water
(Beyotime, China) were mixed to make a 20 μL mixture solution.
Finally, the mixture was reverse transcribed in a PCR instrument
(Bio-Rad, United States). RT-qPCR was performed using qPCRMix
(Thermo Fisher Scientific, United States) in a CXF-96 real-time
system (Bio-Rad, United States). The reaction mixture contained the
following components in a total volume of 10 µL: 5 µL Fast SYBR
Green (Thermo Fisher Scientific, United States) master mix, 2 μL
RNase-free (Beyotime, China) ddH2O, 2 μL cDNA and 0.5 μL of
each primer (Supplementary Table S2). Relative expression was
calculated using the 2−ΔΔCt and gene expression levels were
normalized to GAPDH.

Immunohistochemistry

Intervertebral disc tissues were obtained immediately after
surgery. IDD specimens were fixed in 4% paraformaldehyde and
then embedded in paraffin. Tissue sections (5 μm) were
deparaffinized, rehydrated, and incubated overnight at 4°C with
primary antibodies. After washing with PBS, the sections were
incubated with a horseradish peroxidase-conjugated secondary
antibody. Then, the reaction was developed with 3,3′-
diaminobenzidine and counterstained with haematoxylin. The
relative protein expression was quantified by Image-Pro Plus
version 6.0 software (Media Cybernetics Inc.). The following
primary antibodies were used: anti-ACTG1 polyclonal antibody
(solarbio, 1:200) and anti-CALM3 polyclonal antibody (affinity,
1:100).

Statistical analysis

All data were analyzed and processed on R software (version
4.1.2) and all results are provided as mean ± standard deviation
(SD). The “pROC” package was used to calculate the AUC and draw
the ROC curves. The Shapiro–Wilk normality test was performed to
evaluate the normality of the data distribution. Statistical
significance (p < 0.05) was analyzed by Student’s t-test (two
groups) or one-way analysis of variance (ANOVA) (more than
two groups). A Mann-Whitney U test was performed for non-
normally distributed data.

Results

Identification of DEGs related to IDD

Batch correction, normalization, and difference analysis of
RNA-seq data from GSE15227, GSE23130, GSE19943,

GSE116726, and GSE153761 were carried out to check for
DEGs in IVD samples. In GSE15227 datasets, a total of
3,314 DE mRNAs were found, including 1,740 upregulated
and 1,574 downregulated mRNAs, and in GSE23130 datasets,
497 DE mRNAs were found, including 468 upregulated and
29 downregulated mRNAs. Volcanic plots, a Venn diagram,
and a heat map were used to display the findings (Figures 1A,
B, G, Figures 2A, B; Supplementary Table S3). A total of 112 DE
miRNAs, comprising 71 upregulated and 41 downregulated
miRNAs, and 970 DE miRNAs, including 449 upregulated and
521 downregulated miRNAs, were found in the GSE19943 and
GSE116726 datasets, respectively. Volcanic plots, a Venn
diagram, and a heatmap were used to show the findings
(Figures 1C, D, H, Figures 2C, D; Supplementary Table S4). A
total of 883 DE lncRNA, including 334 upregulated and
549 downregulated lncRNA, and 916 DE circRNA, including
317 upregulated and 599 downregulated circRNA, were found in
the GSE153761 datasets (Figures 1E, F, Figures 2E, F).

Construct lncRNA-miRNA-mRNA and
circRNA-miRNA-mRNA networks

Using Cytoscape software, a ceRNA network was established
based on interactions between miRNA and lncRNA, mRNA and
miRNA, and lncRNA and mRNA (Figures 3A, B). There are
8 lncRNA nodes, 48 mRNA nodes, 11 miRNA nodes, 22 cirRNA
nodes, and 139 mRNA nodes in the lncRNA/cirRNA-miRNA-
mRNA network (Supplementary Tables S5–S7).

PPI network analysis, GO, and KEGG
enrichment analysis of hub genes

Considering the importance of hub genes in a network, we
utilized an MCODE technique to screen the top 20 hub genes
(ACTB, ACTG1, CALM3, MYO10, ARPC2, COL1A1, COL1A2,
RPS6, PDGFRA, RPL27A, HNRNPA2B1, CLU, RPL12, PTMA,
PPP2CA, C1S, SERPING1, RTN3, LTBP2, IGFBP5) from the PPI
network and Cytoscape software to show the interaction network of
hub genes (Figure 4A; Supplementary Table S8).

The findings demonstrated that these hub genes are primarily
enriched in BP related to blood coagulation, hemostasis, and
coagulation, CC related to blood microparticles, collagen-
containing extracellular matrix, and MF related to factor
binding, tau protein binding, and structural components of
the cytoskeleton (Figures 4B, C; Supplementary Table S9).
Additionally, these hub genes were also enriched in KEGG
pathways for focal adhesion, cancer-related proteoglycans, and
the PI3K-Akt signaling pathway (Figures 4D, E; Supplementary
Table S10).

The chromosomal locations of the 20 hub genes as well as DE
miRNAs, DE lncRNAs, and DE circRNAs in the ceRNA network
were visualized. The findings revealed that the 20 hub genes were
mostly distributed in chr2, chr5, and chr7, chr9, chr11, and chr17
(Figure 5A), the DE miRNAs in chr7 and chrX (Figure 5B), the DE
lncRNAs in chr1, chr5 (Figure 5C), and the DE circRNAs in chr1,
chr9, chr16, and chr19 (Figure 5D).
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GSEA and GSVA

GSEA was used to identify the BP and pathways that were
significantly different between IDD samples and healthy samples in
GSE15227 and GSE23130. The results indicated that the hub genes
in GSE15227 were considerably enriched in eukaryotic translation
elongation, ribosome, eukaryotic translation initiation, cytoplasmic
ribosomal protein (Figure 6A; Supplementary Table S11). Hub genes
in GSE23130 were highly enriched in cytoplasmic ribosomal
protein, eukaryotic translation elongation, ribosome, and
selenoamino acid metabolism (Figure 6B; Supplementary
Table S12).

The GSE15227 and GSE23130 datasets were used to investigate
the possible role of hub genes in IDD. A total of 12 hub genes were
found to have consistent differential expression in both
GSE15227 and GSE23130, including ACTG1, CALM3, COL1A2,
RPL27A, HNRNPA2B1, CLU, PTMA, PPP2CA, C1S, SERPING1,
RTN3, and LTBP2 (Figures 7A, B).

We performed GSVA on IDD samples and compared them to
healthy control in GSE15227 and GSE23130 database and the results
were displayed as a heatmap (Figures 7C, D). Using the median
GSVA score, all IDD samples were divided into low and high score
groups and 9 hallmark gene sets scored highly in both datasets.
Apoptosis, MTORC1 signaling, the reactive oxygen species pathway,

FIGURE 1
Differential expression of mRNA, miRNA, lncRNA and cirRNA associated with IDD. (A–F) Volcanomap of DEmRNAs, miRNAs, lncRNAs, and cirRNAs
in GSE15227, GSE23130, GSE19943, GSE116726, and GSE153761 between IDD patients and healthy controls. Genes that have been upregulated are
shown in red, those that have been downregulated in blue, and unaltered genes are represented in black. (G, H) DE miRNAs between GSE116726 and
GSE19943 and DE mRNAs between GSE15227 and GSE23130 are shown in a Venn diagram.
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oxidative phosphorylation, and TGF-β signaling were among the
gene sets with high scores.

Immune cell infiltration estimation

Immune infiltration analysis using GSE15227 and
GSE23130 was carried out to ascertain the differences in immune

cell infiltration patterns between patients with IDD and healthy
individuals. The ssGSEA approach was used to assess immune
infiltration and to determine the enrichment levels of immune
cells and immune-related pathways.

The study revealed that immune infiltration, particularly
that of activated dendritic cells (aDCs), Th2 cells, and tumor-
infiltrating lymphocytes (TILs), was typically lower in the IDD
group in GSE15227. Additionally, the IDD group had lower

FIGURE 2
Exhibits the DEGs related to IDD. Heatmap of DEGs between IDD patients and healthy controls in (A) GSE15227, (B) GSE23130, (C) GSE19943, (D)
GSE116726, and (E–F) GSE153761. Patients with IDD are shown in red, whereas healthy controls are shown in green.
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FIGURE 3
Construction of the lncRNA/cirRNA-miRNA–mRNA regulatory network. (A): CeRNA interaction network of lncRNA-miRNA-mRNA. The mRNA is
represented by orange, the miRNA by gray, and the lncRNA by green. (B): mRNA-miRNA-circRNA ceRNA interaction network. mRNA is represented by
blue, miRNA by pink, and circRNA by orange.
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scores for CCR, inflammation-promoting factors, and T-cell
co-stimulatory factors, but MHC class I and parainflammation
scores revealed the reverse pattern (p < 0.05) (Figure 8A). In
GSE23130, aDCs and B cells showed reduced levels of
immune infiltration, but Treg cells had increased levels.
HLA and MHC class I scores were higher in the IDD group
(p < 0.05) (Figure 8B). It is worth noting that the aDCs
had a lower level of immune infiltration both in two of the
data sets.

Construction of mRNA-RBP and mRNA-TF
interaction and identification of the
potential drugs

Starbase v2.0 database was used to estimate the network of
interactions between hub genes and RBP, and Cytoscape was used
for visualization. The link between hub genes and RBP were illustrated
in mRNA-RBP interaction network (Figure 9A). The DGIdb database
shows the relationship between hub genes and known or potential

FIGURE 4
PPI network, GO and KEGG enrichment analysis. (A) Nodes with red to yellow colors indicate genes with high to low PPI degree scores. (B, C) Hub
gene GO enrichment analysis findings were shown in bubble and network diagrams. (D, E) Analysis of the 20 hub genes’ enriched KEGG pathways. BP
represents a biological process, MF represents a molecular function and CC represents a cellular component.
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drugs. We discovered 80 possible drugs or chemical compounds that
correlate to 11 mRNAs. Among these, two drugs or chemical
compounds, such as collagenase clostridium histolyticum and
ocriplasmin, simultaneously targeted COL1A1 and COL1A2. We also
discovered that 66 drugs or chemical compounds specifically targeted
the PDGFRA (Figure 9B; Supplementary Table S13). Moreover, we
investigated potential transcription factor targets for hub genes and the
TRRUST database was used to identify a total of 47 connections

between transcription factors and hub genes (Figure 9C;
Supplementary Table S14).

RF and ROC curve analysis

To determine the diagnostic value of hub genes in IDD, we used
RF to analyze the expression of 20 hub genes in the GSE15227 and

FIGURE 5
Chromosomal locations of DEGs. (A) Chromosomal localization of 20 hub genes in the PPI network. (B–D) Chromosomal localization of DE
miRNAs, DE lncRNAs, and DE circRNAs in the ceRNA network.
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FIGURE 6
GSEA enriches associated biological processes. (A) Four main biological processes—eukaryotic translation elongation, ribosome, eukaryotic
translation initiation, and cytoplasmic ribosomal protein—were enriched in the hub genes in GSE15227. (B) The hub genes in GSE15227 were particularly
enriched for four biological processes, including cytoplasmic ribosomal protein, eukaryotic translation elongation, ribosome, and selenoamino acids
metabolism.
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GSE23130 datasets. The results showed that 9 diagnostic markers
were obtained in GSE15227 dataset (Figures 10A, B) and
16 diagnostic markers were obtained in GSE23130 datasets
(Figures 10C, D). We obtained a total of 9 common hub genes
by taking the intersection of the hub genes identified through RF
analysis of the GSE15227 and GSE23130 datasets, including
ACTG1, CALM3, CLU, C OL1A1, COL1A2, LTBP2, PPP2CA,
RPL27A and SERPING1.

To assess the diagnostic potential of the expression differences of
the identified hub genes in IDD, we further plotted the ROC curves
for the 9 hub genes in different groups of GSE15227 and
GSE23130 datasets. In the GSE15227 dataset, the expression of
ACTG1, CALM3, CLU, and COL1A2 showed high accuracy in

diagnosing IDD (Figures 10F–N). On the other hand, in the
GSE23130 dataset, the expression of ACTG1, CALM3,
and COL1A1 showed high accuracy in diagnosing IDD (Figures
11A–I).

Validation of the hub genes

To validate the identified hub genes, we obtained the RNA from
36 human intervertebral disc tissues, including 12 from patients with
Pfirrmann levels I or II-disc degeneration and 24 from patients with
levels III or V disc degeneration. The mRNA levels of ACTG1,
CALM3, COL1A2, RPL27A, HNRNPA2B1, CLU, PTMA, PPP2CA,

FIGURE 7
Differential expression analysis of the top 20 hub genes andGSVA analysis. (A, B) Boxplots of chosenDEGs from theGSE15227 andGSE23130, where
red denotes IDD and blue, normal. * p < 0.05, ** p < 0.01, *** p < 0.001. (C, D) 22 hallmark gene sets are indicated by the GSVA of GSE15227, while
17 hallmark gene sets are indicated by the GSVA of GSE23130.
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C1S, SERPING1 and LTBP2 were higher in IDD groups than in
healthy control in both NP tissues and AF tissues. In AF tissues, the
RTN3 was higher than in the IDD group, while there was no

significant difference in NP tissues (Figures 12A, B). To verify
the results of RF and ROC curve analysis, we performed IHC
staining to detect the expression levels of ACTG1 and CALM3 in

FIGURE 8
(A, B) Analysis of the immunemicroenvironment in the IDD and normal groups. Comparing the enrichment scores of 16 different immune cell types
and 13 immune-related pathways between the two groups in GSE15227 and GSE23130.

Frontiers in Molecular Biosciences frontiersin.org12

Tang et al. 10.3389/fmolb.2023.1169718

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
http://10.3389/fmolb.2023.1169718


IVD tissues. It showed that both the expression levels of ACTG1 and
CALM3 were increased in IDD group than controls (Figures 11J, K).

Discussion

IDD is a significant contributor to low back pain, which has
considerable social and financial costs (Cohen, 2022). With a
growing frequency in the aging population, there is an urgent
need to determine the etiology and optimal treatment for IDD.
Unfortunately, the diagnosis of IDD is mostly based on symptoms
and imaging, which makes early detection and therapy difficult (Lan
et al., 2022). Although multiple research using human participants
concluded that macrophages are the most critical players in IDD, the

role of other immune cells in the development of IDD remains
unknown (Silva et al., 2019; Wang et al., 2021). In this study, we
acquired IDD hub genes, build a ceRNA network, and study
immune infiltration and potential drugs using bioinformatics
analysis. These results revealed that hub genes such as ACTG1,
CALM3, COL1A2, RPL27A and others were associated with IDD
and immune cells including Treg cells, dendritic cells, Th2 cells and
tumour-infiltrating lymphocytes are involved in the process of IDD.
In addition, the PDGFRA and two potential drugs were found to be
significant in IDD development.

Non-coding RNA is essential in the process of different diseases
(Huang et al., 2021; Zhong et al., 2022). The involvement of
lncRNA/circRNA-miRNA-mRNA regulatory networks and
predicted multiple ceRNA regulatory axes was revealed to be

FIGURE 9
Construction of the mRNA-RBP and mRNA-TF interaction networks and identification of the potential drugs. (A) The interaction network between
hub genes and RBP, the hub genes are shown in orange, while RBP is represented by green. (B)Hub gene potential drug network; the blue represents the
hub genes, and the orange represents the potential drug. (C) The interaction network between hub genes and TF, purple represents hub genes, orange
represents the TF.
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substantial in NP cells isolated from IDD patients (Huo et al., 2021).
The lnc RNA PART1 has been shown to influence NP cell
degeneration through the miR-93/MMP2 pathway (Gao et al.,
2020). It was discovered that the lncRNA SLC20A1 targets the
miR-31-5p/MMP3 axis to enhance extracellular matrix
breakdown in NP cells (Yang et al., 2019). Also, a study revealed

that LINC00969 accelerates intervertebral disc degeneration via
sponging miR335-3p and controlling NLRP3 inflammasome
activation (Yu et al., 2019). Apart from these studies on lncRNA,
many others have shown that circRNAs act as miRNA sponges to
influence the pathophysiology of IDD. For example, circRNA 104670
could directly bind tomiR-17-3p and reverse the negative regulation

FIGURE 10
The RF and ROC analysis. (A, B) Training error of RF in GSE15227 dataset and GSE23130 dataset. (C, D) RF models in GSE15227 and
GSE23130 datasets showed hub genes. (E) Venn diagram of hub genes obtained by RF analysis. (F–N) The ROC curve of the hub genes in the
GSE23130 dataset, the closer the AUC in the ROC curve was to 1, the better the diagnostic effect was. RF represents the random forest, ROC represents
receiver operating characteristic, AUC represents the area under the curve.
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of miR-17-3p on MMP-2, thus inhibiting the apoptosis of NP cells
(Song et al., 2018). Bioinformatics investigation revealed that matrix
metalloproteinase 2 (MMP2) was a possible target of miR185p, and
metallopeptidases 2 (circTIMP2) were shown to increase TNF-α-
and IL-1β-induced NP cell imbalance between ECM anabolism and
catabolism through miR-185p-MMP2 signaling (Guo W. et al.,
2020). Nonetheless, there is still a lack of thorough knowledge of
the molecular interactions involved in IDD since additional key
functional regulatory axes may exist and a disease-wide regulatory
network is required. Our research analyzed the genes and non-
coding RNAs, then processed the data from public sources to form a

molecular interaction network. The network included 48 DE
mRNA, 11 DE miRNA, 8 DE lncRNA, 22 DE circRNA, and
142 potential lncRNA/circRNA-miRNA-mRNA axes. We are
excited to use this network to identify the genes and ncRNAs
that are most likely connected to IDD, laying the groundwork for
future studies.

While ACTG1 is a non-muscle actin gene, it is a member of the
actin family. ACTG1 has been shown to have a variety of roles
recently. Loss of hearing is connected to the ACTG1 mutation (Zhu
et al., 2003). ACTG1 knockdown prevents tumor cells from
migrating, proliferating, and repairing wounds via the ROCK

FIGURE 11
The ROC curve analysis and immunohistochemistry. (A–I) The ROC curve of the hub genes in the GSE23130 dataset, the closer the AUC in the ROC
curve was to 1, the better the diagnostic effect was. (J–K) The immunohistochemical (IHC) staining of ACTG1 and CALM3 both in IDD group and controls,
bar = 100 μm. n = 3, p p < 0.05, ppp < 0.01, pppp < 0.001. ROC represents receiver operating characteristic, AUC represents the area under the curve.
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signaling system (Dong et al., 2018). In this study, both the level of
ACTG1 and PI3K-Akt signaling pathway were higher in the IDD
group. Bioinformatics analysis revealed ACTG1 highly associated
with the PI3K-Akt signaling pathway (Parrini et al., 2016; Hou et al.,
2022). It is speculated that ACTG1 may play a role in the
development of IDD by controlling the PI3K/AKT signaling

pathway, and further research is needed to be demonstrated in
vivo and in vitro experiments. Moreover, it has been shown that the
development and progression of IDD are highly related to oxidative
stress (ROS). Excessive ROS play a key role as mediators in the cell
signaling network (Zhong et al., 2023). They control the senescence,
apoptosis, autophagy, and proinflammatory phenotypes of disc cells

FIGURE 12
The gene expression of hub genes in normal intervertebral disc tissues and IDD tissues. (A): Expression levels ofmRNAswere compared between the
two groups in NP tissues. (B): Expression levels of mRNAs were compared between the two groups in AF tissues. p p < 0.05, ppp < 0.01, pppp < 0.001.
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(Feng et al., 2017; Liu Y. et al., 2019; Dai et al., 2021). According to
the report, HNRNPA2B1, a nuclear reader and effector of the m6A
mark, may have a significant role in controlling mitochondrial stress
and endothelial cell permeability as well as enhancing the secretion
of inflammatory cytokines (Alarcón et al., 2015). HNRNPA2B1 was
identified in this work by bioinformatics analysis, and it was
hypothesized that this hub gene is connected to mitochondrial
dysfunction and inflammatory response-mediated IDD
pathogenesis. Also, our research has shown that the expression of
various coding genes, including CALM3, MYO10, ARPC2, RPS6,
RPL27A, and PDGFRA, was increased in IDD; however, it is yet
unclear how these hub genes contribute to the occurrence of IDD.
Further research on these crucial genes and their signaling networks
may open up new avenues for the treatment of IDD.

Throughout the course of IDD, several kinds of immune cells,
such as neutrophils, T cells, and macrophages, govern the
immunological response. Immune cell infiltration may produce a
substantial number of proinflammatory chemicals, promoting an
inflammation cascade inside the disc (Hai et al., 2022). A significant
association between macrophages and progenitor NP cells was
discovered through NF-B signaling pathways during the
development of IDD (Ling et al., 2021). The interaction between
macrophages and IVD polarized macrophages toward a more
proinflammatory state, which accelerated IVD degradation. In
this research, there was a significant amount of Treg cell
infiltration in the IDD group, but there was no difference in
macrophage infiltration in the intervertebral disc between the two
groups. Similarly to our findings, several academics have linked the
Tregs to the development of IDD (Wang et al., 2021). Moreover,
several other immune cell types, such as neutrophils and T cells,
have drawn a lot of interest (Duan et al., 2022). Eventually, it is
anticipated that the development of immune cell responses will lead
to a breakthrough in the treatment of IDD.

When disc tissue is exposed to extreme mechanical strain,
mitochondrial fusion occurs. Protein downregulation causes
mitochondrial fusion abnormalities, which cause NP cell damage.
Mitochondria-related genes, such as SOX9, FLVCR1, NR5A1, and
UCHL1, play an important role in the progress of IDD (Zhu et al.,
2022). There was a strong positive correlation between MFN2 and
the level of immune infiltration of three types of invasive immune
cells and the function of regulating mitochondrial fusion (Guo et al.,
2023). In our study, we found that COL1A2, HNRNPA2B1, CLU,
PPP2CA, and RTN3. Hub genes including COL1A2, HNRNPA2B1,
CLU, PPP2CA, and RTN3 have been linked to mitochondrial
dysfunction in a variety of disorders (Sharoar et al., 2016; Garros
et al., 2017; Ren et al., 2019; Wang et al., 2020; Moriggi et al., 2021).
Future research will focus on how these genes contribute to
mitochondrial dysfunction-induced IDD.

The top hub gene for these molecules or pharmaceuticals is
PDGFRA, which is under the control of 66 potential drugs or
molecular compounds. This gene encodes a tyrosine kinase
receptor on the cell surface for members of the platelet-derived
growth factor family and is involved in organ development, wound
healing, and tumor growth (Ko et al., 2020). PDGFRA interacts with
PI3K/AKT and STAT proteins to regulate cell migration,
proliferation, and survival (Zeng et al., 2019). Moreover, as it has
been shown that members of the PI3K family play a role in the
development of IDD, it is presumed that PDGFRA played a role in

the development of IDD by controlling the PI3K/AKT signaling
pathways. Using the DGIdb online database, we performed a drug-
gene interaction study and discovered two related drugs, collagenase
clostridium histolyticum and ocriplasmin, for the treatment of IDD.
Ocriplasmin is mostly used to treat various ophthalmic illnesses
(Pirani et al., 2019), while collagenase clostridium histolyticum is
primarily used to treat Dupuytren’s contracture or Peyronie’s
disease (Abdel Raheem et al., 2018; Fletcher et al., 2019).
Collagenase clostridium histolyticum and ocriplasmin have
reportedly been identified as possible treatments for osteoarthritis
(OA) (Xu et al., 2022). Nevertheless, further research is required to
determine if these drugs have sufficient effects on IDD.

Compared to previous studies, we conducted a comprehensive
exploration of various types of RNA, including not only mRNA
analysis but also miRNA, lncRNA, and circRNA (Yang et al., 2023).
By integrating multiple RNA types, we can gain a more
comprehensive understanding of the molecular mechanisms
involved in IDD. This approach allows for a broader exploration
of gene features and potential regulatory networks associated with
IDD, which may provide a unique contribution compared to studies
focusing solely on mRNA (Li et al., 2019). Additionally, we
constructed lncRNA/circRNA-miRNA-mRNA regulatory
networks and PPI networks. By integrating various resources and
databases, we can gain a more comprehensive understanding of
potential interactions and regulatory pathways related to IDD (Zhan
et al., 2021). This integrative approach enhances the reliability and
robustness of the research findings. We also utilized the DGidb
database to predict potential drugs or small molecule compounds
that interact with hub genes. IDD is a complex disease, and
individual patients may respond differently to drugs. By
analyzing the genetic profiles of patients, we can determine
which drugs are more suitable for specific individuals.
Furthermore, studying the interaction between drugs and genes
can lead to the discovery of new drug targets and the development of
treatment strategies tailored to specific genetic variations (Cotto
et al., 2018). Finally, we performed experimental validation using
RT-qPCR and immunohistochemistry. This experimental validation
enhances the reliability and significance of the bioinformatics
results, providing valuable confirmation to our discoveries.

This research has several drawbacks. This research was entirely
reliant on public datasets with a limited sample size, which might
contribute to high false-positive rate and one-sided results, thus, it is
necessary to improve detection power by integrating multiple
individual databases in a future study. Second, further
experiments are needed to verify the role of biomarkers, such as
ACTG1, CALM3, CLU, in IDD. Finally, our research did not take
into account several factors, including sex, age, and the underlying
condition of IDD and we will take these factors into account in the
future.

Conclusion

In conclusion, the current work has investigated the molecular
processes underlying IDD using thorough bioinformatics analysis.
We screened 20 hub genes associated with IDD and examined their
functions and enriched pathways. Based on comprehensive
bioinformatics research, the IncRNA/circRNA-miRNA-mRNA
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network, important regulatory mechanisms, and immune
infiltration features of IDD were also discovered. Also, the
DGIdb database was used to find two potential drugs, clostridium
histolyticum and ocriplasmin. All in all, these discoveries might
provide a fresh viewpoint for IDD diagnosis and therapy.
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